用户名: 密码: 验证码:
河南省耐多药结核菌耐药相关基因的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是全球22个结核病高负担国家之一,患病人数仅次于印度居世界第二。我国的耐药结核病流行状况也很严重,耐多药(MDR)结核的流行比例为9.3%,约是世界平均水平的2倍。耐多药结核病治疗周期长、药物副作用大,而且治愈率低、死亡率高。因此,耐多药结核病的控制对于中国当前结核病的防治具有重要意义。
     早期快速诊断结核分枝杆菌的耐药性有利于耐多药结核病的治疗和控制。和基于培养的药敏检测方法相比,基于分子生物学的药敏检测方法具有快速、敏感和成本较低的优势。目前,已有商品化的产品INNO-LiPARif.TB (Innogenetics, Belgium)和GenoType MTBDR plus (Genotype MTBDR; Hain Lifescience, Nehren, Germany)被WHO认为可以用于结核耐多药性的快速诊断。但是由于不同地区流行菌株的耐药相关基因突变频率和类型不同,这些工具检测耐药性的灵敏度和特异度在不同地区也不同。因此,对于不同地区菌株的耐药相关基因突变频率和类型的全面了解,有利于这类新的诊断技术的开发和广泛应用。
     在中国对耐药结核菌,特别是耐多药结核菌的耐药相关基因的突变频率和突变类型进行的研究还很少。我们试图通过改善的、全面的结核分支杆菌耐药相关基因的研究,对河南省耐多药结核菌4个一线抗结核药耐药相关基因的突变频率和突变类型进行详细描述,并对各个耐药相关基因的的变异规律进行了深入的探讨,为开发适合该地区耐多药结核菌的高灵敏度和特异度的诊断方法提供更多的数据。
     本研究中共收集来自河南省不同地区的115株耐多药结核菌和22株对一线4个抗结核药全敏感的菌株。使用WHO推荐的比例法检测菌株对一线4个抗结核药的药物敏感性,获得菌株的耐药特征。
     我们检测了所有已知的一线4个抗结核药物的9个耐药相关基因的编码区全长和部分启动子区,以期能获得相关基因突变频率和突变类型的更全面信息。通过对河南115株耐多药结核菌4个一线抗结核药的耐药相关基因突变特征的全面分析,我们发现:
     (1)本研究利福平和异烟肼耐药相关基因所有的已知突变的总突变频率没有明显改变,如:本研究rpoB所有的已知突变的总突变频率为97.3%,与多数研究报道的95%到98%一致。此外,MDR菌株中各耐药相关突变位点的突变频率的顺位没有改变。如:rpoB531>rpoB526>rpoB516,rpsL43>rpsL88>rrs513。
     (2)同一地区,在MDR菌株较多或全部为MDR菌株的研究中,多个耐药相关基因的主要突变位点的突变频率高于MDR菌株较少或单耐药菌株的研究,这些突变位点有rpoV531、katG315、embB306、rpsL43。此外,有的耐药相关基因的突变,如:embB306和rpsL 43,在MDR菌株中会出现在该突变对应耐药性的敏感菌株。
     (3)共发现53个新突变位点,16个新突变类型,这些新突变位点和类型在MDR结核菌的耐药发生中的作用需要进一步研究。
     此外,我们还利用已获得的耐多药结核菌耐药相关基因突变特征及其耐药特征数据,对embB基因突变(包括embB306突变)和MDR结核菌耐药性间的关系进行了分析,得到了如下结论:
     (1)在MDR结核菌中,embB基因上的突变,包括embB306突变,和乙胺丁醇耐药统计学上相关。单独检测embB306突变预测乙胺丁醇耐药灵敏度不高(62.7%),通过检测embB基因所有突变,可以提高灵敏度至89.6%。这提示embB基因上多个位点均可能参与了乙胺丁醇的耐药发生,大多数突变集中在300到500密码子间。某些对乙胺丁醇敏感的MDR菌株发生embB基因突变(包括embB306突变),这与多数研究结论一致,表明embB基因突变不仅和乙胺丁醇耐药相关,还可能与MDR相关。
     (2)总体上embB306位点突变菌株比例随耐药数目增加而增加,趋势卡方检验显示相关性有统计学显著性。但耐3药组embB306位点突变菌株比例低于耐2药组,这可能是因为本研究中耐链霉素的MDR菌株发生突变的比例(17.9%)较低;也可能是因为耐2药(MDR)组样本量较少而影响了统计分析的稳定性。同样,embB基因各位点总和突变与耐药数目增加的相关性有统计学显著性,其中发生embB497突变的MDR菌株在耐4药组明显多于耐3药组,提示embB基因其他位点突变可能也有随耐药数目增加而增加的趋势。
     (3)耐4药组菌株中有90.2%发生embB基因突变。通过检测embB基因4个位点的突变(embB306、embB354、embB406和embB497)可以发现83.6%的一线4重耐药菌株,灵敏度较高,用于一线4重耐药性初步筛选有很好的潜在应用价值,特别适用于像河南这种耐一线4个抗结核药在MDR结核菌中比例(53%)较高的地区。
China is one of the tuberculosis (TB) high burden countries reported by WHO and the incidence number of TB in China ranks the second in the world, following India. The epidemic of MDR TB is severe in China either. A recent study reported that 9.3% of all TB cases in China are MDR, almost twice higher than the world's average MDR prevalence. MDR TB indicates longer treatment, more adverse effect and low treatment outcome. Thus, MDR TB control is important for the management of TB in China.
     Novel tools are urgently needed for the rapid, reliable detection of multi-drug resistant (MDR) and even extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. To develop such tools, we need information about the frequency and distribution of the mycobacterial mutations and genotypes that are associated with phenotypic drug resistance. In a population-based study, we collected 115 MDR isolates resistant to at least rifampin, isoniazid and 22 pan-susceptible isolates from TB patients in Henan, China. The culture-based proportion method was used as drug susceptibility testing (DST) and for each isolate, four anti-tuberculosis drug susceptibility(RIF, INH, EMB, STR) were identified. We detected mutations within nine known drug resistance related genes, including:rpoB, katG, inhA, oxyR, ahpC, kasA, embB, rpsL and rrs. The full length ORFs and the partial region of promoters were amplified and sequenced for fully understanding the mutation pattern of these above genes
     After comprehensive analysis of the mutation pattern and the drug resistance spectrum of study isolates, several conclusion can be drawn:
     1. The priorities of frequency of main mutation locus in drug resistance related genes are not changed, e.g.:rpoB531>rpoB526> rpoB516,rpsL43> rpsL88> rrs513. And in one region, the frequencies of all mutation locus in drug resistance related genes are not changed.
     2. In one region, there are higher frequencies of main mutation locus reported by the studies with more MDR isolates, e.g.:rpoB531, katG315, embB306, rpsL43.
     3. Some drug sensitive but MDR isolates may carry mutations of some drug related genes, e.g.:embB306 and rpsL 43.
     In addition, based on the data of mutation pattern and drug resistance pattern, we analyzed the association between embB gene mutations and drug resistance of MDR isolates. There are the conclusions as follows:
     1. embB306 is not the single cause of EMB resistance, but it is a useful candidate marker for the EMB resistance analysis and the sensitivity of EMB resistance prediction can be improved to 89.6% by combining more embB sites.
     2. All embB specific mutations among drug resistant isolates, can be candidate markers for broad drug resistance prediction. A total of 90.2% isolates concurrent resistant to four first line drugs carry mutation at embB mutation sites.
     3. A 576bp fragment of embB covers four mutation sites of embB306,354,406 and 497 can detect 83.6% of these four drug resistant isolates which may leads the development of a simple and rapid molecular test to detect four first-line drugs resistance in Henan, China
引文
[1]WHO. Global tuberculosis control:surveillance, planning, financing[R]. Geneva, Switzerland:World Health Organization,,2008.
    [2]Pablos-Mendez, A., Raviglione, M. C., Laszlo, A.et al. Global surveillance for antituberculosis-drug resistance,1994-1997. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance[J]. N Engl J Med,1998,338(23):1641-1649.
    [3]Wright, A., Zignol, M., Van Deun, A.et al. Epidemiology of antituberculosis drug resistance 2002-07:an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance[J]. Lancet,2009,373(9678): 1861-1873.
    [4]Aziz, M. A., Wright, A., Laszlo, A.et al. Epidemiology of antituberculosis drug resistance (the Global Project on Anti-tuberculosis Drug Resistance Surveillance): an updated analysis[J]. Lancet,2006,368(9553):2142-2154.
    [5]WHO. Anti-tuberculosis drug resistance in the world:Fourth Global Report. [R]. World Health Organization.,2008.
    [6]He, G. X., Zhao, Y. L., Jiang, G. L.et al. Prevalence of tuberculosis drug resistance in 10 provinces of China[J]. BMC Infect Dis,2008,8:166.
    [7]Zignol, M., Hosseini, M. S., Wright, A.et al. Global incidence of multidrug-resistant tuberculosis [J]. J Infect Dis,2006,194(4):479-485.
    [8]Espinal, M. A., Kim, S. J., Suarez, P. Get al. Standard short-course chemotherapy for drug-resistant tuberculosis:treatment outcomes in 6 countries [J]. Jama,2000, 283(19):2537-2545.
    [9]Garcia de Viedma, D. Rapid detection of resistance in Mycobacterium tuberculosis:a review discussing molecular approaches[J]. Clin Microbiol Infect, 2003,9(5):349-359.
    [10]Ling, D. I., Zwerling, A. A., Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis:a meta-analysis[J]. Eur Respir J,2008,32(5): 1165-1174.
    [11]Morgan, M., Kalantri, S., Flores, L.et al. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis:a systematic review and meta-analysis[J]. BMC Infect Dis,2005,5:62.
    [12]Sreevatsan, S., Stockbauer, K. E., Pan, X.et al. Ethambutol resistance in Mycobacterium tuberculosis:critical role of embB mutations[J]. Antimicrob Agents Chemother,1997,41(8):1677-1681.
    [13]Ahmad, S., Jaber, A. A., Mokaddas, E. Frequency of embB codon 306 mutations in ethambutol-susceptible and -resistant clinical Mycobacterium tuberculosis isolates in Kuwait[J]. Tuberculosis (Edinb),2007,87(2):123-129.
    [14]Plinke, C., Rusch-Gerdes, S., Niemann, S. Significance of mutations in embB codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis isolates[J]. Antimicrob Agents Chemother,2006,50(5):1900-1902.
    [15]Ramaswamy, S. V., Amin, A. G., Goksel, S.et al. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2000, 44(2):326-336.
    [16]Lee, A. S., Othman, S. N., Ho, Y. M.et al. Novel mutations within the embB gene in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2004,48(11):4447-4449.
    [17]Mokrousov, I., Otten, T., Vyshnevskiy, B.et al. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia:implications for genotypic resistance testing[J]. J Clin Microbiol,2002,40(10):3810-3813.
    [18]Shen, X., Shen, G. M., Wu, J.et al. Association between embB codon 306 mutations and drug resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2007,51(7):2618-2620.
    [19]Wade, M. M., Zhang, Y. Mechanisms of drug resistance in Mycobacterium tuberculosis[J]. Front Biosci,2004,9:975-994.
    [20]Telenti, A., Imboden, P., Marchesi, F.et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis [J]. Lancet,1993,341(8846):647-650.
    [21]Miller, L. P., Crawford, J. T., Shinnick, T. M. The rpoB gene of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1994,38(4):805-811.
    [22]Williams, D. L., Spring, L., Collins, L.et al. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,1998,42(7):1853-1857.
    [23]Yue, J., Shi, W., Xie, J.et al. Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis isolates from China[J]. J Clin Microbiol,2003,41(5): 2209-2212.
    [24]Ramaswamy, S., Musser, J. M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis:1998 update[J]. Tuber Lung Dis,1998, 79(1):3-29.
    [25]Zhang, Y., Heym, B., Allen, B.et al. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis[J]. Nature,1992,358(6387):591-593.
    [26]Zhang, Y., Garbe, T., Young, D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations[J]. Mol Microbiol,1993,8(3):521-524.
    [27]Banerjee, A., Dubnau, E., Quemard, A.et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis[J]. Science,1994, 263(5144):227-230.
    [28]Musser, J. M., Kapur, V., Williams, D. L.et al. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing:restricted array of mutations associated with drug resistance[J]. J Infect Dis,1996,173(1):196-202.
    [29]Mdluli, K., Slayden, R. A., Zhu, Y.et al. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid[J]. Science,1998, 280(5369):1607-1610.
    [30]Lee, A. S., Lim, I. H., Tang, L. L.et al. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore[J]. Antimicrob Agents Chemother,1999,43(8):2087-2089.
    [31]Larsen, M. H., Vilcheze, C., Kremer, L.et al. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis[J]. Mol Microbiol,2002,46(2): 453-466.
    [32]Kremer, L., Dover, L. G., Morbidoni, H. R.et al. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria[J]. J Biol Chem,2003,278(23):20547-20554.
    [33]Sreevatsan, S., Pan, X., Zhang, Y.et al. Analysis of the oxyR-ahpC region in isoniazid-resistant and-susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities [J]. Antimicrob Agents Chemother,1997,41(3):600-606.
    [34]Sherman, D. R., Mdluli, K., Hickey, M. J.et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis[J]. Science,1996, 272(5268):1641-1643.
    [35]Miesel, L., Weisbrod, T. R., Marcinkeviciene, J. A.et al. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis[J].J Bacteriol,1998,180(9):2459-2467.
    [36]Wilson, M., DeRisi, J., Kristensen, H. H.et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization[J]. Proc Natl Acad Sci USA,1999,96(22):12833-12838.
    [37]Belanger, A. E., Besra, G. S., Ford, M. E.et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol[J]. Proc Natl Acad Sci U S A,1996,93(21):11919-11924.
    [38]Telenti, A., Philipp, W. J., Sreevatsan, S.et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol[J]. Nat Med, 1997,3(5):567-570.
    [39]Lety, M. A., Nair, S., Berche, P.et al. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis[J]. Antimicrob Agents Chemother,1997,41(12):2629-2633.
    [40]Safi, H., Sayers, B., Hazbon, M. H.et al. Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin[J]. Antimicrob Agents Chemother,2008, 52(6):2027-2034.
    [41]Starks, A. M., Gumusboga, A., Plikaytis, B. B.et al. Mutations at embB codon 306 are an important molecular indicator of ethambutol resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2009,53(3): 1061-1066.
    [42]Douglass, J., Steyn, L. M. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates[J].J Infect Dis,1993,167(6):1505-1506.
    [43]Finken, M., Kirschner, P., Meier, A.et al. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis:alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot[J]. Mol Microbiol,1993,9(6):1239-1246.
    [44]Cooksey, R. C., Morlock, G. P., McQueen, A.et al. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City[J]. Antimicrob Agents Chemother,1996,40(5): 1186-1188.
    [45]Cole, S. T., Brosch, R., Parkhill, J.et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998,393(6685):537-544.
    [46]Ainsa, J. A., Perez, E., Pelicic, V.et al. Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria:characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis[J]. Mol Microbiol,1997,24(2):431-441.
    [47]Faustini, A., Hall, A. J., Perucci, C. A. Risk factors for multidrug resistant tuberculosis in Europe:a systematic review[J]. Thorax,2006,61(2):158-163.
    [48]Luo, T., Zhao, M., Li, X.et al. Selection of mutations to detect MDR TB in Shanghai, China[J]. Antimicrob Agents Chemother,2009.
    [49]Kapur, V., Li, L. L., Iordanescu, S.et al. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas[J]. J Clin Microbiol,1994,32(4):1095-1098.
    [50]Ohno, H., Koga, H., Kuroita, T.et al. Rapid prediction of rifampin susceptibility of Mycobacterium tuberculosis[J]. Am J Respir Crit Care Med,1997,155(6): 2057-2063.
    [51]Telenti, A., Imboden, P., Marchesi, F.et al. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis[J]. Antimicrob Agents Chemother,1993,37(10):2054-2058.
    [52]Rossau, R., Traore, H., De Beenhouwer, H.et al. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin[J]. Antimicrob Agents Chemother,1997,41(10):2093-2098.
    [53]Telenti, A., Honore, N., Bernasconi, C.et al. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis:a blind study at reference laboratory level [J]. J Clin Micro biol,1997,35(3):719-723.
    [54]Heym, B., Honore, N., Truffot-Pernot, C.et al. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis:a molecular study[J]. Lancet,1994,344(8918):293-298.
    [55]Nachamkin, I., Kang, C., Weinstein, M. P. Detection of resistance to isoniazid, rifampin, and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods[J]. Clin Infect Dis,1997,24(5):894-900.
    [56]Piatek, A. S., Tyagi, S., Pol, A. C.et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis[J]. Nat Biotechnol,1998, 16(4):359-363.
    [57]Morris, S., Bai, G. H., Suffys, P.et al. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis[J]. J Infect Dis,1995, 171(4):954-960.
    [58]Taniguchi, H., Aramaki, H., Nikaido, Y.et al. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis[J]. FEMS Microbiol Lett,1996, 144(1):103-108.
    [59]Williams, D. L., Waguespack, C., Eisenach, K.et al. Characterization of rifampin-resistance in pathogenic mycobacteria[J]. Antimicrob Agents Chemother, 1994,38(10):2380-2386.
    [60]Caugant, D. A., Sandven, P., Eng, J.et al. Detection of rifampin resistance among isolates of Mycobacterium tuberculosis from Mozambique[J]. Microb Drug Resist,1995,1(4):321-326.
    [61]Rinder, H., Dobner, P., Feldmann, K.et al. Disequilibria in the distribution of rpoB alleles in rifampicin-resistant M. tuberculosis isolates from Germany and Sierra Leone[J]. Microb Drug Resist,1997,3(2):195-197.
    [62]Pozzi, G., Meloni, M., Iona, E.et al. rpoB mutations in multidrug-resistant strains of Mycobacterium tuberculosis isolated in Italy[J]. J Clin Microbiol,1999,37(4): 1197-1199.
    [63]Matsiota-Bernard, P., Vrioni, G., Marinis, E. Characterization of rpoB mutations in rifampin-resistant clinical Mycobacterium tuberculosis isolates from Greece[J]. J Clin Microbiol,1998,36(1):20-23.
    [64]Musser, J. M. Antimicrobial agent resistance in mycobacteria:molecular genetic insights[J]. Clin Microbiol Rev,1995,8(4):496-514.
    [65]Ohno, H., Koga, H., Kohno, S.et al. Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan[J]. Antimicrob Agents Chemother,1996,40(4):1053-1056.
    [66]Huang, H., Jin, Q., Ma, Y.et al. Characterization of rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolated in China[J]. Tuberculosis (Edinb),2002,82(2-3):79-83.
    [67]Zhang, S. L., Qi, H., Qiu, D. L.et al. Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates recovered from central China[J]. Biochem Genet,2007,45(3-4):281-290.
    [68]Gagneux, S., Long, C. D., Small, P. M.et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis[J]. Science,2006,312(5782): 1944-1946.
    [69]Heep, M., Rieger, U., Beck, D.et al. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,2000,44(4): 1075-1077.
    [70]Heep, M., Brandstatter, B., Rieger, U.et al. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates[J].J Clin Microbiol,2001,39(1):107-110.
    [71]Haas, W. H., Schilke, K., Brand, J.et al. Molecular analysis of katG gene mutations in strains of Mycobacterium tuberculosis complex from Africa[J]. Antimicrob Agents Chemother,1997,41(7):1601-1603.
    [72]Dobner, P., Rusch-Gerdes, S., Bretzel, G.et al. Usefulness of Mycobacterium tuberculosis genomic mutations in the genes katG and inhA for the prediction of isoniazid resistance[J].Inr J Tuberc Lung Dis,1997,1(4):365-369.
    [73]Escalante, P., Ramaswamy, S., Sanabria, H.et al. Genotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from Peru[J]. Tuber Lung Dis, 1998,79(2):111-118.
    [74]Mokrousov, I., Narvskaya, O., Otten, T.et al. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia,1996 to 2001 [J]. Antimicrob Agents Chemother,2002,46(5):1417-1424.
    [75]Marttila, H. J., Soini, H., Eerola, E.et al. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia[J]. Antimicrob Agents Chemother,1998,42(9):2443-2445.
    [76]Silva, M. S., Senna, S. G., Ribeiro, M. O.et al. Mutations in katG, inhA, and ahpC genes of Brazilian isoniazid-resistant isolates of Mycobacterium tuberculosis[J]. J Clin Microbiol,2003,41(9):4471-4474.
    [77]Zhang, M., Yue, J., Yang, Y. P.et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China[J]. J Clin Microbiol,2005,43(11):5477-5482.
    [78]Jiao, W. W., Mokrousov, I., Sun, G. Z.et al. Molecular characteristics of rifampin and isoniazid resistant Mycobacterium tuberculosis strains from Beijing, China[J]. Chin Med J(Engl),2007,120(9):814-819.
    [79]Chan, R. C., Hui, M., Chan, E. W.et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong[J]. J Antimicrob Chemother,2007,59(5):866-873.
    [80]Victor, T. C., Pretorius, G. S., Felix, J. V.et al. katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent[J]. Antimicrob Agents Chemother,1996,40(6):1572.
    [81]Marttila, H. J., Soini, H., Huovinen, P.et al. katG mutations in isoniazid-resistant Mycobacterium tuberculosis isolates recovered from Finnish patients[J]. Antimicrob Agents Chemother,1996,40(9):2187-2189.
    [82]Rouse, D. A., Li, Z., Bai, G. H.et al. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1995,39(11):2472-2477.
    [83]Lee, A. S., Tang, L. L., Lim, I. H.et al. Lack of clinical significance for the common arginine-to-leucine substitution at codon 463 of the katG gene in isoniazid-resistant Mycobacterium tuberculosis in Singapore[J]. J Infect Dis, 1997,176(4):1125-1127.
    [84]Kurepina, N. E., Sreevatsan, S., Plikaytis, B. B.et al. Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis:non-random integration in the dnaA-dnaN region[J]. Tuber Lung Dis,1998,79(1):31-42.
    [85]Leung, E. T., Kam, K. M., Chiu, A.et al. Detection of katG Ser315Thr substitution in respiratory specimens from patients with isoniazid-resistant Mycobacterium tuberculosis using PCR-RFLP[J]. J Med Microbiol,2003,52(Pt 11):999-1003.
    [86]van Doorn, H. R., Kuijper, E. J., van der Ende, A.et al. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg-->Leu mutation at codon 463 of katG are not associated[J]. J Clin Microbiol,2001,39(4):1591-1594.
    [87]Shim, T. S., Yoo, C. G., Han, S. K.et al. Isoniazid resistance and the point mutation of codon 463 of katG gene of Mycobacterium tuberculosis [J]. J Korean Med Sci,1997,12(2):92-98.
    [88]Herrera, L., Valverde, A., Saiz, P.et al. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical strains isolated in the Philippines [J]. Int J Antimicrob Agents,2004,23(6):572-576.
    [89]Cockerill, F. R.,3rd, Uhl, J. R., Temesgen, Z.et al. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance [J]. J Infect Dis,1995,171(1):240-245.
    [90]Johnsson, K., Froland, W. A., Schultz, P. G. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis[J]. JBiol Chem,1997,272(5):2834-2840.
    [91]Rouse, D. A., DeVito, J. A., Li, Z.et al. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis:effects on catalase-peroxidase activities and isoniazid resistance[J]. Mol Microbiol,1996,22(3):583-592.
    [92]Gonzalez, N., Torres, M. J., Aznar, J.et al. Molecular analysis of rifampin and isoniazid resistance of Mycobacterium tuberculosis clinical isolates in Seville, Spain[J]. Tuber Lung Dis,1999,79(3):187-190.
    [93]Kiepiela, P., Bishop, K. S., Smith, A. N.et al. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa[J]. Tuber Lung Dis,2000,80(1):47-56.
    [94]Kim, S. Y, Park, Y. J., Kim, W. I.et al. Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea[J]. Diagn Microbiol Infect Dis,2003,47(3):497-502.
    [95]Kelley, C. L., Rouse, D. A., Morris, S. L. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1997,41(9):2057-2058.
    [96]Cardoso, R. F., Cooksey, R. C., Morlock, G. P.et al. Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil[J]. Antimicrob Agents Chemother,2004,48(9): 3373-3381.
    [97]Lee, A. S., Teo, A. S., Wong, S. Y. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates[J]. Antimicrob Agents Chemother,2001, 45(7):2157-2159.
    [98]Parsons, L. M., Salfinger, M., Clobridge, A.et al. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol[J]. Antimicrob Agents Chemother,2005,49(6):2218-2225.
    [99]Safi, H., Fleischmann, R. D., Peterson, S. N.et al. Allelic exchange and mutant selection demonstrate that common clinical embCAB gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,54(1):103-108.
    [100]Meier, A., Kirschner, P., Bange, F. C.et al. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis:mapping of mutations conferring resistance[J]. Antimicrob Agents Chemother,1994,38(2):228-233.
    [101]Sreevatsan, S., Pan, X., Stockbauer, K. E.et al. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities[J]. Antimicrob Agents Chemother,1996,40(4): 1024-1026.
    [102]Dobner, P., Bretzel, G., Rusch-Gerdes, S.et al. Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis[J]. Mol Cell Probes,1997,11(2):123-126.
    [103]Brzostek, A., Sajduda, A., Sliwinski, T.et al. Molecular characterisation of streptomycin-resistant Mycobacterium tuberculosis strains isolated in Poland[J]. Int J Tuberc Lung Dis,2004,8(8):1032-1035.
    [104]Ramaswamy, S. V., Dou, S. J., Rendon, A.et al. Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates from Monterrey, Mexico[J]. J Med Microbiol,2004,53(Pt 2):107-113.
    [105]Katsukawa, C., Tamaru, A., Miyata, Y.et al. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan[J]. JAppl Microbiol,1997,83(5):634-640.
    [106]Shi, R., Zhang, J., Li, C.et al. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by denaturing HPLC analysis and DNA sequencing[J]. Microbes Infect,2007, 9(14-15):1538-1544.
    [107]Alangaden, G. J., Kreiswirth, B. N., Aouad, A.et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1998,42(5):1295-1297.
    [108]Meier, A., Sander, P., Schaper, K. J.et al. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother,1996,40(11): 2452-2454.
    [109]Okamoto, S., Tamaru, A., Nakajima, C.et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria[J]. Mol Microbiol,2007,63(4):1096-1106.
    [110]Americn Thoracic Society, C. D. C., and Infectious Diseases Society of America. Treatment of tuberculosis. Recommendations and Reports[R].2003.
    [111]Johnson, R., Jordaan, A. M., Pretorius, L.et al. Ethambutol resistance testing by mutation detection[J]. Int J Tuberc Lung Dis,2006,10(1):68-73.
    [112]Lee, H. Y., Myoung, H. J., Bang, H. E.et al. Mutations in the embB locus among Korean clinical isolates of Mycobacterium tuberculosis resistant to ethambutol [J]. Yonsei Med J,2002,43(1):59-64.
    [113]Mokrousov, I., Bhanu, N. V, Suffys, P. N.et al. Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates[J]. J Microbiol Methods,2004,57(3):323-335.
    [114]Rinder, H., Mieskes, K. T., Tortoli, E.et al. Detection of embB codon 306 mutations in ethambutol resistant Mycobacterium tuberculosis directly from sputum samples:a low-cost, rapid approach[J]. Mol Cell Probes,2001,15(1): 37-42.
    [115]Srivastava, S., Garg, A., Ayyagari, A.et al. Nucleotide polymorphism associated with ethambutol resistance in clinical isolates of Mycobacterium tuberculosis[J]. Curr Microbiol,2006,53(5):401-405.
    [116]Hazbon, M. H., Bobadilla del Valle, M., Guerrero, M. l.et al. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited:a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance[J]. Antimicrob Agents Chemother,2005,49(9):3794-3802.
    [117]Plinke, C., Cox, H. S., Kalon, S.et al. Tuberculosis ethambutol resistance: concordance between phenotypic and genotypic test results[J]. Tuberculosis (Edinb),2009,89(6):448-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700