用户名: 密码: 验证码:
微电网分层控制与优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机加剧、环境日益恶化,加之传统的集中供电方式暴露出诸多弊端,分布式发电技术逐渐受到关注。该技术有助于推动可再生能源的利用,并在一定程度上为传统电力系统提供了有效补充。然而在诸多优势的背后,其出力的随机性和惯性较小的问题限制了其应用范围,大规模接入更是会对电网安全稳定带来负面影响。因此微电网应运而生,成为分布式电源(DG)“友好”接入电网的途径。
     与以同步发电机为主的传统电力系统不同,微电网包含多种类型的DG,它们的特性和控制方式差距较大,难以标准化。当微电网进行分层控制后,二级控制和三级控制可以依据微电网中的各种测量值进行系统级调节。只需要借助微电网内部的通信,一些难以在DG本地侧实现的功能可由更高级的控制执行。这将有效的简化本地控制结构,有利于实现微电网控制的标准化。本文在国家重点基础计划项目(“973”计划)的资助下完成,研究内容涉及以下四个方面:DG的初级控制、改善无功分布的二级控制、抑制功率脉动的二级控制以及微电网的经济运行,本文的具体内容如下:
     (1)从微电网的架构和多种DG的数学模型出发,提出了一种微电网初级控制策略,协调了不同调频性质DG的控制,实现了储能、柴油发电机、风力发电以及光伏发电在微电网内共同运行。根据平均值建模方法,对微电网内部可控的电力电子器件以受控电压源和受控电流源形式进行建模,加快了多DG微电网仿真的速度。仿真结果验证了所提控制策略在光伏出力波动、负荷突变、孤岛与并网模式切换等情况下的可行性。
     (2)针对传统下垂控制无功分配不均的问题,从下垂增益、负荷侧电压以及微电网传输线路阻抗特性等方面分析了经典电压/无功下垂控制无功负荷分配的机理。在此基础上,通过上传至微电网中央控制器(MGCC)的DG功率信息,建立了基于二级控制的微电网无功控制策略。该策略利用无功出力分配关系和空载输出电压的偏离程度构造势函数。MGCC根据势函数对各DG的空载输出电压进行集中调整,达到改善无功出力分配的目的。该控制方法不需要对经典的下垂控制进行改动,只需借助于MGCC与DG间的通信。另外,在仿真的研究中利用正则环流无功概念量化了环流的程度,并在不同负荷下考察了环流的特点和抑制效果。
     (3)微电网内会包含一定比例的单相DG和负荷,这会导致微电网公共连接点(PCC)电压的不对称。在不对称电压下PQ控制的DG会产生有功和无功功率的二倍工频波动。通过对有功和无功脉动的机理分析,首次推导了有功和无功功率脉动的解析关系,并进一步揭示了正负序电气量对功率脉动的根本性影响。在此基础上,提出一种抑制功率脉动的二级控制策略。该方案根据最优化理论,以功率脉动幅值为优化目标,以功率脉动率和PQ控制的功率给定值为约束建立优化模型。利用优化结果,二级控制能够在无功脉动较大时实现对有功和无功脉动的同时抑制,达到功率脉动幅值和脉动率指标的深度优化。
     (4)经济运行控制根据优化结果调整各DG的功率输出给定值,可视为微电网的顶层控制策略。由于微电网包含较大比例的间歇性能源,其出力波动对制定微电网发电计划带来较大困难。因此提出了基于机会约束规划的微电网经济运行模型,该模型考虑了储能充放电、备用容量配置以及功率平衡方面的约束。另外,光伏发电采用了一种考虑云量和地理因素的概率模型,该模型能够更真实地反映光伏出力的波动变化。在求解机会约束过程中,利用概率序列理论对光伏和风力发电的概率模型进行了离散化处理,将机会约束转化成了确定性的约束形式,使之可以通过TOMLAB等商业优化软件求解。仿真结果表明,与随机模拟求解相比,该方法具有计算速度快且结果稳定的优势。此外,为了考察概率性序列的合理性,还讨论了不同离散化步长对计算结果的影响,并进一步验证了所提出方法的有效性。
With the influence of energy crisis, deteriorating environment and defect of centralized power supply, distributed generation technologies have been paid for attention gradually. By promoting utilization of renewable energy, distributed generation technologies become effective complements to the traditional power system. However, large-scale grid connected distributed generations can cause negative effects on the security and stability because of randomness and inertialess, so their application range is still limited. Under this circumstance, microgrid is proposed and becomes an approach for distributed generator (DG) to connect to utility grid friendly.
     Unlike traditional power system dominated by synchronous machines, there are many differences on characteristics and control modes among numerous types of DGs in microgrid, so the standardization of control is difficult to achieve. Under the architecture of hierarchical control, secondary control and tertiary control conduct global adjustment by the measurement in microgrid, and some control targets which cannot be met locally are achieved by communication. In addition, structure of local control can be simplified and control structure of microgrid could be standardized by hierarchical control. This dissertation which is supported by Special Fund of the National Basic Research Program of China (973Program) covers four aspects:local control of DGs, reactive power sharing enhancement based on secondary control, power oscillations suppression based on secondary control and economic operation of microgrid. The main content of this dissertation is as follows:
     (1)According to architecture of microgrid and models of DGs, the primary control strategy which coordinates DGs with different frequency regulation modes is proposed, and a microgrid containing energy storage, diesel generator, wind power generation and photovoltaic power generation can operate under the primary control. By average modeling technique, controllable power electronic devices could be transformed into combination models of controlled voltage source and controlled current source, simulations that contains several DG models are accelerated. Furthermore, the proposed control strategy is verified under circumstances such as power fluctuation of photovoltaic, load variation and switch between grid-connected mode and island mode.
     (2)In order to deal with uneven sharing of reactive power in classic droop control, mechanism of reactive power sharing is analyzed from the aspect of droop gain, load voltage and line impedance characteristics. By power information of DGs that is uploaded to the microgrid central controller(MGCC), a reactive control strategy based on secondary control is constructed. Potential functions which have the objective of reactive power sharing and deviation of output voltage at no-load are established in the proposed method. MGCC centrally regulates output voltage at no-load of DGs via potential functions, and reactive power sharing among distributed generation units is effectively improved. The classical structure of droop control need not be changed under secondary control, and communication between DGs and MGCC is needed. Furthermore, the magnitude of circulation can be quantified by the concept of circulating normalised reactive power, circulation characteristics and circulation suppression are tested under different load conditions.
     (3)Due to the presence of single-phase DGs and load in microgrid, unsymmetrical voltage in a three-phase system causes100-Hz power oscillations of DGs. By analyzing the mechanism of the active and reactive power oscillations, Analytic formula of power oscillations is firstly derived, and the impact of positive and negative sequence electrical quantities on power oscillations is revealed. Accordingly, a secondary control is proposed to control power oscillations. An optimization model is built following optimization theory. The model aims at minimizing the amplitude of oscillations, subject to constraints which include power oscillations rate and power reference of PQ control. By optimized results, the secondary control can simultaneously reduce active and reactive oscillations while reactive oscillations are large. Therefore, the indexes of oscillations amplitude and oscillations rate reach the depth optimization.
     (4) According to optimized results, the economic operation control adjusts power given values of each DG and can be considered as superior control strategy of microgrid. Due to large proportion of intermittent energy contained in microgrid, the power generation plan is difficult to draw up because of randomness fluctuation. An economic operation model of microgrid based on chance constrained programming is put forward, and charge-discharge constraint of energy storage, reserve capacity constraint and power balance constraint are considered in the model. In addition, a probabilistic model based on cloud amount and geographical factors is adopted for photovoltaic generation, randomness fluctuations is truly reflected. On the basis of sequence operation theory, probability sequences are calculated by probability distribution of wind power generation and photovoltaic power generation, the chance constraints of the proposed model can be transformed into equivalence class of deterministic constraints. Accordingly, the proposed model is compatible with solvers such as TOMLAB, the results of the scheme are stable and can be quickly calculated compared with stochastic simulations. Futhermore, in order to investigate the rationality of probability sequence, the impact of different discretized steps on results is discussed and the proposed method is verified.
引文
[1]上海航运交易所信息部.3月国际原油运输市场评述[J].中国船检,2012,(4):69.
    [2]王玮,汤大钢,刘红杰,等.中国PM2.5污染状况和污染特征的研究[J].环境科学研究,2000,13(1):1-5.
    [3]严于龙.调整能源结构迎接低碳时代[J].宏观经济管理,2010,(3):37-39.
    [4]Collmayor D, Paget M, Lightner E. Future intelligent power grids:analysis of the vision in the European Union and in the United States[J].Energy Policy,2007, (4): 2453-2465.
    [5]Dugan R C, McDermott T E. Distributed generation[J].IEEE Industry Application Magazine,2002,8(2):19-25.
    [6]Rahman S. Green Power:what is it and where we can find it?[J].IEEE Power and Energy Magazine,2003,1(1):30-37.
    [7]Pepermans G, Driesen J, Haeseldonckx D. Distributed generation:definition, benefits and-issues[J].Energy Policy,2005,33(6):787-798.
    [8]丁明,王敏.分布式发电技术[J].电力自动化装备,2004,24(7):31-36.
    [9]Ackermann T, Andersson G, Soder L. Distributed generation:a definition[J].Electric Power Systems Research,2001,57(3):195-204.
    [10]Pudjianto D, Ramsay C, Strbac G. Virtual power plant and system integration of distributed energy resources[J]. IET Renewable Power Generation,2007,1(1):10-16.
    [11]王敏,丁明.考虑分布式电源的静态电压稳定概率评估[J].中国电机工程学报,2010,30(25):17-22.
    [12]肖朝霞,方红伟.含多分布式电源的微网暂态稳定分析[J].电工技术学报,2011,26(S1):253-261.
    [13]韩民晓,刘迅.分布式电源并网中电能质量相关规范探讨[J].电力设备,2007,8(1):57-60.
    [14]于建成,迟福建,徐科,等.分布式电源接入对电网的影响分析[J].电力系统及其自动化学报,2012,24(1):138-141.
    [15]韩民晓,崔军力,姚蜀军,等.大量风电引入电网时的频率控制特性[J].电力系统自动化,2008,32(1):29-33.
    [16]黄伟,雷金勇,夏翔,等.分布式电源对配电网相间短路保护的影响[J].电力系统自动化,2008,32(1):93-97.
    [17]李春艳,孙元章,陈向宜.构建大电网安全防御体系——欧洲大停电事故的分析 及思考[J].电力系统自动化,2007,31(1):4-8.
    [18]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174.
    [19]撖奥洋,张哲,尹项根,等.双馈风力发电系统故障特性及保护方案构建[J].电工技术学报,2012,27(4):233-239.
    [20]鲁宗相,王彩霞,闵勇.微电网研究综述[J].电力系统自动化,2007,31(9):100-107.
    [21]韩奕,张东霞,胡学浩,等.中国微电网标准体系研究[J].电力系统自动化,2010,34(1):69-72.
    [22]Marnay C, Bailey O C. The CERTS microgrid and the future of the microgrid[EB/OL].[2006-11-01]http://certs.lbl..gov/pdf/55281.pdf.
    [23]Lasseter R H, Eto J H, Schenkman B, et al. CERTS microgrid laboratory test bed[J].IEEE Trans. on Power Delivery,2011,26(1):325-332.
    [24]Robert L, Joe E. Value and technology assessment to enhance the business case for the CERTS microgrid[EB/OL].http://certs.1b1.gov/pdf/microgrid-final.pdf.
    [25]Eduardo A.Santa Rita jail microgrid project[EB/OL]. [2012-7-30]http://der.1b1.gov/ microgrids-lbnl/santa-rita-jail.
    [26]European Commission. Strategic research agenda for Europe's Electricity Networks of the Future [EB/OL]. http://www.sm.Artgrids.eu/documents/sra/sra_final version.pdf.
    [27]Sanchez M. Overview of microgrid research and development activities in the EU[EB/OL].[2006-10-23]. http://www.energy.ca.gov/pier/conference+seminars/ 2006-06-23_microgrid_montreal/presentations/Presentation_11_Manuel-Sanchez.pdf.
    [28]Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for microgrid control[J]. IEEE Trans. on Power systems,2005,20(3):1447-1455.
    [29]Lagorse J, Simoes M G, Miraoui A. A multiagent fuzzy-logic-based energy management of hybrid systems[J]. IEEE Trans. on Industry Applications,2009, 45(6):2123-2129.
    [30]Dimeas A L, Hatziargyriou N D. Multi-agent reinforcement learning for microgrids[A]. IEEE Power and Energy Society General Meeting [C]. IEEE Press, 2010:1-8.
    [31]Belfkira R, Zhang L, Barakat G. Optimal sizing study of hybrid wind/PV/diesel power generation unit[J]. Solar Energy,2011,85(1):100-110.
    [32]Morozumi S. Micro-grid demonstration projects in Japan[A]. International Conference on IEEE Power Conversion[C]. IEEE Press,2007:635-642.
    [33]Morozumi S. Overview of Micro-grid research and development activities in Japan[EB/OL][2006-10-23].http://www.energy.ca.gov/pier/conferences+seminars/20 06-06-23_microgrids_montreal/presentations/Presentation_4_Satoshi_Morozumi.pdf.
    [34]Katiraei F. Overview of the Microgrid research and development activities in Canada[A].2007 Symposium on Microgrids[C]. Nagoya,2007.
    [35]杨占刚.微网实验系统研究[D].天津:天津大学,2011.
    [36]丁明,杨为,张颖媛.基于IEC61970标准的微网EMS平台设计[J].电力自动化设备,2009,29(10):16-20.
    [37]Ito Y, Zhong Qing-yang, Akagi H. DC microgrid based distribution power generation system[A]. International Conference on Power Electronics and Motion Control[C]. IEEE Press,2004:1740-1745.
    [38]吴卫民,何远彬,耿攀.直流微网研究中的关键技术[J]电工技术学报,2012,27(1):98-105,113.
    [39]Chakraborty S, Simoes M G Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid[J]. IEEE Trans. on Energy Conversions, 2009,24(3):673-682.
    [40]Chakraborty S, Weiss M D, Simoes M G Distributed intelligent energy management system for a single-phase high-frequency ac microgrid[J]. IEEE Trans. on Industrial Electronics,2007,54(1):97-109.
    [41]孙景钌.分布式发电条件下配电系统保护原理研究[D].天津:天津大学,2010.
    [42]姚勇,朱桂萍,刘秀成.电池储能系统在改善微电网电能质量中的应用[J].电工技术学报,2012,27(1):85-89.
    [43]周龙华,舒杰,张先勇,等.分布式能源微网电压质量的控制策略研究[J].电网技术,2012,36(10):17-22.
    [44]杜威,姜齐荣,陈蛟瑞.微电网电源的虚拟惯性频率控制策略[J].电力系统自动化,2011,35(23):26-31,36.
    [45]供电学设委员会(日).电力系统的分层控制系统[M].北京:电力工业出版社,1980:1-20.
    [46]洪宪平.电网AGC分层控制[J].中国电力,2000,33(9):62-66.
    [47]胡伟,王淑颖,徐飞.基于分层控制的AGC与AVC自动优化协调控制策略[J].电力系统自动化,2011,35(15):40-45.
    [48]吴军,涂光瑜,罗毅.电力系统分层紧急负荷控制[J].电力系统自动化,2006,30(20):26-31.
    [49]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [50]Lopes J A P, Moreira C L, Madureira A. Defining control strategies for MicroGrids islanded operation[J]. IEEE Trans. on Power System,2006,21 (2):916-924.
    [51]Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgrids operation[J].IEEE Trans, on Energy Conversion,2008,23(1):241-248.
    [52]Guerrero J M, Hang L, Uceda J. Control of distributed uninterruptible power supply systems[J]. IEEE Trans, on Industrial Electronics,2008,55(8):2845-2859.
    [53]郜登科,姜建国,张宇华.使用电压-相角下垂控制的微电网控制策略设计[J]电力系统自动化,2012,36(5):29-34.
    [54]程军照,李澍森,吴在军,等.微电网下垂控制中虚拟电抗的功率解耦机理分析[J].电力系统自动化,2012,36(7):27-32.
    [55]De D, Ramanarayanan V. Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads[J]. IEEE Trans, on Power Electronics,2010,25(12): 3015-3025.
    [56]Mohamed Y, El-Saadany E F. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids[J]. IEEE Trans, on Power Electronics,2008,23(6):2806-2816.
    [57]Cheng P T, Chen C A, Lee T L, et al. A cooperative imbalance compensation method for distributed-generation interface converters [J]. IEEE Trans, on Industry Applications,2009,45(2):805-815.
    [58]吕志鹏,罗安,荣飞.电网电压不平衡条件下微网PQ控制策略研究[J].电力电子技术,2010,44(6):71-74.
    [59]彭双剑.微网运行和电能质量控制研究[D].长沙:湖南大学2011.
    [60]Jones C E. Local control of MicroGrids using energy storage[D]. UK:University of Manchester,2007.
    [61]Qing-Chang Zhong, George W. Synchronverters:inverters that mimic synchronous generators[J]. IEEE Trans, on Industrial Electronics,2011,58(4):1259-1267.
    [62]Ahn Seon-Ju, Park Jin-Woo, Chung Il-Yop, et al. Power-sharing method of multiple distributed generators considering control modes and configurations of a microgrid[J]. IEEE Trans, on Power Delivery,2010,25(3):2007-2016.
    [63]马力.混合系统微网控制策略分析[J].电力系统及其自动化学报,2010,22(6):104-108.
    [64]姚骏,陈西寅,廖勇.抑制负序和谐波电流的永磁直驱风电系统并网控制策略[J].电网技术,2011,35(7):29-35.
    [65]黄如海,谢少军.基于比例谐振调节器的逆变器双环控制策略研究[J].电工技术学报,2012,27(2):77-81.
    [66]Weiss G, Zhong Q C, Green T C, et al. H∞ repetitive control of DC-AC converters in microgrids [J]. IEEE Trans, on Power Electronics,2004,19(1):219-230.
    [67]曾正,赵荣祥,杨欢.带隔离变压器的并网逆变器的降阶模型及滑模变结构控制[J].电力系统自动化,2012,36(3):47-53.
    [68]Yasser A R, Amr A R. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems[J]. IEEE Trans. on Smart Grid,2011,2(2):352-362.
    [69]Guerrero J M, Vasquez J C, Matas J, et al. Control strategy for flexible microgrid based on parallel line-interactive UPS systems[J].IEEE Trans. on Industrial Electronics,2009,56(3):726-736.
    [70]Mehrizi S A, Iravani R. Potential-function based control of a microgrid in islanded and grid-connected modes[J]. IEEE Trans. on Power Systems,2010, 25(4):1883-1891.
    [71]Savaghebi M, Jalilian A R, Vasquez J C, et al. Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid[J]. IEEE Trans. on Smart Grid,2012,3(2):797-807.
    [72]Madureira A, Moreira C, Lopes J A P. Secondary load-frequency control for microgrids in-islanded operation[A]. International Conference on International Renewable Energy Power Quality[C]. ICREPQ,2005.
    [73]Mehrizi S A, Iravani R. Online set point adjustment for trajectory shaping in microgrid applications[J]. IEEE Trans. on Power Systems,2012,27(1):216-223.
    [74]Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization[J]. IEEE Trans. on Industrial Electronics,2011,58(1):158-172.
    [75]王毅,张丽荣,李和明,等.风电直流微网的电压分层协调控制[J].中国电机工程学报,2013,33(4):16-24.
    [76]时珊珊,鲁宗相,闵勇,等.微电网孤网运行时的频率特性分析[J].电力系统自动化,2011,35(9):36-41.
    [77]Tremblay O, Dessaint A L, Dekkiche A LA generic battery model for the dynamic simulation of hybrid electric vehicles[A]. Vehicle Power and Propulsion Conference[C].IEEE Press,2007:284-289.
    [78]黄胜利.微电网运行模式的无缝切换技术研究[D].北京:中国科学院研究生院,2008.
    [79]Villalva M G, Gazoli J R, Filho E R. Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Trans. on Power Electronic,2009, 24(5):1198-1208.
    [80]Celik A N, Acikgoz N. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four and five-parameter models[J].Applied Energy,2007,84(1):1-15.
    [81]张超,何湘宁.短路电流结合扰动观察法在光伏发电最大功率点跟踪控制中的应用[J].中国电机工程学报,2006,26(20):98-102.
    [82]Esram T, Chapman P L. Comparion of photovoltaic array maximum power point tracking techniques[J].IEEE Trans. on Energy Conversion,2007,22(2):439-449.
    [83]Yang Chen, Smedley K M. A cost-effective single-stage inverter with maximum power point tracking[J].IEEE Trans. on Power Electronics,2004,19(5):1289-1294.
    [84]de Brito M, Junior L, Sampaio L, et al. Evaluation of the main MPPT techniques for photovoltaic applications[J]. IEEE Trans. on Industrial Electronics,2013, 60(3):1156-1167.
    [85]王成山,高菲,李鹏,等.电力电子装置典型模型的适应性分析[J].电力系统自动化,2012,36(6):63-68.
    [86]王智冬,向孟奇,王永甲.基于EMTP-RV的中俄直流背靠背工程交流操作过电压研究[J].东北电力大学学报,2007,27(1):57-61.
    [87]唐西胜,邓卫,齐智平.基于储能的微网并网/离网无缝切换技术[J].电工技术学报,2011,26(s1):279-284.
    [88]王先为,卓放,杨美娟.交直流微网PCC无缝切换控制策略研究[J].电力电子技术,2012,46(8):1-3.
    [89]Guerrero J M, de Vicuna L G, Matas J, et al.A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J].IEEE Trans. on Power Electronics,2004,19(5):1205-1213.
    [90]Engler Alfred. Applicability of droops in low voltage grids[J].DER Journal,2005, (1):1-5.
    [91]Tuladhar A, Hua Jin, Unger T, et al. Control of parallel inverters in distributed AC power systems with consideration of line impedance effect[J].IEEE Trans. on Industrial Applications,2000,36(1):131-138.
    [92]Guerrero J M, Matas J, Garcia de V L, et al. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance[J]. IEEE Trans. on Industrial Electronics,2007,54(2):994-1004.
    [93]De B K, Bolsens B, Van den K J, et al. A voltage and frequency droop control method for parallel inverters[J].IEEE Trans. on Power Electronics,2007, 22(4):1107-1115.
    [94]Rokrok E, Golshan M E H. Adaptive voltage droop scheme for voltage source converters in an islanded multibus microgrid[J].IET Generation, Transmission & Distribution,2010,4(5):562-578.
    [95]俞辉,王永骥,程磊.稳定的有领航者的多移动agent群集运动控制[J].华中科技大学学报(自然科学版),2005,33(8):56-58.
    [96]杨树勋,于洁,陶庆荣.关于flocking的综述[J].控制理论与应用,2007,26(9):10-12.
    [97]肖本贤,余雷,李善寿,等.逃逸人工势场法局部极小值策略的研究[J].系统仿真学报,19(19):4495-4503.
    [98]Mehrizi-Sani A, Iravani R. On the educational aspects of potential functions for the system analysis and control[J]. IEEE Trans. on Power Systems,2011, 26(2):878-885.
    [99]Li Zhongliang, Sun Xudong, Chai jianyun. Proportional power sharing control for parallel-connected inverters[A]. International Conference on IEEE Electric Utility Deregulation and Restructuring and Power Technologies[C]. IEEE Press, 2011:1647-1651.
    [100]SavaghebI M, Jalilian A, Vasquez J C, et al. Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid[J]. IEEE Trans. on Smart Grid,3(2):797-807.
    [101]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制[J].中国电机工程学报,2008,28(18):36-41.
    [102]杨耿杰.电力系统不对称计算[M].北京:中国电力出版社,2008:1-12.
    [103]Moran L, Ziogas P, Joos G. Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions[J].IEEE Trans. on Industry Application,1992,28(6):1286-1293.
    [104]Sannino A, Bollen M, Svensson J. Voltage tolerance testing of three-phase voltage source converters [J]. IEEE Trans. on Power Delivery,2005,20(2):1633-1639.
    [105]Yazdani A, Iravani R.A unified dynamic model and control for the voltage sourced converter under unbalanced grid conditions[J]. IEEE Trans. on Power Delivery, 2006,21(3):1620-1629.
    [106]Song H, Nam K. Dual current control scheme for PWM converter under unbalanced input voltage conditions [J]. IEEE Trans. on Industry Electronic,1999,46(5):953-959.
    [107]Etxeberria-Otadui I, Viscarret U, Caballero M, et al. New optimized PWM VSC control structures and strategies under unbalanced voltage transients[J]. IEEE Trans. on Industrial Electronics,2007,54(5):2902-2914.
    [108]Wang F, Duarte J L, Hendrix M A M. Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults[J].IET Generation, Transmission & Distribution,2010,4(8):905-916.
    [109]Rodriguez P, Timbus A V, Teodorescur, et al. Flexible active power control of distributed power generation systems during grid faults[J]. IEEE Trans. on Industry Electronic,2007,54(5):2583-2592.
    [110]Awad H, Svensson J, Bollen M J. Tuning software phase-locked loop for series-connected converters[J]. IEEE Trans. on Power Delivery,2005,20(1):300-308.
    [111]Jouanne A, Banerjee B. Assessment of voltage unbalance[J]. IEEE Trans. on Power Delivery,2001,16(4):782-790.
    [112]Rioual P, Pouliquen H, Louis J P. Regulation of a P WM rectifier in the unbalanced network state using a generalized model [J].IEEE Trans. on Power Electronics, 1996, 11(3):495-502.
    [113]孙耀杰,康龙云,史维祥,等.分布式电源中最佳蓄电池容量的机会约束规划[J].系统仿真学报,2005,17(1):41-44.
    [114]Hawkes A D, Leach M A. Modelling high level system design and unit commitment for a microgrid[J].Applied Energy,2009,86(7/8):1253-1265.
    [115]Mohamed F A, Koivo H N. System modeling and online optimal management of MicroGrid using mesh adaptive direct search [J].International Journal of Electrical Power & Energy System,2010,32(5):398-407.
    [116]Chen C S, Duan S X, Cai T, et al. Smart energy management system for optimal microgrid economic operation[J]. IET Renewable Power Generation,2011, 5(3):258-267.
    [117]Hernandez-Aramburo C A, Green T C, Mugniot N. Fuel consumption minimization of a microgrid[J].IEEE Trans. on Industry Applications,2005,41(3):673-681.
    [118]Chen S X, Gooi H B. Sizing of energy storage system for microgrids[J]. IEEE Trans. on Smart Grid,2012,3(1):142-151.
    [119]徐立中,杨光亚,许昭,等.考虑风电随机性的微电网热电联合调度[J].电力系统自动化,2011,35(9):53-60.
    [120]刘小平,丁明,张颖媛,等.微网系统的动态经济调度[J].中国电机工程学报,2011,31(31):77-84.
    [121]Karki R, Hu P, Billinton R. A simplified wind power generation model for reliability evaluation[J]. IEEE Trans. on Energy Conversion,2006,21(2):533-540.
    [122]Xian Liu Wilsun Xu. Economic load dispatch constrained by wind power availability: a here-and-now approach[J]. IEEE Trans. on Sustainable Energy,2010,1(1):2-8.
    [123]王金奎.日总辐射及逐时辐射模型的适应性分析[D].西安:西安建筑科技大学,2006.
    [124]赵东.中国太阳能长期变化及计算方法研究[D].南京:南京信息工程大学,2009.
    [125]Gopinathan K K. Estimating the diffuse fraction of hourly global solar radiation in southern Africa[J]. Sustainable Energy,1989,7(1):39-45.
    [126]Hollands K G T, Huget R G. Probability density function for the clearness index with applications [J]. Solar Energy,1983,30(3):195-209.
    [127]Tina G, Gagliano S, Raiti S. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment J]. Solar Energy,2006,80(5):578-588.
    [128]Atwa Y M, El-Saadany E F, Salama M M, et al. Adequacy evaluation of distribution system including wind/solar DG during different modes of operation[J]. IEEE Trans. Power Systems,2011,26(4):1945-1952.
    [129]康重庆,庄彦,胡江溢,等.售电市场中售电量的风险分析[J].中国电机工程学报,2009,29(19):78-84.
    [130]康重庆,夏清,徐玮.电力系统不确定性分析[M].北京:科学出版社,2011:118-152.
    [131]徐玮,康重庆,夏清,等.序列运算离散化过程中的误差成因及补偿[J].清华大学学报(自然科学版),2009,49(1):17-20.
    [132]刘宝碇,彭锦.不确定理论教程[M].北京:清华大学出版社,2005.
    [133]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,24(6):129-137.
    [134]王锐,顾伟,吴志.含可再生能源的热电联供型微网经济运行优化[J].电力系统自动化,2011,35(8):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700