用户名: 密码: 验证码:
CBD-PTHrP胶原靶向结合和促BM-MSCs软骨形成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     近年来,由于软骨组织退行性改变和缺损而引起的诸如腰椎间盘突出症、退行性骨关节炎等在内的退行性骨关节疾病越来越多。关节软骨相关的退化性关节疾病严重影响超过三分之一的世界人口的关节健康。虽然治疗软骨组织缺损的外科技术已得到广泛的研究和发展,但是现存的治疗手段中没有任何一种能从根本上治疗软骨组织缺损。因此,优化关节软骨病变的治疗策略具有很高的社会和经济重要性。随着组织工程技术在骨科领域相关研究的不断深入和发展,为骨科退行性相关疾病的治疗开辟出一条崭新的治疗途径。
     目前采用组织工程学技术构建的椎间盘替代物研究尚处于起步阶段,研究主要集中于支架材料、种子细胞和生物活性因子三个方面。骨髓间充质干细胞(Bone marrowmesenchymal stem cells,BM-MSCs)作为一种常用的种子细胞,已广泛应用于组织工程修复中。为克服组织工程中种子细胞不断衰减,传代后种子细胞老化退变,退变的种子细胞生物学功能下降等问题,大量的外源性生长因子加入到支架材料中,以维持种子细胞的生物学功能。但所添加的生长因子由于不具有靶向结合支架材料的能力,不能很好滞留在支架材料中发挥生物学功能,从而不能对种子细胞起到持续性的促进作用。胶原蛋白,尤其是I型胶原蛋白是目前最常用的组织工程支架材料,因此I型胶原是组织工程材料靶向性的重要靶点。
     甲状旁腺激素相关蛋白(Parathyroid hormone related protein,PTHrP)是1987年从恶性高血钙肿瘤患者的肿瘤中提取纯化的。它是由141个氯基酸组成,其N-端PTHrP(1-34)与N-端甲状旁腺激素(N-PTH)氨基酸序列具有很高的相同性。PTHrP的生理活性除了类似N-PTH外,还具有其他的生物功能,如促进钙的传递,抑制骨的重吸收,促进骨髓间充质干细胞成软骨分化,同时抑制软骨细胞老化。同时,胶原结合域(collagen-binding domain, CBD)是由七个氨基酸构成的寡肽序列(TKKTLRT)组成,具有与胶原紧密结合的功能,被广泛用于胶原结合相关活性分子的重组表达中。
     目的:
     在本实验中,我们利用基因重组技术构建了新型生物活性重组蛋白CBD-PTHrP,该重组蛋白具有双重的生物学功能:一方面可以通过其中的PTHrP成分发挥诱导骨髓间充质干细胞成软骨分化和抑制软骨细胞肥大的生物学功能,另一方面该融合蛋白又能够通过CBD序列的偶联,将PTHrP锚定在胶原蛋白支架材料上,从而使PTHrP能对种子细胞起到持续靶向性的作用。因此,利用基因重组技术构建新型生物活性因子解决种子细胞在实验中易老化退变的问题能为构建新型软骨组织工程替代材料奠定基础。
     方法:
     1、CBD-PTHrP重组融合蛋白的表达、纯化和胶原靶向性结合能力鉴定
     将CBD的编码序列构建到引物两端,以cDNA为模板利用PCR的方法获得编码CBD-PTHrP和NAT-PTHrP两种融合蛋白的基因序列,然后连接到pET-32a原核表达载体中。转化TOP10感受态细胞后筛选鉴定出阳性克隆,然后提取质粒转化Rosetta(DE3)感受态细胞,利用IPTG诱导CBD-PTHrP和NAT-PTHrP两种融合蛋白表达,经Ni柱纯化得到目的蛋白。将浓度为0,0.5,1,2,4,8,12,16μm的融合蛋白添加到铺有胶原的96孔板中,利用类ELISA的方法检测两种融合蛋白对胶原的靶向结合能力。
     2、人源骨髓间充质干细胞的分离培养和传代鉴定
     抽取人骨髓,利用密度梯度离心法分离得到骨髓间充质干细胞,然后利用DMEM/F12+10%FBS培养基进行培养,在细胞传至三代时,收取细胞利用流式细胞术对细胞表面抗原:CD34、CD44、CD45、CD73、CD90、CD105进行检测,对所分BM-MSCs的分子标记进行鉴定。
     3、CBD-PTHrP促BM-MSCs向软骨细胞分化和抑制软骨细胞老化的实验研究
     收集培养的BM-MSCs细胞,制成细胞小球后利用成软骨细胞诱导培养基进行培养,每2-3天换液一次,两周后用100ng/ml的NAT-PTHrP和CBD-PTHrP蛋白分别处理,并设空白对照组,再诱导培养两周后,收集细胞小球,分别提取RNA和总蛋白,利用Real-time PCR和Western blot检测COL1A1、COL2A1、COL10A1和Sox-9在mRNA和蛋白水平上的表达情况,细胞小球石蜡包埋切片后,利用番红-O染色检测软骨形成情况,免疫组织化学染色检测COL1A1、COL2A1、COL10A1和Sox-9在细胞小球组织中的表达情况。
     结果:
     1、构建了pET-32a-NAT-PTHrP和pET-32a-CBD-PTHrP重组质粒,并诱导表达和纯化得到了CBD-PTHrP和NAT-PTHrP两种融合蛋白。ELISA检测405nm吸光度结果提示:相比于NAT-PTHrP蛋白,CBD-PTHrP蛋白在胶原材料上的残留量更多,具有更强的胶原结合能力。
     2、分离得到了原代人BM-MSCs,免疫标记的鉴定结果为CD34和CD45阴性,排除了所分细胞为造血细胞和内皮细胞的可能性;同时CD44、CD73、CD90和CD105表面抗原为阳性,明确了所分细胞为BM-MSCs。
     3、 Real-time PCR和Western blot的结果显示,相比于空白对照组,CBD-PTHrP和NAT-PTHrP蛋白都能显著的诱导COL2A1和Sox-9基因在mRNA和蛋白水平的表达,有效的抑制COL1A1和COL10A1基因在mRNA和蛋白水平的表达。番红-O染色表明相比于空白对照组,添加CBD-PTHrP和NAT-PTHrP两种融合蛋白进行诱导的细胞小球中有更多的软骨细胞形成。免疫组织化学的检测结果也表明CBD-PTHrP和NAT-PTHrP都能诱导COL2A1和Sox-9蛋白的表达和抑制COL1A1和COL10A1蛋白的表达,这与Real-time PCR和Western blot的实验结果是一致的。
     结论:
     相比于NAT-PTHrP蛋白,在CBD短肽的作用下,CBD-PTHrP蛋白能更好的锚定在I型胶原上,提示CBD-PTHrP蛋白在动物和体外水平上都能更好的结合到胶原支架材料上,对其中的种子细胞起到持续的诱导作用。同时,CBD-PTHrP蛋白具有与NAT-PTHrP蛋白一样的促进BM-MSCs向软骨细胞分化的生物学作用,并能够有效的抑制软骨细胞的肥大,提示在PTHrP的N端加上CBD短肽对其生物学活性没有任何影响,使得PTHrP能通过CBD短肽持续的锚定在胶原支架上,进而持续的诱导胶原支架中的BM-MSCs向软骨细胞分化和抑制软骨细胞肥大。以上实验结果为CBD-PTHrP应用到基于BM-MSCs的软骨组织工程中奠定了坚实的实验基础。
Background:
     Recent years, there are more and more degenerative joint diseases such as lumbar discherniation (LDH) and degenerative osteoarthritis caused by articular cartilage degenerativeand defect. These degenerative joint diseases of articular cartilage affect more than a thirdof the world population. Surgical techniques for the treatment of cartilage defects have beenextensive research and development. However, until now, there is no treatment canfundamentally cure the loss of biological function caused by disc degeneration. Thereforeoptimized treatment strategies for articular cartilage lesions are of a high socio-economicimportance. With the research and development of tissue engineering of orthopedics, itoffers a new ideal approach for the treatment of degenerative joint disease.
     Intervertebral disc tissue engineering is still in its infancy, and the exploration of disctissue engineering mainly focuses on three parts: seeding cells, scaffolds and growth factors.Bone marrow derived mesenchymal stem cells (Bone marrow mesenchymal stem cells,BM-MSCs) has been widely used as a common seed cells in tissue engineering. Duringtissue engineering, the decay of seed cells, degenerating of seed cells with passaged, theloss of biology function of degeneration seed cells are the major difficulties. In order toovercome these difficulties, a large number of exogenous growth factors have been added tothe scaffolds to maintain the seed cell biology function. However in practice, factor simplydelivered in solution is difficult to be retained in the scoffolds due to its rapid diffusion inextracellular fluids and cannot promote the seed cells persistence. Collagen, especially typeI collagen is the most commonly used tissue engineering scaffolds, so it is an importanttarget of tissue engineering materials targeting.
     Parathyroid hormone-related protein (Parathyroid hormone related protein, PTHrP) is identified and purified as a factor involved in human hypocalcaemia of malignancy in1987.It is composed by141amino acid chloride. There is a high homology between itsN-terminal PTHrP (1-34) and the N-terminal parathyroid hormone (N-PTH) amino acidsequence. Apart from similar physiological activity of N-PTH, PTHrP also has otherbiological functions, such as proliferating chondrocytes and inhibits chondrocytedifferentiation toward hypertrophy in the growth plate through the PTHrP-Indian hedgehog(IHH) axis. Meanwhile, the collagen binding domain (collagen-binding domain, CBD),which consists of a sequence of seven amino acids (TKKTLRT),and takes a role of collagenbinding, has been widely used for binding the associated active molecules to collagen.
     Objectives:
     In this study, we build a new biologically active recombinant protein CBD-PTHrP byrecombinant DNA technology, it has a dual biological function: on the one hand, PTHrPcould induce bone marrow mesenchymal stem cells into cartilage differentiation and inhibitchondrocyte differentiation toward hypertrophy, on the other hand CBD sequence couldbind to the collagen scaffold material, so that the PTHrP play a lasting effect on the seedcells. Therefore, new bioactive factor CBD-PTHrP, building by recombinant DNAtechnology, is used to solve aging of seed cells in the experiment degeneration, and lay thefoundation for building a new type of intervertebral disc.
     Methods:
     1. The expression and purification of CBD-PTHrP recombinant protein, and theidentification of collagen target capacity.
     CBD coding sequence was constructed to the both ends of the primers, and cDNA wasused as a template. The coding gene sequence of CBD-PTHrP and NAT-PTHrP protein wasacquired by PCR, and then inserted into the prokaryotic expression vector pET-32a. Therecombinant plasmid was transformed into TOP10competent cells and the positive cloneswere screened and identified, and then the positive plasmid was transformed into theRosetta (DE3) competent cells. IPTG was used to induce CBD-PTHrP and NAT-PTHrPprotein expression, and the protein was purified by Ni-column.0,0.5,1,2,4,8,12,16μmfusion protein were added to the96well plate coated with collagen, collagen binding capacity of the protein was detected by ELISAs.
     2. Human bone marrow mesenchymal stem cells were isolated, cultured andindentified.
     Human bone marrow mesenchymal stem cell was isolated from the human bonemarrow by gradient centrifugation. The cells were cultured with DMEM/F12+10%FBSmedium, and the flow cytometry was used to detect the molecular markers of theBM-MSCs: CD34, CD44, CD45, CD73, CD90, CD105, when the cells transmitted to thethird generation.
     3. CBD-PTHrP promotes chondrocyte differentiation and inhibits chondrocytedifferentiation toward hypertrophy from BM-MSCs.
     The pellet was made from BM-MSCs, and cultured with cartilage inducing medium.The medium was changed every2-3days. Two weeks later,100ng/ml NAT-PTHrP andCBD-PTHrP protein was added to the medium separately, and a blank control group isnecessary. Two weeks after that, total RNA and protein was extracted and Real-time PCRand Western blot was used to detect the expression of COL1A1, COL2A1, COL10A1andSox-9at mRNA and protein level. The pellet was also embedded by paraffin. Safranin-Ostaining was used to detect the cartilage formation, and the COL1A1, COL2A1, COL10A1and Sox-9expression in the pellet was measured by immunohistochemical staining.
     Results:
     1. pET-32a-NAT-PTHrP and pET-32a-CBD-PTHrP recombinant plasmid areconstructed, and the protein of CBD-PTHrP and NAT-PTHrP are induced and purified.Compared with NAT-PTHrP protein, CBD-PTHrP protein has better collagen bindingcapacity.
     2. Human BM-MSCs is isolated and indentified, the results show that the immunemarkers for CD34and CD45are negative, excluding the divided cells are hematopoieticcells or leukocytes; while CD44, CD73, CD90and CD105surface antigen are positive, toindentify the cells is the BM-MSCs.
     3. Real-time PCR and Western blot results indicate that, compared with the controlmedium (CM) group, CBD-PTHrP and NAT-PTHrP protein can significantly induced COL2A1and Sox-9gene expression, and inhibit COL1A1and COL10A1gene expressionat the mRNA and protein levels. Safranin-O staining demonstrate that compared with theCM group, CBD-PTHrP and NAT-PTHrP induce cartilage cell formation in the BM-MSCscell pellet. The immunohistochemical detection results also indicate that the CBD-PTHrPand NAT-PTHrP can induce the COL2A1and Sox-9protein expression and inhibitCOL1A1and COL10A1protein expression, which is consistent with the experimentalresults of the Real-time PCR and Western blot.
     Conclusion:
     Compared with the NAT-PTHrP protein, CBD-PTHrP protein has bettercollagen-binding capacity by the use of CBD peptide. It indicates that CBD-PTHrP couldbind collagen I scoffolds more tightly in vitro and in vivo and continue promoting seed celldifferentiation. At the same time, CBD-PTHrP gets the same biological activity ofNAT-PTHrP. It could induce chondrocytes from BM-MSCs and inhibit chondrocytedifferentiation toward hypertrophy. These results indicate that adding CBD peptide at theN-terminus of PTHrP has no effect on the biological activity. Moreover, CBD peptidepromotes PTHrP binding collagen I scoffolds for a long time. Therefore it could continueinducing chondrocytes from BM-MSCs and inhibiting chondrocyte differentiation towardhypertrophy. In conclusion, our study suggests CBD-PTHrP could be an efficient system fortargeting cartilage tissue engineering in clinical application.
引文
[1] Cremer MA, Rosloniec EF, Kang AH: The cartilage collagens: a review of heirstructure, organization, and role in the pathogenesis of experimental arthritis inanimals and in human rheumatic disease. J Mol. Med.76:275-88,1998.
    [2] Madry H, van Dijk CN and Mueller-Gerbl M: The basic science of the subchondralbone. Knee Surg Sports Traumatol Arthrosc18:419-33,2010.
    [3] Jackson DW, Simon TM and Aberman HM: Symptomatic articular cartilagedegeneration: the impact in the new millennium. Clin Orthop Relat Res.(Suppl):S14-25,2001.
    [4] Gomoll AH, Farr J, Gillogly SD, Kercher JS and Minas T: Surgical management ofarticular cartilage defects of the knee. Instr Course Lect.60:461-83,2011.
    [5] Agnesi F, Amrami KK, Frigo CA and Kaufman KR: Comparison of cartilage thicknesswith radiologic grade of knee osteoarthritis. Skeletal Radiol37:639-643,2008.
    [6] Bae WC, Temple MM, Amiel D, Coutts RD, Niederauer GG and Sah RL: Indentationtesting of human cartilage: sensitivity to articular surface degeneration. ArthritisRheum48:3382-3394,2003.
    [7] Magnussen RA, Dunn WR, Carey JL and Spindler KP: Treatment of focal articularcartilage defects in the knee: a systematic review. Clin Orthop Relat Res466:952-962,2008.
    [8] Cucchiarini M and Madry H: Gene therapy for cartilage defects. J Gene Med.7:1495-509,2005.
    [9] Charbord P: Bone marrow mesenchymal stem cells: historical overview and concepts.Hum. Gene Ther.21:1045-1056,2010.
    [10] Pittenger MF, Mackay AM, Beck SC, et al:Multilineage potential of adult humanmesenchymal stem cells. Science284,143-147,1999.
    [11] Grogan SP, Miyaki S, Asahara H, D’Lima DD and Lotz MK: Mesenchymal progenitorcell markers in human articular cartilage: normal distribution and changes inosteoarthritis. Arthritis Res. Ther.11, R85,2009.
    [12] Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X and Miosge N:Migratory chondrogenic progenitor cells from repair tissue during the later stages ofhuman osteoarthritis. Cell Stem Cell4,324-335,2009.
    [13] Friedenstein, A.J.; Petrakova, K.V.; Kurolesova, A.I.; Frolova, G.P. Heterotopic ofbone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation1968,6,230-247.
    [14] Méndez-Ferrer, S.; Michurina, T.V.; Ferraro, F.; Mazloom, A.R.; Macarthur, B.D.; Lira,S.A.; Scadden, D.T.; Ma'ayan, A.; Enikolopov, G.N.; Frenette, P.S. Mesenchymal andhaematopoietic stem cells form a unique bone marrow niche. Nature2010,466,829-834.
    [15] Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.;Deans, R.; Keating, A.; Prockop, D.J.; Horwitz, E. Minimal criteria for definingmultipotent mesenchymal stromal cells. The International Society for Cellular Therapyposition statement. Cytotherapy2006,8,315-317.
    [16] Boxall, S.A.; Jones, E. Markers for characterization of bone marrow multipotentialstromal cells. Stem Cells Int.2012,9758-71.
    [17] Wakitani, S.; Saito, T.; Caplan, A.I. Myogenic cells derived from rat bone marrowmesenchymal stem cells exposed to5-azacytidine. Muscle Nerve1995,18,1417-1426.
    [18] Makino, S.; Fukuda, K.; Miyoshi, S.; Konishi, F.; Kodama, H.; Pan, J.; Sano, M.;Takahashi, T.; Hori, S.; Abe, H.; et al. Cardiomyocytes can be generated from marrowstromal cells in vitro. J. Clin. Invest.1999,103,697-705.
    [19] He, X.Q.; Chen, M.S.; Li, S.H.; Liu, S.M.; Zhong, Y.; McDonald Kinkaid, H.Y.; Lu,W.Y.; Weisel, R.D.; Li, R.K. Co-culture with cardiomyocytes enhanced the myogenicconversion of mesenchymal stromal cells in a dose-dependent manner. Mol. Cell.Biochem.2010,339,89-98.
    [20] Schwartz, R.E.; Reyes, M.; Koodie, L.; Jiang, Y.; Blackstad, M.; Lund, T.; Lenvik,T.;Johnson, S.; Hu, W.S.; Verfaillie, C.M. Multipotent adult progenitor cells from bonemarrow differentiate into functional hepatocyte-like cells. J. Clin. Invest.2002,109,1291-1302.
    [21] Woodbury, D.; Schwarz, E.J.; Prockop, D.J.; Black, I.B. Adult rat and human bonemarrow stromal cells differentiate into neurons. J. Neurosci. Res.2000,61,364-370.
    [22] Sanchez-Ramos, J.; Song, S.; Cardozo-Pelaez, F.; Hazzi, C.; Stedeford, T.; Willing,A.;Freeman, T.B.; Saporta, S.; Janssen, W.; Patel, N.; et al. Adult bone marrowstromal cells differentiate into neural cells in vitro. Exp. Neurol.2000,164,247-256.
    [23] Oswald, J.; Boxberger, S.; J rgensen, B.; Feldmann, S.; Ehninger, G.; Bornh user, M.;Werner, C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells2004,22,377-384.
    [24] von Bahr, L.; Batsis, I.; Moll, G.; H gg, M.; Szakos, A.; Sundberg, B.; Uzunel, M.;Ringden, O.; Le Blanc, K. Analysis of tissues following mesenchymal stromal celltherapy in humans indicates limited long-term engraftment and no ectopic tissueformation. Stem Cells2012,30,1575-1578.
    [25] Wang, Y.; Han, Z.B.; Song, Y.P.; Han, Z.C. Safety of mesenchymal stem cells forclinical application. Stem Cells Int.2012,6520-34.
    [26] Barry F, Boynton RE, Liu B and Murphy JM: Chondrogenic differentiation ofmesenchymal stem cells from bone marrow; differentiation-dependent geneexpressionof matrix components. Exp. Cell Res.268:189-200,2001.
    [27] Pelttari K, Winter A, Steck E, et al: Premature induction of hypertrophy during in vitrochondrogenesis of human mesenchymal stem cells correlates with calcification andvascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum.54:3254-3266,2006.
    [28] Kim YJ, Kim HJ and Im GI: PTHrP promotes chondrogenesis and suppresseshypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. BBRC373(1):104-108,2008.
    [29] Suva LJ, Winslow GA, Wettenhall RE, et al: Aparathyroid hormone-related proteinimplicated in malignant hypercalcemia:cloning and expression. Science21:893-896,1987.
    [30] Kronenberg HM: PTHrP and skeletal development. Ann. N.Y. Acad. Sci.1068:1-13,2006.
    [31] Kobayashi T, Soegiarto DW, Yang Y, et al: Indian hedgehog stimulates periarticularchondrocyte differentiation to regulate growth plate length independently of PTHrP, J.Clin. Invest.115:1734-1742,2005.
    [32] Huang W, Chung UI, Kronenberg HM, de Crombrugghe B: The chondrogenictranscription factor Sox9is a target of signaling by the parathyroid hormone-relatedpeptide in the growth plate of endochondral bones. Proc Natl Acad Sci U S A98:160-165,2001.
    [33] Amling M, Neff L, Tanaka S, et al: Bcl-2lies downstream of parathyroidhormone-related peptide in a signaling pathway that regulates chondrocyte maturationduring skeletal development. J Cell Biol136:205-213,1997.
    [34] Yurchenco PD, Smirnov S, Mathus T: Analysis of basement membrane selfassemblyand cellular interactions with native and recombinant glycoproteins. Methods in CellBiology69:111-44,2002.
    [35] Eyre DR: Collagen of articular cartilage. Clin Orthop Relat Res.427suppl: S118-122,2004.
    [36] Andrades JA, Han B, Becerra J, Sorgente N, Hall FL and Nimni ME: A recombinanthuman TGF-beta1fusion protein with collagen-binding domain promotes migration,growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res250(2):485-98,1999.
    [37] Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A adn Wada F: Collagen-bindinggrowth factors: production and characterization of functional fusion proteins having acollagen-binding domain. Proc Natl Acad Sci USA95(12):7018-23,1998.
    [38] Ishikawa T, Terai H, Yamamoto T, Harada K, Kitajima T: Delivery of a growth factorfusion protein having collagen-binding activity to wound tissues. Artif Organs27(2):147-154,2003.
    [39] Jackson DW, Simon TM and Aberman HM: Symptomatic articular cartilagedegeneration: the impact in the new millennium. Clin Orthop Relat Res.(Suppl):S14-25,2001.
    [40] Charbord P: Bone marrow mesenchymal stem cells: historical overview and concepts.Hum. Gene Ther.21:1045-1056,2010.
    [41] Barry F, Boynton RE, Liu B and Murphy JM: Chondrogenic differentiation ofmesenchymal stem cells from bone marrow; differentiation-dependent geneexpressionof matrix components. Exp. Cell Res.268:189-200,2001.
    [42] Kronenberg HM: PTHrP and skeletal development. Ann. N.Y. Acad. Sci.1068:1-13,2006.
    [43] Kobayashi T, Soegiarto DW, Yang Y, et al: Indian hedgehog stimulates periarticularchondrocyte differentiation to regulate growth plate length independently of PTHrP, J.Clin. Invest.115:1734-1742,2005.
    [44] Caplan AI: Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics.Tissue Eng.11:1198-1211,2005.
    [45] Heldin CH and Westermark B: Mechanism of action and in vivo role ofplatelet-derived growth factor. Physiol Rev79(4):1283-316,1999.
    [46] Otto D, Unsicker K and Grothe C: Pharmacological effects of nerve growth factor andfibroblast growth factor applied to the transectioned sciatic nerve on neuron death inadult rat dorsal root ganglia. Neuroscience Letters83(1-2):156-60,1987.
    [47] Ishihara M, Obara K, Ishizuka T, et al: Controlled release of fibroblast growth factorsand heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivovascularization. J Biomed Mater Res A64:551-554,2003.
    [48] Cai S, Liu Y, Shu XZ and Prestwich GD: Injectable glycosamino-glycan hydrogels forcontrolled release of human basic fibroblast growth factor. Biomaterials26:6054-6067,2005.
    [49] Andrades JA, Wu LT, Hall FL, Nimni ME and Becerra J: Engineering, expression, andrenaturation of a collagen-targeted human bFGF fusion protein. Growth Factors18:261-275,2001.
    [50] Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A and Wada F: Collagen-bindinggrowth factors: Production and characterization of functional fusion proteins having acollagen-binding domain. Proc Natl Acad Sci USA95:7018-7023,1998.
    [51] Li X, Feng Q, Liu X, Dong W and Cui F: Collagen-based implants reinforced by chitinfibres in a goat shank bone defect model. Biomaterials27(9):1917-23,2006.
    [52] Park SN, Kim JK adn Suh H: Evaluation of antibiotic-loaded collagen-hyaluronic acidmatrix as a skin substitute. Biomaterials25(17):3689-98,2004.
    [53] Rose FR and Oreffo RO: Bone tissue engineering: hope vs. Hype. Biochem BiophysRes Commun292(1):1-7,2002.
    [54] Chapekar MS: Tissue engineering: challenges and opportunities. J Biomed Mater Res53(6):617-20,2000.
    [55] Zhao WX, Chen B, Li X, et al: Vascularization and cellularization of collagen scaffoldsincorporated with two different collagen-targeting human basic fibroblast growthfactors. J Biomed Mater Res A82(3):630-6,2007.
    [56] Lin H, Chen B, Sun W, Zhao W, Zhao Y and Dai Y: The effect of collagen-targetingplatelet-derived growth factor on cellularization and vascularization of collagenscaffolds. Biomaterials27(33):5708-14,2006.
    [57] Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH. Comparativecharacterization of cultured human term amnion epithelial and mesenchymal stromalcells for application in cell therapy. Cell Transplant.2008,17:955-968.
    [58] M. F. Pittenger, A. M. Mackay, S. C. Beck et al.,“Multilineage potential of adulthuman mesenchymal stem cells,” Science,vol.284, no.5411, pp.143-147,1999.
    [59] I. L. Weissman,“Translating stem and progenitor cell biology to the clinic: barriersand opportunities,” Science, vol.287, no.5457, pp.1442-1446,2000.
    [60] T. A. Linkhart, S. Mohan, and D. J. Baylink,“Growth factors for bone growth andrepair: IGF, TGFβ and BMP,” Bone, vol.19, no.1, pp. S1-S12,1996.
    [61] S. W. O’Driscoll,“Articular cartilage regeneration using periosteum,” ClinicalOrthopaedics and Related Research,no.367, pp. S186-S203,1999.
    [62] S. J. Kil and C. Carlin,“Isolation, characterization, and chondrogenic potential ofhuman bone marrow-derived multipotential stromal cells,” Journal of CellularPhysiology, vol.185, no.1, pp.98-106,2000.
    [63] Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chaincartilage collagen (type X) in avian tissues. J Cell Biol1985;100:598-605.
    [64] Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, et al. Thechondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells.J Bone Joint Surg Am1998;80:1745-57.
    [65] Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesisof bone marrow-derived mesenchymal progenitor cells. Exp Cell Res1998;238:265-72.
    [66] Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF.Chondrogenic differentiation of cμltured human mesenchymal stem cells from marrow.Tissue Eng1998;4:415-28.
    [67] Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, et al. Cartilage-like geneexpression in differentiated human stem cell spheroids: a comparison of bonemarrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum2003;48:418-29.
    [68] Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Prematureinduction of hypertrophy during in vitro chondrogenesis of human mesenchymal stemcells correlates with calcification and vascμlar invasion after ectopic transplantation inSCID mice. Arthritis Rheum2006;54:3254-66.
    [69] Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM,Mulligan RC. Lethal skeletal dysplasia from targeted disruption of the parathyroidhormone-related peptide gene. Genes Dev.1994;8:277-89.
    [70] Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normalfetal bone formation. J Clin Invest.2002;109:1173-82.
    [71] Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroidhormone-related peptide-depleted mice show abnormal epiphyseal cartilagedevelopment and altered endochondral bone formation. J Cell Biol.1994;126:1611-23.
    [72] Amizuka N, Karaplis AC, Henderson JE, Warshawsky H, Lipman ML, Matsuki Y, EjiriS, Tanaka M, Izumi N, Ozawa H, Goltzman D. Haploinsufficiency of parathyroidhormone-related peptide (PTHrP) results in abnormal postnatal bone development.Dev Biol.1996;175:166-76.
    [73] Miao D, He B, Jiang Y, Kobayashi T, Soroceanu MA, Zhao J, Su H, Tong X, AmizukaN, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC.Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifiesthe therapeutic efficacy of administered PTH1-34. J Clin Invest.2005;115:2402-11.
    [74] Kartsogiannis V, Moseley J, McKlevie B, Chou ST, Hards DK, Ng KW, Martin TJ,Zhou H. Temporal expression of PTHrP during endochondral bone formation in mouseand intramembranous bone formation in an in vivo rabbit model. Bone.1997;21:385-92.
    [75] Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, PhilbrickWM, Broadus AE.Initial characterization of PTH-related protein gene-driven lacZ expression in themouse. J Bone Miner Res.2006;21:113-23.
    [76] Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg H. Ablation of thePTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bonedevelopment. J Clin Invest.1999;104:399-407.
    [77] Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role ofparathyroid hormone-related protein in articular chondrocyte maintenance in anexperimental mouse model. Arthritis Rheum.2011;63:3333-43.
    [78] Fischer J, Dickhut A, Rickert M, and Richter W: Human Articular ChondrocytesSecrete Parathyroid Hormone-Related Protein and Inhibit Hypertrophy ofMesenchymal Stem Cells in Coculture During Chondrogenesis.Arthritis Rheum62(9):2696-706,2010.
    [79] Schmid TM adn Linsenmayer TF: Immunohistochemical localization of short chaincartilage collagen (type X) in avian tissues. J Cell Biol100:598-605,1985.
    [80] A. Iida-Klein, J. Guo, M.T. Drake, H.M. Kronenberg, A.B. Abou-Samra, F.R.Bringhurst, G.V. Segre, Structural requirements of parathyroid hormone/parathyroidhormone-related peptide receptors for phospholipase Cactivation and regμlation ofphosphate uptake, Miner. Electrol. Metab.21,177-179,1995.
    [81] F.R. Bringhurst, H. Juppner, J. Guo, P. Urena, J.T. Potts Jr., H.M. Kronenberg, A.B.Abou-Samra, G.V. Segre, Cloned, stably expressed parathyroid hormone(PTH)/PTH-related peptide receptors activate multiple messenger signals andbiological responses in LLC-PK1kidney cells, Endocrinology132,2090-2098,1993.
    [82] H. Jüppner, A.B. Abou-Samra, M. Freeman, X.F. Kong, E. Schipani, J. Richards, L.F.Kolakowski Jr., J. Hock, J.T. Potts Jr., H.M. Kronenberg, et al., A G protein-linkedreceptor for parathyroid hormone and parathyroid hormone-related peptide, Science254,1024-1026,1991.
    [83] T.F. Li, Y. Dong, A.M. Ionescu, R.N. Rosier,M.J. Zuscik, E.M. Schwarz, R.J. O’Keefe,H. Drissi, Parathyroid hormone-related peptide (PTHrP) inhibits Runx2expressionthrough the PKA signaling pathway, Exp. Cell Res.299,128-136,2004.
    [84] H.E. MacLean, J. Guo, M.C. Knight, P. Zhang, D. Cobrinik, H.M. Kronenberg, Thecyclin-dependent kinase inhibitor p57(Kip2) mediates proliferative actions of PTHrPin chondrocytes, J. Clin. Invest.113,1334-1343,2004.
    [85] Wang D, Taboas JM, and Tuan RS: PTHrP Overexpression Partially Inhibits aMechanical Strain-Induced Arthritic Phenotype in Chondrocytes. OsteoarthritisCartilage.19(2):213-21,2011.
    [86] Kafienah W, Mistry S, Dickinson SC, Sims TJ, Learmonth I and Hollander AP:Three-dimensional cartilage tissue engineering using adult stem cells fromosteoarthritis patients, Arthritis Rheum.56:177-187,2007.
    [1] L.G.Griffith and G. Naughton,“Tissue engineering-current challenges and expandingopportunities,” Science, vol.295, no.5557, pp.1009-1014,2002.
    [2] C. K. Kuo and R. S. Tuan,“Tissue engineering withmesenchy-mal stem cells,” IEEEEngineering in Medicine and Biology Magazine, vol.22, no.5, pp.51-56,2003.
    [3] L. Song, D. Baksh, and R. S. Tuan,“Mesenchymal stem cell-based cartilage tissueengineering: cells, scaffold and biology,”Cytotherapy, vol.6, no.6, pp.596-601,2004.
    [4] F.R.A.J.RoseandR.O.C.Oreffo,“Bone tissue engineering:hope vs hype,” Biochemicaland Biophysical Research Communications, vol.292, no.1, pp.1-7,2002.
    [5] T. E. Patterson, K. Kumagai, L. Griffith, and G. F. Muschler,“Cellular strategies forenhancement of fracture repair,” The Journal of Bone and Joint Surgery, vol.90, no.1,pp.111-119,2008.
    [6] F. R. Kloss, R. Gassner, J. Preiner et al.,“The role of oxygen termination ofnanocrystalline diamond on immobilisation of BMP-2and subsequent boneformation,” Biomaterials, vol.29,no.16, pp.2433-2442,2008.
    [7] K. H. Lee,“Tissue-engineered human living skin substitutes: development andclinical application,” Yonsei Medical Journal,vol.41, no.6, pp.774-779,2000.
    [8] M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R. C. Mulligan,and D. A. Melton,“‘Stemness’: transcriptional profiling of embryonic and adult stem cells,” Science, vol.298, no.5593,pp.597-600,2002.
    [9] J. A. Robertson,“Human embryonic stemcell research: ethical and legal issues,”Nature Reviews Genetics, vol.2, no.1, pp.74-78,2001.
    [10] J.G.Toma,M.Akhavan,K.J.L.Fernandesetal.,“Isolationofmultipotent adult stem cellsfrom the dermis of mammalian skin,” Nature Cell Biology, vol.3, no.9, pp.778-784,2001.
    [11] M. F. Pittenger, A. M. Mackay, S. C. Beck et al.,“Multilineage potential of adulthuman mesenchymal stem cells,” Science,vol.284, no.5411, pp.143-147,1999.
    [12] A. I. Caplan,“Cell delivery and tissue regeneration,” Journal of Controlled Release,vol.11, no.1-3, pp.157-165,1990.
    [13] S. P. Bruder, N. Jaiswal, and S. E. Haynesworth,“Growth kinetics, self-renewal, andthe osteogenic potential of purified human mesenchymal stem cells during extensivesubculti-vation and following cryopreservation,” Journal of Cellular Biochemistry, vol.64, no.2, pp.278-294,1997.
    [14] I. L. Weissman,“Translating stem and progenitor cell biology to the clinic: barriersand opportunities,” Science, vol.287, no.5457, pp.1442-1446,2000.
    [15] T. A. Linkhart, S. Mohan, and D. J. Baylink,“Growth factors for bone growth andrepair: IGF, TGFβ and BMP,” Bone, vol.19, no.1, pp. S1-S12,1996.
    [16] S. W. O’Driscoll,“Articular cartilage regeneration using periosteum,” ClinicalOrthopaedics and Related Research,no.367, pp. S186-S203,1999.
    [17] S. J. Kil and C. Carlin,“Isolation, characterization, and chondrogenic potential ofhuman bone marrow-derived multipotential stromal cells,” Journal of CellularPhysiology, vol.185, no.1, pp.98-106,2000.
    [18] E. A. Wang, V. Rosen, P. Cordes et al.,“Purification and characterization of otherdistinct bone-inducing factors,”Proceedings of the National Academy of Sciences ofthe United States of America, vol.85, no.24, pp.9484-9488,1988.
    [19] D. M. Kingsley,“What do BMPs do in mammals? Clues from the mouse short-earmutation,” Trends in Genet ic s, vol.10, no.1, pp.16-21,1994.
    [20] D. Duprez, E. J. De, M. K. Richardson et al.,“Overexpression of BMP-2and BMP-4alters the size and shape of developing skeletal elements in the chick limb,”Mechanisms of Development, vol.57, no.2, pp.145-157,1996.
    [21] D. Macias, Y. Ga nan, T. K. Sampath, M. E. Piedra, M. A.Ros,andJ.M.Hurle,“RoleofBMP-2andOP-1(BMP-7)in programmed cell death andskeletogenesis during chick limb development,” Development, vol.124, no.6, pp.1109-1117,1997.
    [22] A. E. Denker, A. R. Haas, S. B. Nicoll, and R. S. Tuan,“Chondrogenic differentiationof murine C3H10T1/2multipotential mesenchymal cells: I. Stimulation by bonemorphogeneticprotein-2in high-densitymicromass cultures,” Differentiation,vol.64,no.2, pp.67-76,1999.
    [23] K. M. Lyons, R. W. Pelton, and B. L. Hogan,“Patterns of expression of murine Vgr-1and BMP-2a RNA suggest that transforming growth factor-beta-like genescoordinately regulate aspects of embryonic development,” Genes&Devel-opment,vol.3, no.11, pp.1657-1668,1989.
    [24] B. K. Zehentner, C. Dony, and H. Burtscher,“The transcription factor Sox9isinvolved in BMP-2signaling,” Journal of Bone and Mineral Research, vol.14, no.10,pp.1734-1741,1999.
    [25] R. S. Sellers, R. Zhang, S. S. Glasson et al.,“Repair of articular cartilage defects oneyear after treatment with recombinant human bone morphogenetic protein-2(rhBMP-2),” The Journal of Bone and Joint Surgery,vol.82,no.2,pp.151-160,2000.
    [26] M. S. Block, I. Finger, and R. Lytle,“Human mineralized bone in extraction sitesbefore implant placement: preliminary results,” Journal of the American DentalAssociation, vol.133, no.12, pp.1631-1638,2002.
    [27] C. M. L. Werner, P. Favre, H. G. Van Lenthe, and C. E.Dumont,“Pedicledvascularized rib transfer for reconstruction of clavicle nonunions with bony defects:anatomical and biomechanical considerations,” Plastic and Reconstructive Surgery,vol.120, no.1, pp.173-180,2007.
    [28] M.T.Valarmathi,M.J.Yost,R.L.Goodwin,andJ.D. Potts,“The influence of proepicardialcells on the osteogenic potential of marrow stromal cells in a three-dimensionaltubularscaffold,” Biomaterials, vol.29, no.14, pp.2203-2216,2008.
    [29] M. J¨ ager, F. Urselmann, F. Witte et al.,“Osteoblast differentiation onto differentbiometals with an endoprosthetic surface topography in vitro,” Journal of BiomedicalMaterials Research-Part A, vol.86, no.1, pp.61-75,2008.
    [30] K.H.Park,H.Kim,S.Moon,andK.Na,“Bonemorphogenic protein-2(BMP-2) loadednanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bonetissue engineering,” Journal of Bioscience and Bioengineering, vol.108, no.6, pp.530-537,2009.
    [31] F.H.Chen,K.T.Rousche,andR.S.Tuan,“Technology insight: adult stem cells in cartilageregeneration and tissue engineering,” Nature Clinical Practice Rheumatology, vol.2,no.7, pp.373-382,2006.
    [32] F. Guilak, D. L. Butler, and S. A. Goldstein,“Functional tissue engineering: the roleof biomechanics in articular cartilage repair,” Clinical Orthopaedics and RelatedResearch, no.391,pp. S295-S305,2001.
    [33] D. L. Butler, S. A. Goldstein, and F. Guilak,“Functional tissue engineering: the roleof biomechanics,” Journal of Biomechanical Engineering, vol.122, no.6, pp.570-575,2000.
    [34] E. B. Hunziker,“Articular cartilage repair: basic science and clinical progress. Areview of the current status and prospects,” Osteoarthritis and Cartilage, vol.10, no.6,pp.432-463,2002.
    [35] L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer,“Neocartilage formation in vitro and in vivo using cells cultured on syntheticbiodegradable polymers,” Journal of Biomedical Materials Research, vol.27, no.1,pp.11-23,1993.
    [36] L. E. Freed, G. Vunjak-Novakovic, R. J. Biron et al.,“Biodegradable polymerscaffolds for tissue engineering,” Bio/Technology, vol.12, no.7, pp.689-693,1994.
    [37] K. Na, S. Kim, K. Park et al.,“Heparin/poly(l-lysine) nanoparticle-coated polymericmicrospheres for stem-cell therapy,” Journal of the American Chemical Society, vol.129,no.18, pp.5788-5789,2007.
    [38] J. S. Park, K. Na, D. G. Woo, H. N. Yang, and K. H. Park,“Determination of dualdelivery for stem cell differentiation using dexamethasone and TGF-β3in/onpolymeric microspheres,” Biomaterials, vol.30, no.27, pp.4796-4805,2009.
    [39] C. S. Cho, S. J. Seo, I. K. Park et al.,“Galactose-carrying polymers asextracellularmatrices for liver tissue engineering,” Biomaterials, vol.27, no.4, pp.576-585,2006.
    [40] C. R. Nuttelman, D. S. W. Benoit, M. C. Tripodi, and K. S. Anseth,“The effect ofethylene glycol methacrylate phosphate in PEG hydrogels on mineralization andviability of encapsulated hMSCs,” Biomaterials, vol.27, no.8, pp.1377-1386,2006.
    [41] W. J. Li, K. G. Danielson, P. G. Alexander, and R. S.Tuan,“Biological response ofchondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone)scaffolds,” Journal of Biomedical Materials Research-Part A, vol.67, no.4, pp.1105-1114,2003.
    [42] N. S. Hwang, S. Varghese, Z. Zhang, and J. Elisseeff,“Chondrogenic differentiationof human embryonic stemcell-derived cells in arginine-glycine-aspartate-modifiedhydrogels,” Tissue Engineering, vol.12, no.9, pp.2695-2706,2006.
    [43] J.S.Park,D.G.Woo,B.K.Sunetal.,“Invitroandin vivo test of PEG/PCL-based hydrogelscaffold for cell delivery application,” Journal of Controlled Release, vol.124, no.1-2,pp.51-59,2007.
    [44] A.J.Engler,S.Sen,H.L.Sweeney,andD.E.Discher,“Matrix elasticity directs stem celllineage specification,” Cell, vol.126, no.4, pp.677-689,2006.
    [45] J. S. Park, H. J. Yang, D. G. Woo, H. N. Yang, K. Na, and K.H. Park,“Chondrogenicdifferentiation of mesenchymal stem cells embedded in a scaffold by long-termrelease of TGF-β3complexed with chondroitin sulfate,” Journal of BiomedicalMaterials Research-Part A, vol.92, no.2, pp.806-816,2010.
    [46] Q. Huang, J. C. H. Goh, D. W. Hutmacher, and E. H. Lee,“In vivo mesenchymal cellrecruitment by a scaffold loaded with transforming growth factor β1and the potentialfor in situ chondrogenesis,” Tissue Engineering, vol.8, no.3, pp.469-482,2002.
    [47] J. P. Fisher, S. Jo, A. G. Mikos, and A. H. Reddi,“Thermore-versible hydrogelscaffolds for articular cartilage engineering,”Journal of Biomedical MaterialsResearch-Part A, vol.71, no.2, pp.268-274,2004.
    [48] K. Na, J.H. Park, S.W. Kimet al.,“Delivery of dexamethasone, ascorbate, and growthfactor (TGF β-3) in thermo-reversible hydrogel constructs embedded with rabbitchondrocytes,” Biomaterials, vol.27, no.35, pp.5951-5957,2006.
    [49] K.H.Park,K.Na,W.K.Sung,Y.J.Sung,H.P.Kyu,andH.M. Chung,“Phenotype ofhepatocyte spheroids behavior within thermo-sensitive poly(NiPAAm-co-PEG-g-GRGDS) hydrogel as a cell delivery vehicle,” Biotechnology Letters, vol.27, no.15,pp.1081-1086,2005.
    [50] J.S.Park,D.G.Woo,H.N.Yangetal.,“Chondrogenesis of human mesenchymal stem cellsencapsulated in a hydrogel construct: neocartilage formation in animal models as bothmice and rabbits,” Journal of Biomedical Materials Research-art A, vol.92, no.3, pp.988-996,2010.
    [51] T. G. Koch, L. C. Berg, and D. H. Betts,“Current and future regenerativemedicine-Principles, concepts, and therapeutic use of stem cell therapy and tissueengineering in equine medicine,” Canadian Veterinary Journal,vol.50,no.2,pp.155-165,2009.
    [52] H. Tan, J. Wu, L. Lao, and C. Gao,“Gelatin/chitosan/hyaluronan scaffold integratedwith PLGA microspheres for cartilage tissue engineering,” Acta Biomaterialia,vol.5,no.1,pp.328-337,2009.
    [53] K. Vasilev, Z. Poh, K. Kant, J. Chan, A. Michelmore, and D. Losic,“Tailoring thesurface functionalities of titania nanotube arrays,” Biomaterials, vol.31, no.3, pp.532-540,2010.
    [54] H. S. Yoo, T. G. Kim, and T. G. Park,“Surface-functionalized electrospun nanofibersfor tissue engineering and drug delivery,” Advanced Drug Delivery Reviews, vol.61,no.12, pp.1033-1042,2009.
    [55] G. Huang, Z. Zhou, R. Srinivasan et al.,“Afnitymanipulation of surface-conjugatedRGD peptide to modulate binding of liposomes to activated platelets,” Biomaterials,vol.29, no.11,pp.1676-1685,2008.
    [56] A. Mardilovich, J. A. Craig, M. Q. McCammon, A. Garg, and E. Kokkoli,“Design ofa novel fibronectin-mimetic peptide-amphiphile for functionalized biomaterials,”Langmuir, vol.22, no.7, pp.3259-3264,2006.
    [57] S. Cressman, I. Dobson, J. B. Lee, Y. Y. C. Tam, and P. R. Cullis,“Synthesis of alabeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafckingin cultured endothelial cells,” Bioconjugate Chemistry, vol.20, no.7, pp.1404-1411,2009.
    [58] A.W.Morgan, K. E. Roskov, S. Lin-Gibson, D. L. Kaplan,M. L.Becker, and C. G.Simon,“Characterization and optimization of RGD-containing silk blends to supportosteoblastic differentiation,” Biomaterials, vol.29, no.16, pp.2556-2563,2008.
    [59] P. H. Chua, K. G. Neoh, E. T. Kang, and W. Wang,“Surface functionalization oftitanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD forpromoting osteoblast functions and inhibiting bacterial adhesion,” Biomaterials, vol.29, no.10, pp.1412-1421,2008.
    [60] Z. Shi, K. G.Neoh, E. T. Kang, C. Poh, andW.Wang,“Bacterial adhesion andosteoblast function on titanium with surface-grafted chitosan and immobilized RGDpeptide,” Journal of BiomedicalMaterials Research-Part A, vol.86, no.4, pp.865-872,2008.
    [61] S. J. Seo, I. Y. Kim, Y. J. Choi, T. Akaike, and C. S. Cho,“Enhanced liver functions ofhepatocytes cocultured with NIH3T3in the alginate/galactosylated chitosanscaffold,” Biomaterials, vol.27, no.8, pp.1487-1495,2006.
    [62] S. J. Seo, Y. J. Choi, T. Akaike, A. Higuchi, and C. S. Cho,“Alginate/galactosylatedchitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes,”Tissue Engineering, vol.12, no.1, pp.33-44,2006.
    [63] S. J. Seo, T. Akaike, Y. J. Choi, M. Shirakawa, I. K. Kang, and C. S. Cho,“Alginatemicrocapsules prepared with xyloglucan as a synthetic extracellular matrix forhepatocyte attachment,” Biomaterials, vol.26, no.17, pp.3607-3615,2005.
    [64] S.J.Seo,I.K.Park,M.K.Yoo,M.Shirakawa,T.Akaike, and C. S. Cho,“Xyloglucan as asynthetic extracellular matrix for hepatocyte attachment,” Journal of BiomaterialsScience, Polymer Edition, vol.15, no.11, pp.1375-1387,2004.
    [65] I. Y. Kim, S. J. Seo, H. S. Moon et al.,“Chitosan and its derivatives for tissueengineering applications,” Biotechnology Advances, vol.26, no.1, pp.1-21,2008.
    [66] J.S.Park,H.N.Yang,S.Y.Jeon,D.G.Woo,K.Na,andK. H. Park,“Osteogenicdifferentiation of human mesenchymal stem cells using RGD-modified BMP-2coatedmicrospheres,” Biomaterials, vol.31, no.24, pp.6239-6248,2010.
    [67] K. Tsuchiya, G. Chen, T. Ushida, T. Matsuno, and T. Tateishi,“The effect of cocultureof chondrocytes with mesenchymal stem cells on their cartilaginous phenotype invitro,”Materials Science and Engineering C, vol.24, no.3, pp.391-396,2004.
    [68] H.N.Yang,J.S.Park,K.Na,D.G.Woo,Y.D.Kwon, and K. H. Park,“The use of greenfluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs)co-cultured with chondrocytes in hydrogel constructs to reveal the chon-drogenesis ofMSCs,” Biomaterials, vol.30, no.31, pp.6374-6385,2009.
    [69] J. Chen, C.Wang, S. L¨ u et al.,“In vivo chondrogenesis of adultbone-marrow-derived autologous mesenchymal stem cells,” Cell and Tissue Research,vol.319, no.3, pp.429-438,2005.
    [70] A. A. Worster, B. D. Brower-Toland, L. A. Fortier, S. J. Bent, J. Williams, and A. J.Nixon,“Chondrocytic differentiation of mesenchymal stem cells sequentially exposedto transforming growth factor-β1inmonolayer and insulin-like growth factor-I in athree-dimensional matrix,” Journal of Orthopaedic Research, vol.19, no.4, pp.738-749,2001.
    [71] L. Bian, D. Y. Zhai, R. L. Mauck, and J. A. Burdick,“Coculture of human mesenchymalstem cells and articular chondrocytes reduces hypertrophy and enhances functionalproperties of engineered cartilage,” Tissue Engineering-Part A, vol.17, no.7-8, pp.1137-1145,2011.
    [72] dstemcells in gene-transferred co-culture system,” Biomaterials, vol.31, no.26, pp.6876-6891,2010.
    [1] Albright F. Case records of the Massachusetts General Hospital Case39061. N Engl JMed.1941;225:789-96.
    [2] Omenn GS, Roth SI, Baker WH. Hyperparathyroidism associated with malignanttumors of nonparathyroid origin. Cancer.1969;24:1004-11.
    [3] Martin TJ, Atkins D. Biochemical regulators of bone resorption and their significancein cancer. Essays Med Biochem.1979;4:49-82.
    [4] Melick RA, Martin TJ, Hicks JD. Parathyroid hormone production and malignancy. BrMed J.1972;2:204-5.
    [5] Roof BS, Carpenter B, Fink DJ, Gordan GS. Some thoughts on the nature of ectopicparathyroid hormones. Am J Med.1971;50:686-91.
    [6] Benson RCJ, Riggs BL, Pickard BM, Arnaud CD. Immunoreactive forms ofcirculating parathyroid hormone in primary and ectopic hyperparathyroidism. J ClinInvest.1974;54:175-81.
    [7] Riggs BL, Arnaud CD, Reynolds JC, Smith LH. Immunologic differentiation ofprimary hyperparathyroidism from hyperparathyroidism due to nonparathyroid cancer.J Clin Invest.1971;50:2079-83.
    [8] Powell D, Singer FR, Murray TM, Minkin C, Potts JR. Nonparathyroid humoralhypercalcemia in patients with neoplastic diseases. N Engl J Med.1973;289:176-81.
    [9] Stewart AF, Horst R, Deftos LJ, Cadman EC, Lang R, Broadus AE. Biochemicalevaluation of patients with cancer-associated hypercalcemia: evidence for humoral andnonhumoral groups. N Engl J Med.1980;303:1377-83.
    [10] Kukreja SC, Shemerdiak WP, Lad TE, Johnson PA. Elevated nephrogenous cyclicAMP with normal serum parathyroid hormone levels in patients with lung cancer. JClin Endocrinol Metab.1980;51:167-9.
    [11] Rude RK, Sharp CF, Fredericks RS, Oldham SB, Elbaum N, Link J, Irwin L, SingerFR. Urinary and nephrogenous adenosine30,50-monophosphate in the hypercalcemiaof malignancy. J Clin Endo-crinol Metab.1981;52:765-71.
    [12] Rodan SB, Insogna KL, Vignery AM, Stewart AF, Broadus AE, D’Souza SM, BertoliniDR, Mundy GR, Rodan GA. Factors associated with humoral hypercalcemia ofmalignancy stimulate adenylate cyclase in osteoblastic cells. J Clin Invest.1983;72:1511-5.
    [13] Stewart AF, Insogna KL, Goltzman D, Broadus AE. Identification of adenylatecyclase-stimulating activity and cytochemical glucose-6-phosphate dehydrogenase-stimulating activity in extracts of tumors from patients with humoral hypercalcemia ofmalignancy. Proc Natl Acad Sci U S A.1983;80:1454-8.
    [14] Strewler GJ, Williams RD, Nissenson RA. Human renal carcinoma cells producehypercalcemia in the nudemouse and a novel protein recognized by parathyroidhormone receptors. J Clin Invest.1983;71:769-74.
    [15] Moseley JM, KubotaM, Diefenbach-Jagger H,Wettenhall REH, Kemp BE, Suva LJ,Rodda CP, Ebeling PR, Hudson PJ, Zajaz JD, Martin TJ. Parathyroid hormone-relatedprotein purified from a human lung cancer cell line. Proc Natl Acad Sci U S A.1987;84:5048-52.
    [16] Burtis WJ, Wu T, Bunch C, Wysolmerski JJ, Insogna KL, Weir EC, Broadus AE,Stewart AF. Identification of a novel17,000-daltonparathyroid hormone-like adenylatecyclase-stimulating protein from a tumor associated with humoral hypercalcemia ofmalignan-cy. J Biol Chem.1987;262:7151-6.
    [17] Strewler GJ, Stern PH, Jacobs JW, Eveloff J, Klein RF, Leung SC, RosenblattM,Niseenson RA. Parathyroid hormone-like protein from human renal carcinoma cells.Structural and functional homology with parathyroid hormone. J Clin Invest.1987;80:1803-7.
    [18] Suva LJ, Winslow GA, Wettenhall REH, Hammonds RG, Moseley JM,Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY, Hudson PJ,Martin TJ, Wood WI. A parathyroid hormone-related protein implicated inmalignanthypercalcemia: cloning and expression. Science.1987;237:893-7.
    [19] Mangin M, Webb AC, Dreyer BE, Posillico JT, Ikeda K, Weir EC, Stewart AF, BanderNH, Milstone L, Barton DE, Francke U, Broadus AE. Identification of a cDNAencoding a parathyroid hormone-like peptide from a human tumor associated withhumoral hypercalcemia of malignancy. Proc Natl Acad Sci U S A.1988;85:597-601.
    [20] Kemp BE, Moseley JM, Rodda CP, Ebeling PR, Wettenhall REH, Stapleton D,Diffenbach-Jagger H, Ure F, Michelangeli VP, Simmons HA, Raisz LG, Martin TJ.Parathyroid hormone-related protein of malignancy: active synthetic fragments.Science.1987;238:1568-70.
    [21] Ju¨ppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J,Kolakowski LF, Hock J, Potts JT, Kronenberg HM, Segre GV. A G protein-linkedreceptor for parathyroid hormone and parathyroid hormone-related peptide. Science.1991;254:1024-6.
    [22] Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, KarperienM, Defize LHK,Ho C, Mulligan RC, Abou-Samra AB, Jueppner H, Segre GV, Kronenberg HM.PTH/PTHrP receptor in early development and Indian hedgehog-regulated bonegrowth. Science.1996;273:663-6.
    [23] Lanske B, Divieti P, Kovacs CS, Pirro A, Landis WJ, Krane SM, Bringhurst FR,Kronenberg HM. The parathyroid hormone (PTH)/PTH-related peptide receptormediates actions of both ligands in murine bone. Endocrinology.1998;139:5194-204.
    [24] Miao D, He B, Jiang Y, Kobayashi T, Soroceanu MA, Zhao J, Su H, Tong X, AmizukaN, Gupta A, Genant HK, Kronenberg HM, Goltzman D, Karaplis AC.Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifiesthe therapeutic efficacy of administered PTH1-34. J Clin Invest.2005;115:2402-11.
    [25] Danks JA, Ho PM, Notini AJ, Katsis F, Hoffmann P, Kemp BE, Martin TJ, Zajac JD.Identification of a parathyroid hormone in the fish Fugu rubripes. J Bone Miner Res.2003;18:1326-31.
    [26] Pinheiro PLC, Cardoso JCR, Gomes AS, Fuentes J, Power DM, Cana′rioAVM. Genestructure, transcripts and calciotropic effects of the PTH family of peptides in Xenopusand chicken. BMC Evol Biol.2010;10:373.
    [27] Okabe M, Graham A. The origin of the parathyroid gland. Proc Natl Acad Sci U S A.2004;101:17716-179.
    [28] Liu Y, Ibrahim AS, Tay B, Richardson SJ, Bell J, Walker TI, Brenner S, Venkatesh B,Danks JA. Parathyroid hormone gene family in a cartilaginous fish, the elephant shark(Callorhinshus milii). J Bone Miner Res.2010;25:2613-23.
    [29] Burtis WJ, Fodero JP, Gaich G, Debeyssey M, Stewart AF. Preliminary characterizationof circulating amino-and carboxy-terminal fragments of parathyroid hormone-relatedpeptide in humoral hypercalcemia of malignancy. J Clin Endocrinol Metab.1992;75:1110-4.
    [30] Grill V, Ho P, Body JJ, Johanson N, Lee SC, Krukreja SC, Moseley JM, Martin TJ.Parathyroid hormone-related protein: elevated levels in both humoral hypercalcemia ofmalignancy and hypercalcemia complicating metastatic breast cancer. J ClinEndocrinol Metab.1991;73:1309-15.
    [31] Grill V, Hillary J, Ho PM, Law FM, MacIsaac RJ, MacIsaac IA, Moseley JM, MartinTJ. Parathyroid hormone-related protein: a possible endocrine function in lactation.Clin Endocrinol (Oxf).1992;37:405-10.
    [32] Rodda CP, Kubota M, Heath JA, Ebeling PR, Moseley JM, Care AD, Caple IW, MartinTJ. Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroidglands and sheep placenta: comparisons with a similar protein implicated in humoralhypercal-cemia of malignancy. J Endocrinol.1998;117:261-71.
    [33] Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM.Parathyroid hormone-related peptide (PTHrP) regulates fetalplacental calciumtransport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad SciU S A.1996;93:15233-8.
    [34] Richard V, Luchin A, Brena RM, Plass C, Rosol TJ. Quantitative evaluation ofalternative promoter usage and30splice variants for parathyroid hormone-relatedprotein by real-time reverse transcription-PCR assay. Clin Chem.2003;49:1398-402.
    [35] Sellers RS, Luchin AI, Richard V, Brena RM, Lima D, Rosol TJ. Alternative splicingof parathyroid hormone-related protein mRNA: expression and stability. J MolEndocrinol.2004;33:227-41.
    [36] Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, Vasavada RC,Weir EC, Broadus AE, Stewart AF. Defining the roles of parathyroid hormone-relatedprotein in normal physiology. Physiol Rev.1996;76:127-73.
    [37] Orloff JJ, Ganz MB, Nathanson MH, Moyer NS, Kats Y, Mitnick M, Behal A,Gasalla-Herraiz J, Isales CM. A midregion parathyroid hormone-related peptidemobilizes cytosolic calcium and stimu-lates formation of inositol trisphosphate in asquamous carcinoma cell line. Endocrinology.1996;137:5376-85.
    [38] Wu TL, Soifer NE, Burtis WJ, Milstone LM, Stewart AF. Glycosylation of parathyroidhormone-related peptide secreted by human epidermal keratinocytes. J Clin EndocrinolMetab.1991;73:1002-7.
    [39] Orloff JJ, Reddy D, de Papp AE, Yang KH, Soifer NE, Stewart AF. Parathyroidhormone-related protein as a prohormone: posttranslational processing and receptorinteractions. Endocr Rev.1994;15:40-60.
    [40] Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM,Mulligan RC. Lethal skeletal dysplasia from targeted disruption of the parathyroidhormone-related peptide gene. Genes Dev.1994;8:277-89.
    [41] Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normalfetal bone formation. J Clin Invest.2002;109:1173-82.
    [42] Amizuka N, Warshawsky H, Henderson JE, Goltzman D, Karaplis AC. Parathyroidhormone-related peptide-depleted mice show abnormal epiphyseal cartilagedevelopment and altered endochondral bone formation. J Cell Biol.1994;126:1611-23.
    [43] Amizuka N, Karaplis AC, Henderson JE, Warshawsky H, Lipman ML, Matsuki Y, EjiriS, Tanaka M, Izumi N, Ozawa H, Goltzman D. Haploinsufficiency of parathyroidhormone-related peptide (PTHrP) results in abnormal postnatal bone development.Dev Biol.1996;175:166-76.
    [44] Kartsogiannis V, Moseley J, McKlevie B, Chou ST, Hards DK, Ng KW, Martin TJ,Zhou H. Temporal expression of PTHrP during endochondral bone formation in mouseand intramembranous bone formation in an in vivo rabbit model. Bone.1997;21:385-92.
    [45] Chen X, Macica CM, Dreyer BE, Hammond VE, Hens JR, PhilbrickWM, Broadus AE.Initial characterization of PTH-related protein gene-driven lacZ expression in themouse. J Bone Miner Res.2006;21:113-23.
    [46] Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg H. Ablation of thePTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bonedevelopment. J Clin Invest.1999;104:399-407.
    [47] Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role ofparathyroid hormone-related protein in articular chondrocyte maintenance in anexperimental mouse model. Arthritis Rheum.2011;63:3333-43.
    [48] Care AD, Abbas SK, Pickard DW, Barri M, Drinkhill M, Findlay JBC, White IR, CapleIW. Stimulation of ovine placental transport of calcium and magnesium bymid-molecule fragments of human parathyroid hormone-related protein. Exp Physiol.1990;75:605-8.
    [49] Wu TL, Vasavada RC, Yang K, Massfelder T, Ganz M, Abbas SK, Care AD, StewartAF. Structural and physiologic characterization of the mid-region secretory species ofparathyroid hormone-related protein. J Biol Chem.1996;271:24371-8.
    [50] Simmonds CS, Kovacs CS. Role of parathyroid hormone (PTH) and PTH-relatedprotein (PTHrP) in regulating mineral homeostasis during fetal development. Crit RevEukaryot Gene Expr.2010;20:235-73.
    [51] Charbon GA. A rapid and selective vasodilator effect of parathyroid hormone. Eur JPharmacol.1968;3:275-8.
    [52] Charbon GA, Hulstaert PF. Augmentation of arterial hepatic and renal flow byextracted and synthetic parathyroid hormone. Endocrinology.1974;96:621-6.
    [53] Wang HH, Drugge ED, Yen YC, Blumenthal MR, Pang PK. Effects of syntheticparathyroid hormone on hemodynamics and regional blood flows. Eur J Pharmacol.1984;97:209-15.
    [54] Mok LLS, Nickols GA, Thompson JC, Cooper CW. Parathyroid hormone as a smoothmuscle relaxant. Endocr Rev.1989;10:420-36.
    [55] Qian J, Lorenz JN, Maeda S, Sutliff RL, Weber C, Nakayama T, Colbert MC, Paul RJ,Fagin JA, Clemens TL. Reduced blood pressure and increased sensitivity of thevasculature to parathyroid hormone-related protein (PTHrP) in transgenic miceoverexpressing the PTH/PTHrP receptor in vascular smooth muscle. Endocrinology.1999;140:1826-33.
    [56] Martin TJ, Moseley JM, Williams ED. Parathyroid hormone-related protein: hormoneand cytokine. J Endocrinol.1997;154:S23-37.
    [57] Roca-Cusache A, Dipette DJ, Nickols GA. Regional and systemic hemodynamiceffects of parathyroid hormone-related protein: preservation of cardiac function andcoronary and renal flow with reduced blood pressure. J Pharmacol Exp Ther.1991;256:110-8.
    [58] Pirola CJ, Wang HM, Kamyar A, Wu S, Enomoto H, Sharifi B, Forrester JS, ClemensTL, Fagin JA. Angiotensin II regulates parathyroid hormone-related protein expressionin cultured rat aortic smooth muscle cells through transcriptional andpost-transcriptional mechanisms. J Biol Chem.1993;268:1987-94.
    [59] Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE, Philbrick WM.Overexpression of parathyroid hormone-related protein or parathyroid hormone intransgenic mice impairs branching morphogenesis during mammary glanddevelopment. Development.1995;121:3539-47.
    [60] Boras-Granic K, VanHouten J, Hiremath M, Wysolmerski JJ. Parathyroidhormone-related protein is not required for normal ductal or alveolar development inthe post-natal mammary gland. PLoS One.2011;6:e27278.
    [61] Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, PinkasJ, Branstetter D, Dougall WC. RANK ligandmediates progestin-induced mammaryepithelial proliferation and carcinogenesis. Nature.2010;468:103-7.
    [62] Philbrick WM, Dreyer BE, Nakchbandi IA, Karaplis AC. Parathyroid hormone-relatedprotein is required for tooth eruption. Proc Natl Acad Sci U S A.1998;95:11846-51.
    [63] Beck F, Tucci J, Russell A, Senior PV, FergusonMW. The expression of the genecoding for parathyroid hormone-related protein (PTHrP) during tooth development inthe rat. Cell Tissue Res.1995;280:283-90.
    [64] Ouyang H, McCauley LK, Berry JE, D’Errico JA, Strayhorn CL, Somerman MJ.Response of immortalized murine cementoblasts/periodontal ligament cells toparathyroid hormone and parathyroid hormone-related protein in vitro. Arch Oral Biol.2000;45:293-303.
    [65] Ouyang H, McCauley LK, Berry JE, Saygin NE, Tokiyasu Y, Somerman MJ. PTHrPregulates extracellular matrix gene expression in cemen-toblasts and inhibitscementoblast-mediated mineralization, in vitro. J Bone Miner Res.2000;15:2140-53.
    [66] Tenorio D, Hughes FJ. An immunohistochemical investigation of the expression ofparathyroid hormone receptors in rat cementoblasts. Arch Oral Biol.1996;41:299-305.
    [67] Wysolmerski JJ, Cormier S, PhilbrickWM, Dann P, Zhang JP, Roume J, Delezoide AL,Silve C. Absence of functional type1parathyroid hormone (PTH)/PTH-related proteinreceptors in humans is associated with abnormal breast development and toothimpaction. J Clin Endocrinol Metab.2001;86:1788-94.
    [68] Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM, Philbrick WM.Overexpression of parathyroid hormone-related protein in the skin of transgenic miceinterferes with hair follicle development. Proc Natl Acad Sci U S A.1994;91:1133-7.
    [69] Werkmeister JR, Merryman JI, McCauley LK, Horton JE, Capen CC, Rosol TJ.Parathyroid hormone-related protein production by normal human keratinocytes invitro. Exp Cell Res.1993;208:68-74.
    [70] Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE, Philbrick WM. PTHrPregulates epidermal differentiation in adult mice. J Invest Dermatol.1998;111:1122-8.
    [71] Vasavada RC, Cavaliere C, D’Ercole AJ, Dann P, Burtis WJ, Madlener AL, ZawalichK, ZawalichW, PhilbrickW, Stewart AF. Overexpression of parathyroidhormone-related protein in the pancreatic islets of transgenic mice causes islethyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem.1996;271:1200-8.
    [72] Drucker DJ, Asa SL, Henderson J, Goltzman D. The parathyroid hormone-like peptidegene is expressed in the normal and neoplastic human endocrine pancreas.MolEndocrinol.2011;3:1589-95.
    [73] Guthalu Kondegowda N, Johshi-Gokhale S, Harb G, Williams K, Zhang XY, TakaneKK, Zhang P, Scott DK, Stewart AF, Garcia-Ocana A, Vasavada RC. Parathyroidhormone-related protein enhances human b-cell proliferation and function withassociated inductionof cyclin-dependent kinase2and cyclin E expression. Diabetes.2010;59:3131-8.
    [74] Cebrian A, Garcia-Ocana A, Takane KK, Sipula D, Stewart AR, Vasavada RC.Overexpression of parathryoid hormone-related protein inhibits pancreatic b-cell deathin vivo and in vitro. Diabetes.2002;51:3003-13.
    [75] Uren a P, Kong XF, Abou-Samra AB, Ju¨ppner H, Kronenberg HM, Potts JR, SegreGV. Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleicacids are widely distributed in rat tissues. Endocrinology.1993;133:617-23
    [76] Southby J, KissinMW, Danks JA, Hayman JA,Moseley JM, Henderson MA, BennettRC, Martin TJ. Immunohistochemical localization of parathyroid hormone-relatedprotein in human breast cancer. Cancer Res.1990;50:7710-6.
    [77] Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, BennettRC, Martin TJ. Localization of parathyroid hormone-related protein in breast cancermetastasis: increased incidence in bone compared with other sites. Cancer Res.1991;51:3059-61.
    [78] Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR.Evidence for a causal role of parathyroid hormone-related protein in the pathogenesisof human breast cancer-mediated osteolysis. J Clin Invest.1996;98:1544-9.
    [79] Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities.Nat Rev Cancer.2002;2:584-93.
    [80] Yoneda T, Michigami T, Yi B, Williams PJ, Niewolna M, Hiraga T. Actions ofbisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer.2000;88:2988.
    [81] Paget S. The distribution of secondary growths in cancer of the bones. Lancet.1889;1:571-3.
    [82] Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, MurphyE, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement ofchemokine receptors in breast cancer metastasis. Nature.2001;410:50-6.
    [83] Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat RevCancer.2011;11:411-25.
    [84] Li X, Loberg RD, Liao J, Ying C, Snyder LA, Pienta KJ, McCauley LK. A destructivecascade mediated by CCL2facilitates prostate cancer growth in bone. Cancer Res.2009;69:1685-92.102.
    [85] Deftos LJ, Barken I, Burton DW, Hoffman RM, Geller J. Direct evidence that PTHrPexpression promotes prostate cancer progression in bone. Biochem Biophys ResCommun.2005;327:468-72.
    [86] Sourbier C, Massfelder T. Parathyroid hormone-related protein in human renal cellcarcinoma. Cancer Lett.2006;240:170-82.
    [87] Shu ST, Dirksen WP, Lanigan LG, Martin CK, Thudi NK, Werbeck JL, Fernandez SA,Hildreth BE, Rosol TJ. Effects of parathyroid hormone-related protein and macrophageinflammatory protein-1a in Jurkat T-cells on tumor formation in vivo and expression ofapoptosis regulatory genes in vitro. Leuk Lymphoma.2012;53(4):688-98.
    [88] Henderson MA, Danks JA, Slavin JL, Byrnes GB, Choong PF, Spillane JB, Hopper JL,Martin TJ. Parathyroid hormone-related protein localization in breast cancers predictimproved prognosis. Cancer Res.2006;66:2250-6.
    [89] Henderson MA, Danks JA, Moseley JM, Slavin JL, Harris TL, McKinlay MR, HopperJL, Martin TJ. Parathyroid hormone-related protein production by breast cancers,improved survival, and reduced bone metastases. J Natl Cancer Inst.2001;93:234-7.
    [90] KissinMW, HendersonMA, Danks JA, Hayman JA, Bennett RC,Martin TJ. Parathyroidhormone related protein in breast cancers of widely varying prognosis. Eur J SurgOncol.1993;19:134-42.
    [91] Bundred NJ, Walker RA, Ratcliffe WA, Warwick J, Morrison JM, Ratcliffe JG.Parathyroid hormone related protein and skeletal morbidity in breast cancer. Eur JCancer.1992;28:690-2.
    [92] Liapis H, Crouch EC, Grosso LE, Kitazawa S, Wick MR. Expression of parathyroidlike protein in normal, proliferative and neoplastic human breast tissues. Am J Pathol.1993;143:1169-78.
    [93] Bouizar Z, Spyratos F, De Vernejoul MC. The parathyroid hormone-related protein(PTHrP) gene: use of downstream TATA promoter and PTHrP1-139coding pathwaysin primary breast cancers vary with the occurrence of bone metastasis. J Bone MinerRes.1999;14:406-14.
    [94] Fleming NI, Trivett MK, George J, Slavin JL, Murray WK, Moseley JM, Anderson RL,Thomas DM. Parathyroid hormone-related protein protects againstmammary tumoremergence and is associated with monocyte infiltration in ductal carcinoma in situ.Cancer Res.2009;69:7473-9.
    [95] Li J, Karaplis AC, Huang DC, Siegel PM, Camirand A, Yang XF, Muller WJ, KremerR. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is apotential therapy target. J Clin Invest.2011;121:4655-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700