用户名: 密码: 验证码:
咪唑基二羧酸配合物的合成、结构与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以4,5-咪唑二甲酸和N,N’-1,3-咪唑二乙酸为有机配体,在水(溶剂)热条件下,与不同金属离子反应制备出了22个新的金属配合物,探讨了这些配合物的反应条件和网络结构所属的拓扑类型。通过单晶X-射线衍射仪对配合物的晶体结构进行了测定,并对某些配合物的热稳定性及荧光性质进行了研究。结果表明:在4,5-咪唑二甲酸(H_3IDC)配体与过渡金属离子构筑的10个配合物中,金属离子、配体H_3IDC、反应体系的pH值及辅助配体对该类配合物的结构均具有重要的影响,其中配合物7是一个具有一维孔道的金属-有机开放框架结构,并展示出强的蓝色荧光性能和良好的热稳定性,可以作为一种蓝色荧光材料的备选物;在主族金属离子与H_3IDC构筑的7个配合物中,配体展现出两种新的配位模式(μ4-η7和μ5-η7)并建构出三个具有新颖空间拓扑结构(PtS, 4~5.6~5, SrAl2)的三维配位聚合物;在N,N’-1,3-咪唑二乙酸构筑的5个配位聚合物中,配体均以内盐的形式存在,并表现出双单齿、四单齿桥联和双-双齿螯合等多种配位方式。
In this thesis, twenty-two coordination complexes have been synthesized by the hydrothermal (solvothermal) reactions of 4,5-imidazoledicarboxylic acid or N,N’-1,3,- imidazolediacetic acid with many metal salts. The study on synthetic conditions and topological analyses of the coordination polymers are carried out. These complexes structurally characterized by single crystal X-ray diffraction and the thermal stabilities and fluorescent properties of these complexes have been studied. The metal ion, organic ligand, pH value and co-ligands play interesting roles in the topological structures of ten complexes constructed by the transition metals and 4,5-imidazoledicarboxylic acid. Especially, the complex 7 has an Open-Frameworks with 1-D channels and exhibits a strong blue fluorescent emission in the solid state at room temperature, and it may be a good candidate polymer as blue–light emitting materials. In the seven complexes based on the main group metals, 4,5-imidazoledicarboxylic acid exhibit two kind novel coordination modes (μ4-η7 andμ5-η7) and construct three 3-D polymers with novel topology structures (PtS, 45.65,SrAl2); In the five coordination polymers on the basis of the N,N’-1,3,- imidazolediacetate acid, the ligand exists as zwitterionic and exhibits interesting bis-monodentat, tetradentate bridged and bis-bidentate chelate coordination modes.
引文
[1] S. Noro, S. Kitagawa, M. Kondo and K. Seki. A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4-bipyridine)2}n] [J]. Angew. Chem. Int. Ed. 2000, 39(12): 2081~2084.
    [2] O. M. Yaghi, H. Li, C. Davis, D. Richaedson, T. L. Groy. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res., 1998, 31(8): 474~484.
    [3] L. Carlucci, G. Ciani, M. Moret, D.M. Proserpio, S.Rizzato. Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Architecture: A Nanoporous Network with Sponge like Behavior[J]. Angew. Chem. Int. Ed., 2000, 39(8): 1506~1510.
    [4] M. Fujita, Y. Kwon, S. Washizu, K. Ogura. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine[J]. J. Am. Chem. Soc., 1994, 116(3): 1151~1152.
    [5] A.D Anjos., A.J. Bortoluzzi, R.E.H.M.B. Osaario, R.A. Peralta. New mononuclear Cu(II) and Zn(II) complexes capable of stabilizing phenoxyl radicals as models for the active form of galactose oxidase[J]. Inorg. Chem. Commun., 2005, 8(3): 249~253.
    [6] K. T. Holman, H. H. Hammud, S. Isber, M. Tabbal. One-dimensional coordination polymer [Co(H_2O)_4(pyz)](NO_3)_2·2H_2O (pyz=pyrazine) with intra- and inter-chain H-bonds: structure, electronic spectral studies and magnetic properties[J]. Polyhedron., 2005, 24(2), 221~228.
    [7] S. T. Batten, R. Robson, “Interpenetrating nets: Ordered, periodic entanglement”, Angew. Chem. Int. Edn Engl. 1998, 37, 1460~1494.
    [8] G. Férey, “Building units design and scale chemistry”, J. Solid State Chem. 2000, 152, 37~48.
    [9] S. Kitagawa, M. Kondo, “Functional micropore chemistry of crystalline metal complex-assembled compounds”, Bull. Chem. Soc. Jpn, 1998, 71, 1739~1753.
    [10] O. M. Yaghi, M. O’Keeffe, M. G. Kanatzidis, “Special issue on the design of solidsfrom molecular building blocks: golden opportunities for solid state chemistry”, J. Solid State Chem. 2001, 52, 1~321.
    [11]. O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, “Reticular synthesis and the design of new materials”, Nature 2003, 423, 705~714.
    [12] A. F. Wells, “Three-Dimenstional Nets and Polyhedra”, Wiley, New York, 1977.
    [13] A. F. Wells, “Structural Inorganic Chemistry”, Oxiford University Press, Oxiford,1975.
    [14] (a) A. F. Wells, “The geometrical basis of crystal chemistry. Part 1.”, Acta Cryst.1954, 7, 535~544; (b) A. F. Wells, “The geometrical basis of crystal chemistry. Part 2.”, Acta Cryst.1954, 7, 545~554; (c) A. F. Wells, “The geometrical basis of crystal chemistry. Part 1: correction.”,Acta Cryst. 1955, 8, 596~597; (d) A. F. Wells, “The geometrical basis of crystal chemistry. Part 4.”, Acta Cryst.1954, 7, 849~853; (e) A. F. Wells, “The geometrical basis of crystal chemistry. Part 5.”, Acta Cryst.1955, 8, 32~36; (f) A. F. Wells, “The geometrical basis of crystal chemistry. Part 6.”, Acta Cryst.1956, 9, 23~28; (g) A. F. Wells, R. R. Sharpe, “The geometrical basis of crystal chemistry. VII. On three-dimensional polyhedra and networks.”, Acta Cryst. 1963, 16, 857~871; (h) A. F. Wells, “The geometrical basis of crystal chemistry. Ix. Some properties of plane nets.”, Acta Cryst. 1968, B24, 50~57; (i) A. F. Wells, “The geometrical basis of crystal chemistry. x. Further study of three-dimensional polyhedra.”, Acta Cryst. 1969, B25, 1711~1719; (j) A. F. Wells, “The geometrical basis of crystal chemistry. xI. Further study of 3-dimensional 3-connected nets.”, Acta Cryst. 1972, B28, 711~713.
    [15] N.W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Acc Chem Res, 2005, 38: 176~182.
    [16] M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4-Bipyridine. J. Am. Chem. Soc. 1994,116: 1151~1152.
    [17] R. W. Gable, B. F. Hoskins, R. Robson. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4-bipyridine)zinc hexafluorosilicate. J. Chem. Soc., Chem. Commun. 1990,1677~1678.
    [18] R. Robson, B. F. Abrahams, S. R. Batten,, R. W. Gable, B. F. Hoskins, J. Liu. Supramolecular Architecture, Bein, T., Ed., ACS Symposium Series 499: American Chemical Society:Washington, DC, 1992; Chapter 19.
    [19] B. Chen, M. Eddaoudi, J. W. Kampf, M. O’Keeffe, O. M. Yaghi. Cu_2(ATC)·6H_2O: Design of Open Metal Sites in Porous Metal-Organic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate). J. Am. Chem.Soc. 2000,122, 11559~11560.
    [20] L. G. Beauvais, J. R. Long. Co3[Co(CN)5]2: A Microporous Magnet with an Ordering Temperature of 38 K. J. Am. Chem. Soc.2002, 124, 12096~12097.
    [21] N. Guillou, C. Livage,; W. van Beek, M. Noguès, G. Férey, A Layered Nickel Succinate with Unprecedented Hexanickel Units: Structure Elucidation from Powder-Diffraction Data, and Magnetic and Sorption Properties. Angew. Chem., Int.Ed.,2003, 42, 643~647.
    [22] B. Zhao, P. Cheng, Y. Dai, C. Cheng, D. Liao, S. Yan, Z. Jiang, G. Wang, A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly. Angew. Chem., Int. Ed.,2003, 42, 934~936.
    [23] E. Coronado, J. R. Galán-Mascarós, C. J. Gómez-García, V. Laukhin,. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 2000, 408, 447~449.
    [24] H. Zhao, R. A. Heintz, X. Ouyang, K. R. Dunbar, C. F. Campana, R. D. Rogers,Chem. Mater. , Spectroscopic, Thermal, and Magnetic Properties of Metal/TCNQ Network Polymers with Extensive Supramolecular Interactions between Layers 1999, 11, 736~746.
    [25] K. I. Pokhodnya, N. Petersen, J. S. Miller, Inorg. Chem., Iron Pentacarbonyl as aPrecursor for Molecule-Based Magnets: Formation of Fe[TCNE]_2 (Tc = 100 K) and Fe[TCNQ]_2 (Tc = 35 K) Magnets 2002(8), 41, 1996~1997.
    [26] H. Zhao, M. J. Bazile, J. R. Galáne-Mascarós, K. R. Dunbar, Angew. Chem. Int.Ed., A Rare-Earth Metal TCNQ Magnet: Synthesis, Structure, and Magnetic Properties of {[Gd_2(TCNQ)_5(H_2O)_9][Gd(TCNQ)_4(H_2O)_3]}_4 H_2O (p 1015-1018) 2003, 42, 1015~1018.
    [27] J. R. Galáne-Mascarós, K. R. Dunbar, Angew. Chem. Int. Ed., A Self-Assembled 2D Molecule-Based Magnet: The Honeycomb Layered Material {Co3Cl4(H_2O)2[Co(Hbbiz)3]2} (p 2289-2293) 2003, 42, 2289~2293.
    [28] J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. CortEs, L. Lezama, T. Rojo, Coord. Chem. Rev., Polynuclear NiII and MnII azido bridging complexes. Structural trends and magnetic behavior 1999, 193-195, 1027~1068.
    [29] T. Liu, D. Fu, S. Gao, Y. Zhang, H. Sun, G. Su, Y. Liu, J. Am. Chem. Soc., An Azide-Bridged Homospin Single-Chain Magnet: [Co(2,2'-bithiazoline)(N_3)_2]_n 2003, 125, 13976~13978.
    [30] E. Gao, S. Bai, Z. Wang, C. Yan, J. Am. Chem. Soc., Two-Dimensional Homochiral Manganese(II)-Azido Frameworks Incorporating an Achiral Ligand: Partial Spontaneous Resolution and Weak Ferromagnetism 2003, 125, 4984~4985.
    [31] C. Liu, S. Gao, D. Zhang, Y. Huang, R. xiong, Z. Liu, F. Jiang, D. Zhu, Angew. Chem. Int. Ed., A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets 2004, 43, 990~994.
    [32] B. Moulton, J. J. Lu, R. Hajndl, S. Harkkharan, M. J. Zaworotko, Angew. Chem. Int. Ed., Crystal Engineering of a Nanoscale Kagomé Lattice 2002, 41, 2821~2824.
    [33] S. J. Lee, W. Lin, J. Am. Chem. Soc., 2002, 124, 1554-1555.34. L. Pu, 1,1'-binaphthyl dimers, oligomers, and polymers: Molecularrecognition, asymmetric catalysis, and new materials, Chem. Rev. 1998, 98,2405~2494.
    [34] L. Pu, Novel chiral conjugated macromolecules for potential electrical and optical applications, Macromolecular Rapid Commun. 2000, 21, 795~809.
    [35] R. Noyori, Asymmetric catalysis: Science and opportunities (Nobel lecture), Angew. Chem. Int. Ed. 2002, 41, 2008~2022.
    [36] U. Knof, A. von Zelewsky, Predetermined chirality at metal centers, Angew. Chem. Int. Ed. 1999, 38, 303~322.
    [37] C. R. Woods, M. Benaglia, F. Cozzi, J. S. Siegel, Enantioselective synthesis of copper(I) bipyridine based helicates by chiral templating of secondary structure: Transmission of stereochemistry on the nanometer scale, Angew. Chem. Int. Ed. 1996, 35, 1830~1832.
    [38] Y. Cui, H. L. Ngo, P. S. White, W. B. Lin, Homochiral 3D open frameworks assembled from 1-and 2-D coordination polymers, Chem. Commun. 2003, 994~995.
    [39] Y. Cui, O. R. Evans, H. L. Ngo, P. S. White, W. B. Lin, Rational design of homochiral solids based on two-dimensional metal carboxylates, Angew. Chem. Int. Ed. 2002, 41, 1159~2002.
    [40] Y. Cui, H. L. Ngo, W. Lin, A homochiral triple helix constructed from an axially chiral bipyridine, Chem. Commun. 2003, 1388~1389.
    [41] Y. Cui, S. J. Lee, W. Lin, Interlocked chiral nanotubes assembly from quintuple helices, J. Am. Chem. Soc. 2003, 125, 6014~6015.
    [42] H. Jiang, A. Hu, W. Lin, A chiral metallacyclophane for asymmetric catalysis, Chem. Commun. 2003, 96~97.
    [43] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 2000, 404, 982~986.
    [44] O. R. Evans, W. Lin, Rational design of nonlinear optical materials based on 2d coordination networks, Chem. Mater. 2001, 13, 3009~3017.
    [45] W. Lin,; O. R. Evans, R. G. Xiong, Z. Wang, Supramolecular engineering of chiral and noncentrosymmetric 2d networks. Synthesis, structures, and second-order nonlinear optical properties of bis(nicotinato)zinc and bis{3-[2- (4-pyridyl)ethenyl]benzoato}cadmium, J. Am. Chem. Soc. 1998, 120, 13272~13273.
    [46] L. Pu, Novel chiral conjugated macromolecules for potential electrical and optical applications, Macromolecular Rapid Commun. 2000, 21, 795~809.
    [47] O. R. Evan, W. B. Lin, Crystal engineering of NLO materials based onmetalorganic coordination networks, Acc. Chem. Res. 2002, 35, 511~522.
    [48] W. P. Su, M. C. Hong, J. B. Weng, R. Cao, S. F. Lu, A semiconducting lamella polymer [Ag(C5H4NS)]n with a graphite-like array of silver(I) ions and its analogue with a layered structure, Angew. Chem. Int. Ed. 2000, 39, 2911~2914.
    [49] R. X. Yuan, R. G. xiong, Z. F. Chen, X. Z.You, S. M. Peng, G. H. Lee. Preparation, characterization, and x-ray crystal structure of a one-dimensional calcium-based coordination polymer with strong blue fluorescent emission. Inorg. Chem. Commun. 2001, 4: 430~433.
    [50] Y. F. Zhou, Y. J. Zhao, D. F. Sun, J. B. Weng, R. Cao, M. C. Hong, Syntheses, crystal structures and photoluminescent properties of two isophthalate-bridged complexes. Polyhedron. 2003, 22(9): 1231~1235.
    [51] R. Bertoncello, M. Bettinelli, M. Cassrin, A.Gulino, E. Tondello and A. Vittadini, Hexakis(acetato)oxotetrazinc, a well-tailored molecular model of zinc oxide. An experimental and theoretical investigation of the electronic structure of Zn4O(acetate)6 and ZnO by means of UV and x-ray photoelectron spectroscopies and first principle local density molecular cluster calculations Inorg. Chem., 1992, 31, 1558-1565.
    [52] H.K. Fun, S.S.S. Ray, R.G. xiong, J.L. Zuo and X.Z. You. A three dimensional network coordination polymer, (terephthalato)(pyridine)cadmium, with blue flurorecent emission, J. Chem.Soc., Dalton Trans. 1999, 1915~1917.
    [53] S. Kitagawa, R. Kitaura, S.-C. Noro. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43: 2334~2375.
    [54]Chae H K, Diana Y, Siberio P, et al. A route to high surface area porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523~527.
    [55] Chen B, Ockwig N W, Fronczek F R, et al. Transformation of a Metal-Organic Framework from the NbO to PtS Net[J]. Inorg Chem, 2005, 44: 181~183.
    [56] J.P. Zhang, Y.Y. Lin, W.X. Zhang and X.M. Chen. Temperature- or Guest-Induced Drastic Single-Crystal-to-Single-Crystal Transformation of a Nanoporous Coordiantion Polymer[J]. J. Am. Chem. Soc. 2005, 127, 14162~14163.
    [57] L. Ma, O.R.Evans, B.M.Foxman, Wenbin Lin. Luminescent LanthanideCoordination Polymers. Inorg.Chem., 1999, 38: 5837~5840.
    [58] S.A. Barnett, N.R. Champness. Structural diversity of building-blocks in coordination framework synthesis-combining M(NO3)2 junctions and bipyridyl ligands. Coordination Chemistry Reviews 246 (2003) 145~168.
    [59] A. Erxleben. Structures and properties of Zn(II) coordination polymers. Coordination Chemistry Reviews 246 (2003) 203~228.
    [60] J. Y. Lu, A. M. Babb. An unprecedented interpenetrating structure with two covalently bonded open-frameworks of different dimensionality. Chem. Commun., 2001, 821~822.
    [61] M. Kondo, T. Iwase, Y. Fuwa, T. Horiba, M. Miyazawa, T. Naito. Kenji Maeda,y Sachie Yasue,y and Fumio Uchiday Flexible Hexagonal Tube Framework of a New Nickel Complex Assembled from Intermolecular Hydrogen Bonds. Chem. Lett. 2005, 34,410~411.
    [62] W.G. Lu, L. Jiang, X.L. Feng, and T.B. Lu. Three 3D Coordination Polymers Constructed by Cd(II) and Zn(II) with Imidazole-4,5-Dicarboxylate and 4,4’-Bipyridyl Building Blocks. Crystal Growth & Design 2006, 6, 2564~571.
    [63] R.Q. Fang and X.M. Zhang. Diversity of Coordination Architecture of Metal 4,5-Dicarboxyimidazole. Inorg. Chem. 2006, 45, 4801~4810.
    [64] Y.Q. Sun, J. Zhang, Y.M. Chen, and G.Y. Yang. Porous Lanthanide–Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains. Angew. Chem. Int. Ed. 2005, 44, 5814~5817.
    [65] Y.L. Liu, V. Kravtsov, R. D. Walsh, P. Poddar, H. Srikanthc and M. Eddaoudi. Directed assembly of metal–organic cubes from deliberately predesigned molecular building blocks. Chem. Commun., 2004, 2806~2807.
    [66] C.F. Wang, E.Q. Gao, Z. He and C.H. Yan. A novel mixed-valence complex containing CoII2CoIII2 molecular squares with 4,5-imidazoledicarboxylate bridges. Chem. Commun. 2004, 720~721.
    [67] R.Q. Zou, L. Jiang, H. Senoh, N. Takeichia and Q. xu. Rational assembly of a 3D metal–organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels. Chem. Commun., 2005, 3526~3528.
    [68] W.G. Lu, C.Y. Su, T.B. Lu, L. Jiang, and J.M. Chen. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls. J. AM. CHEM. SOC. 2006, 128, 34~35.
    [69] Y.T. Wang, G.M. Tang, Y. Wu, X.Y. Qin, D.W. Qin. Metal-controlled assembly tuning the topology and dimensionality of coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1H-imidazole-1-yl)acetic acid (Hima). J. of Molecular Structure 2007,831, 61~68.
    [70] Z.F. Fei, D.B. Zhao, T. J. Geldbach, R. Scopelliti, P.J. Dyson, S. Antonijevic, and G. Bodenhausen. A Synthetic Zwitterionic Water Channel: Characterization in the Solid State by x-ray Crystallography and NMR Spectroscopy. Angew. Chem. Int. Ed. 2005, 44, 5720~5725.
    [71] Z.F. Fei, D.B. Zhao, T. J. Geldbach, R. Scopelliti, and P. J. Dyson. Brosted Acidic Ionic Liquids and Their Zwitterions: Synthesis, Characterization and pKa Determination. Chem. Eur. J. 2004, 10, 4886 4886~4893.
    [72]B.Kratochvil, J.Ondracek, J.Velisek and J.Hasek. Structure of 1,3-bis(carboxymethyl)imidazole. Acta Crystallogr.,Sect.C(Cr.Str.Comm.), 1988,44,1579.
    [73] Y. Kang, J. Zhang, Z.J. Li, Y.Y Qin, and Y. G. Yao. Rare 4.82 net in a fluorescent Cd-organic framework. Inorg. Chem.Commun., 2005 722~724.
    [74] W. Clegg, J. T. Cressey, A. McCamley and B. P. Straughan. The Polymeric Structure of Aquacadmium Bisnicotinate.Acta Cryst., C51 (1995) 234~235.
    [75] J. Tao, M. L. Tong, J. X. Shi, X. M. Chen, S. W. Ng. Blue photoluminescent zinc coordination polymers with supertetranuclear cores. Chem. Commun. 2000: 2043~2044.
    [76]H.K. Fun, S. S. S. Raj, R.G. Xiong, J.L. Zuo, Z. Yu and X.Z. You. A three-dimensional network coordination polymer, (terephthalato)(pyridine)cadmium, with blue fluorescent emission. J. Chem. Soc., Dalton Trans., 1999, 12,1915~1916.
    [77] A. Bouayad, J. C. Trombe and A. Gleizes. Barium-copper(II) oxocarbon compounds: synthesis, crystal structures and thermal behaviours of [Ba(H_2O)_5] [Cu(C_2O_4)_2(H_2O)] and [Ba(C_4O_4)_(0.5)(H_2O)_2][Cu(C_4O_4)_2(H_2O)_2]. Inorg. Chim. Acta,1995, 230, 1~7.
    [78] A. Morsali and A. Mahjoub. The first hemidirected nine coordinate lead(II) complex, crystal and molecular structure of [Pb(BzImH)_2py(H_2O)_2(NO_3)_2]·(BzImH)_2py ·H_2O, (BzImH)2py = 2,6-Bis(2-benzimidazolyl)pyridine. Inorg. Chem. Commun.,2004, 915~918.
    [79] W. Starosta, J. Leciejewicz, T. Premkumar and S.G. Arajan. Crystal structures of two Ca(II) complexes with imidazole-4,5-dicarboxylate and water ligands J. of Coordin. Chem. 2006, 59, 557~564.
    [80] Z. F. Chen, R.G. Xiong, B. F. Abrahams, X. Z.You and C.-M. Che. An unprecedented six-fold anion-type chiral diamondoid-like eight-coordinate Cd(II) coordination polymer with a second-order nonlinear optical effect. J.Chem. Soc. Dalton Trans. 2001, 2453~2455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700