用户名: 密码: 验证码:
一种变参数螺旋槽深孔麻花钻及其钻削实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深孔加工在通用机械、汽车制造、航空航天、国防、石油、矿山、农业机械和工程机械等诸多领域有着广泛的应用。深孔加工是一种半封闭的加工方式,具有切削热难以散发,排屑困难,工艺系统刚性差,切削效果不理想等特点,被认为是最难的金属切削问题之一。由于深孔钻削技术难度大,在低端市场,国内用户一般使用抛物线型深孔麻花钻,而且采用分级进给方式进行加工,效率很低;而深孔加工领域的高端市场一直被国外厂商占领。随着国内机械制造业的不断发展,刀具技术的不断成熟,一些关系到国家经济命脉的关键性领域,特别是汽车制造业,对自主开发国产高档深孔麻花钻的呼声越来越高。本文通过理论研究、数值仿真以及试验研究等手段,对深孔加工麻花钻的螺旋槽槽型及钻尖型式进行优化,提出了变参数螺旋槽平面后刀面型深孔麻花钻结构设计的思路,并对新型深孔钻的失效机理和切削力模型进行了研究。本文的主要研究内容有:
     (1)对变参数螺旋槽深孔麻花钻的数学模型及精确三维建模方法进行了研究。通过对深孔钻削机理的研究,提出了变参数螺旋槽结构型式。应用无瞬心包络原理,分析了砂轮加工变参数螺旋槽的运动过程,推导出了变参数螺旋槽深孔麻花钻的数学模型,并从理论上证明了新型深孔麻花钻的结构特点。基于B样条曲面插值算法,在UG中建立了变参数螺旋槽的三维实体模型,验证了模型的精确性。
     (2)对变参数螺旋槽深孔麻花钻进行了结构优化设计。基于变参数螺旋槽的特性,设计了螺旋槽的横截面形状。将正交试验设计方法与数值仿真手段相结合,对钻尖关键结构参数进行了优选和改进,并进行了实验验证,确定了变参数螺旋槽结构深孔麻花钻的关键钻尖结构参数。
     (3)从钻削力、被加工孔表面质量及刀具失效形式三方面探讨了深孔钻削机理。通过切削力对比实验论证了新型深孔麻花钻的变参数螺旋槽结构,有助于减小深孔加工的钻削力,提高麻花钻钻削稳定性。通过孔粗糙度和孔径扩大量测试,讨论了切削参数和芯厚增量对两者的影响。通过灰口铸铁、球磨铸铁和合金钢等材料的耐磨损实验研究,初步探讨新型深孔麻花钻的失效机理。
     (4)通过正交钻削实验设计,采集了不同钻削实验方案的钻削力数据,建立了变参数螺旋槽深孔麻花钻钻削45钢和LC4铝合金的钻削力数学模型,试验验证了切削力数学模型的可靠性。通过修正系数的方法建立了LC4铝合金基于45钢的钻削力数学模型,并验证了修正系数方法的可靠性。用同样的方法推导出了HT300和42CrMo基于45钢的切削力数学模型,分析了加工不同材料时钻削力相对于加工45钢钻削力的差异。
Deep-hole machining has been widely used in various areas such as aerospace,automobile manufacturing, national defense, general machinery, petroleum, miningenterprises, agricultural machinery and engineering machinery. Deep hole drillingprocess is conducted in closed or semi-closed situations, which brings about the mostdifficult problems of metal cutting, such as difficulty in scattering the heat in metalcutting and clearing the cutting chips, poor rigidity of the metal cutting operation system,and unsatisfactory cutting effects. Due to technical difficulties of deep-hole drilling, inthe low-end market, domestic users generally use parabolic type deep-hole drill, andapply the graded feeding mode, so the drilling efficiency is very low; while the high-endmarket has been occupied by foreign firms. With the continuous development of thedomestic machinery manufacturing and tool technology, the voice of independentlydeveloping home-made high-grade deep hole twist drill is louder and louder, in the keyareas of pillar of the national economy, especially in the automobile manufacturingindustry.
     In this dissertation, optimization of the spiral groove and the forms of drill pointwas carried out, and a structural design method for the new type of deep-hole twist drillwith variable parameters spiral groove and plane flank was put forward by means oftheoretical research, numerical simulation and experimental research. Then the failuremechanism and the cutting force model of deep hole drilling were studied. The mainwork is as follows:
     (1) The mathematical model of a new type of deep hole twist drill with variableparameters spiral groove and precise3D modeling method were studied. Through theinvestigation of cutting mechanism of the deep hole drilling, the structure of variableparameters spiral groove was designed. Application of non-instantaneous pole envelopeprinciple, the movement process of the grinding wheels’ processing variable parameterspiral groove was analyzed, and the mathematic model of the deep-hole twist drill withvariable parameters spiral groove was set up. And then the structural characteristics ofthe new type of deep hole twist drill was theoretically proved. Based on the algorithm ofB spline surface interpolation, the method of establishing the3-D solid model of thevariable parameter spiral groove was found by applying UG, and the accuracy of3-Dmodel was verified.
     (2) Optimization for the structure of a new type of deep hole twist drill withvariable parameters spiral groove was carried out. Based on the characteristics ofvariable parameters spiral groove, the shape of cross section of the spiral groove wasdesigned. Through combining the orthogonal test design method with numericalsimulation method, key structure parameters of drill point were optimized and improved,and the best design was verified and determined by experiment.
     (3) The deep hole drilling mechanism was discussed from the aspects of drillingforce, the machining quality of hole surface and tool failure type. Firstly,by contrastexperiments, that variable parameters spiral groove structure of the new type ofdeep-hole twist drill could decrease cutting force and improve drilling stability wereproved. Secondly, through the hole roughness and aperture expansion test, the influenceof cutting parameters and the core thickness increment on the two was discussed. Thirdly,through the experimental research on the wear resistance of the new type of deep-holetwist drill in machining gray cast iron, nodular cast iron and alloy steel and othermaterials, the failure mechanism was preliminarily studied.
     (4) By using the method of orthogonal experiment, and using the cutting force datacollected in different drilling experiment scheme, the drilling force mathematical modelof the new type of deep-hole twist drill with variable parameters spiral groove cutting45steel and LC4aluminum alloy was established, and then its reliability was verified. Bythe methods of correction coefficient, the cutting force mathematical model of LC4basedon the cutting force of45steel was established and then verified, which proved thereliability of the method of correction coefficient. Through the same methods, the cuttingforce mathematical models of HT300and42CrMo were obtained, and the differencebetween cutting force in drilling different materials and that in drilling45steel wasanalysed.
引文
[1]王峻.现代深孔加工技术.哈尔滨:哈尔滨工业大学出版社,2005.
    [2] BRINKSMEIER E. Prediction of tool fracture in drilling.Ann CIRP,1990,39(1):97-105.
    [3]刘钢,孙首群,凌卫青,等.由小直径深孔刀具的革新谈创新设计.中国机械工程,2001,12(11):1290-1293.
    [4] Abele E.,Ellermeier A.,Hohensteing J.,et al. Tool length influence on wearbehavior of twisted carbide drills. Production Engineering,2007,1(1):51-56.
    [5]王世清.深孔加工技术.西安:西北工业大学出版社,2003.
    [6]樊铁镔.深孔加工技术综述.工具技术,1994,28(5):2-5.
    [7]王丽,田中,武司.MQL深孔钻削中关键因素的最适化研究.机床与液压,2007,35(11):45-47.
    [8]陈增强,王安辉,王文轩.MQL深孔钻削在曲轴生产线上的应用.汽车技术,2008,(3):49-51.
    [9]李通,彭海.MQL技术在内排屑深孔钻削加工中的应用.新技术新工艺,2010,(10):14-16.
    [10] Heinemann R.,Hinduja S.,Barrow G.,et al. Effect of MQL on the tool life ofsmall twist drills in deep-hole drilling. International Journal of Machine Tools andManufacture,2006,46(1):1-6.
    [11] Kim D. W.,Lee Y. S.,Park M. S.,et al. Tool life improvement by peck drillingand thrust force monitoring during deep-micro-hole drilling of steel. InternationalJournal of Machine Tools and Manufacture,2009,49(3):246-255.
    [12]张平宽,王慧霖.微小深孔的超低频振动切削机理研究.农业机械学报,2002,33(2):102-104.
    [13]刘战锋,杨立合.深孔超声轴向振动钻削装置的设计与研究.机床与液压,2007,35(3):56-58.
    [14]王立平,杨叔子,王立江.振动钻削工艺的研究概况和发展前景.工具技术,1999,33(6):3-7.
    [15]李信能.麻花钻后面平面磨法研究.工具技术,1992:26(5),46-48.
    [16] Salama A. S.,Elsawy A. H. The dynamic geometry of a twist drill point. Journalof Materials Processing Technology,1996,56:45-53.
    [17] Galloway D. F. Some experiments on the influence of various factors on drillperformance. Trans ASME,1957,79:191-231.
    [18] Fujii S.,DeVries M. F.,Wu S. M. An analysis of drill geometry for optimum drilldesign by computer,part I:drill geometry analysis. Journal of Engineering forIndustry,1970,92(3):647-656.
    [19] Fujii S.,DeVries M. F.,Wu S. M. An analysis of drill geometry for optimum drilldesign by computer,part II:computer-aided design. Journal of Engineering forIndustry,1970,92(3):657-666.
    [20] Armarego E. J. A.,Rotenberg A. An investigation of drill point sharpening by thestraight lip conical grinding method-I:basic analysis. International Journal ofMachine Tool Design and Research,1973,13(3):155-164.
    [21] Armarego E. J. A.,Rotenberg A. An investigation of drill point sharpening by thestraight lip conical grinding method-II:A criterion for selecting a solution.International Journal of Machine Tool Design and Research,1973,13(3):165-182.
    [22]林丞,曹正铨,李粤军.钻尖刃磨参数的计算机分析(英文).湖南大学学报(自然科学版),1985,12(4):1-11.
    [23]李粤军,曹正铨,林丞.曲线刃锥面钻尖的数学模型及其计算机辅助设计.中国高校金属切削研究会第三届年会科研论文集,长沙:湖南大学出版社,1987,136-142.
    [24]林丞,杨维克.锥面麻花钻横刃廓形及其几何角度分析.湖南大学学报(自然科学版),1989,16(4):13-22.
    [25]康德纯,Armarego E. J. A.麻花钻直线刃圆锥面刃磨法的数学建模.大连理工大学学报,1998,38(3):290-295.
    [26]康德纯.直线刃钻头后刀面可加工型研究.大连理工大学学报,1998,38(S1):S88-S93.
    [27]李信能,陈鼎昌.用于钻头的刃磨运动合成方法研究.航空学报,1994,15(11):1403-1407.
    [28]陈五一,陈鼎昌.虚拟钻尖刃磨机的结构设计.机械设计,1998,(6):22-24.
    [29]吕彦明,樊锐,陈五一,等.钻尖数控刃磨中的尾隙角研究.北京航空航天大学学报,1999,25(4):462-466.
    [30]江洪道,吕彦明,陈五一,等.麻花钻钻尖锥面刃磨参数优化求解.北京航空航天大学学报,2000,26(1):99-102.
    [31]吕彦明.锥面刃磨可展直纹面与后刀面刃磨.工具技术,2003,37(11):40-43.
    [32] Ernst H.,Haggerty W. A. The spiral point drill-a new concept in drill pointgeometry. Transactions of the ASME,1958,80(5):1059-1072.
    [33] Haggerty W. A.,Ernst H. The spiral point drill-self-centering drill point geometry.ASTE Paper,1958,(101):58-68.
    [34] Lin C.,Kang S.M.,Ehmann K. F. Helical micro-drill point design and grinding.ASME Journal of Engineering for Industry,1995,117(3):277-287.
    [35] Chyan H.C.,Ehmann K. F. Development of curved helical micro-drill pointtechnology for micro-hole drilling. Mechatronics,1998,8:337-358.
    [36]曹正铨,陈花荣.变螺距螺旋面钻尖的数学模型及其刃磨干涉.湖南大学学报(自然科学版),1992,19(6):1-7.
    [37]吕彦明,陈五一,陈鼎昌.复杂螺旋面钻尖刃磨原理及实现.中国机械工程,2000,11(3):292-294.
    [38]吕彦明,陈五一,陈鼎昌.平面螺旋运动包络特性的研究.工具技术,2002,36(12):29-31.
    [39]陈友东,江洪道,陈五一,等.一种新型螺旋面钻尖数学模型.机械设计,2000,(8):25-28,50.
    [40]周志雄,袁建军,林丞.非共轴螺旋面微孔钻钻尖的数学模型.湖南大学学报(自然科学版),1999,26(3):30-33,106.
    [41]周志雄.一种新型钻头及其刃磨技术的研究.长沙:湖南大学,2000
    [42]周志雄,罗霞玉,杨军,等.非共轴螺旋面钻尖角度的求解.湖南大学学报(自然科学版),2001,28(3):32-36.
    [43]罗伯勋.麻花钻后刀面圆柱面刃磨法的几何分析.华中工学院学报,1985,13(2):93-98.
    [44]熊良山,师汉民,陈永浩.曲线刃钻头柱面后刀面的刃磨.中国机械工程,2007,18(10):1165-1192.
    [45]包进平,李超,粟合营,等.快速成型磨削原理与椭球面钻型的快速刃磨成型.机械加工工艺与装备,2005,(3):29-31.
    [46]李超,王珉,左敦稳.双曲面麻花钻数学模型及刃磨方法研究.中国机械工程,2003,14(14):1202-1204.
    [47]李超,王珉,左敦稳.麻花钻双曲面刃磨的数学模型及参数计算方法(英文).Transactions of Nanjing University of Aeronautics&Astronauts,2002,19(1):84-88.
    [48] Tsai W. D.,Wu S. M. A mathematical model for drill point design and grinding.Journal of Engineering For Industry,1979,101(8):333-340
    [49]熊良山,师汉民,陈永结.二次曲面钻头几何角度的统一模型.中国机械工程,2006,17(2):119-123
    [50] Kaldor S.,Rafael A. M.,Messinger D.On the CAD of profiles for cutters andhelical flutes-geometrical aspects. Annals of the CIRP,1988,37(1):53-56.
    [51] Ehmann K. F.,DeVries M. F. Grinding wheel profile definition for themanufacture of drill flutes. CIRP Annals-Manufacturing Technology,1990,39(1):153-156.
    [52] Sheth D. S.,Malkin S. CAD/CAM for geometry and process analysis of helicalgroove machining. CIRP Annals-Manufacturing Technology,1990,39(1):129-132.
    [53] Kang S. K.,Ehmann K. F.,Lin C. A CAD approach to helical groovemachining-I:mathematical model and model solution. International Journal ofMachine Tools&Manufacturing,1996,36(1):141-153.
    [54] Armarego E. J. A.,Kang D. Computer-aided modelling of the fluting process fortwist drill design and manufacture. CIRP Annals-Manufacturing Technology,1998,47(1):259-264
    [55] Armarego E. J. A.,Herath A. B. Predictive models for machining with multi-edgeform tools based on a generalised cutting approach. CIRP Annals-ManufacturingTechnology,2000,49(1):25-30.
    [56] Kang D.,Armarego E. J. A. Computer-aided geometrical analysis of the flutingoperation for twist drill design and production,part I:forward analysis andgenerated flute profile. Mach. Sci. Technol.,2003,7(2):221-248.
    [57] Kang D.,Armarego E. J. A. Computer-aided geometrical analysis of the flutingoperation for twist drill design and production,part II:backward analysis,wheelprofile and simulation studies. Mach. Sci. Technol.,2003,7(2):249-266
    [58]刘井玉,孙春华,刘华明.特种回转面铣刀螺旋槽的数控磨削模型及仿真.哈尔滨工业大学学报,1999,31(6):116-118.
    [59]孙春华,刘华明,任秉银.特种回转面刀具螺旋槽的通用几何模型.工具技术,2000,34(3):17-19.
    [60]周志雄,袁建军,林丞.微钻头螺旋槽的数学模型及其CAD方法.中国机械工程,2000,11(11):1284-1288.
    [61]钟罗杰,陈益瑞,关彪.一种由铣刀刃形求螺旋槽形状方法的探讨[J].湛江海洋大学学报,2001,21(4):59-62.
    [62]刘世瑶,耿芬然.深孔麻花钻的端截形及螺旋面的加工.河北冶金,2002,(4):27-31.
    [63]黄波,罗学科.应用标准砂轮加工刀具螺旋槽的特征线研究[J].组合机床与自动化加工技术,2006,(1):12-15.
    [64]曹昭展.加工钻头螺旋槽用砂轮的数学模型及其CAD系统.湖南大学,2006.
    [65]刘波,马立军.基于参数化设计的麻花钻头及其仿真验证.机械设计与制造,2009,(3):145-147.
    [66]刘彬.基于切屑卷曲、流出的麻花钻螺旋槽形优化方法的探索性研究.贵州大学,2006.
    [67]唐淳.变倾角变导程螺旋槽的数学建模和加工方法研究.大连理工大学,2006.
    [68]何云,薛湘鹰,栾正华,等.整体硬质合金麻花钻横向截形应用研究.工具技术,2006,40(3):68-70.
    [69]薛湘鹰.硬质合金麻花钻螺旋槽的研究.华中科技大学,2006.
    [70]倪志福,陈璧光.群钻—倪志福钻头.上海:科学技术出版社,1999,175-176
    [71]徐立.X型钻头—高性能钻削工具.工具技术,1995,29(4):12-15.
    [72]李信能.分裂钻尖的数学模型及刃磨方法.航空工艺技术,1992,(2):12-13.
    [73] Chen W. C.,Fuh K. H.,Wu C. F.,et al. Design optimization of a split-point drillby force analysis. Journal of materials processing technology,1996,58(2):314-322.
    [74]美国肯纳金属公司成都办事处.美国肯纳公司的SE钻头.工具技术,1998,32(5),45-46.
    [75]江西量具刃具厂.深孔麻花钻.中国专利:CN2036077U,1989-4-19
    [76]秦新毓.抛物线槽形钻头(深孔钻)和麻花钻的比较.工具技术,1992,26(5):30-32
    [77]钟立斌.硬质合金抛物线型钻头设计及应用.工具技术,1994,28(5):14-17.
    [78]三菱综合材料株式会社.钻头及其制造方法.中国专利:CN1618557A,2005-5-25
    [79]三菱综合材料株式会社.钻头.中国专利:CN101108425A,2008-1-23.
    [80]京特两合公司.深孔钻头.中国专利:CN101115579A,2008-1-30.
    [81] Oxford C. J. On the drilling of metals1-basic mechanics of the process.TransASME,1955,77(2):103-114.
    [82] Shaw M. C.,Oxford C.J. On the drilling of metals2-the torque and thrust ofdrilling.Trans ASME,1957,79(1):139-147
    [83] Kumar Pal A.,Bhattacharyy A.,Chandra Sen G. Investigation of the Torque indrilling ductile materials. International Journal of Machine Tool Design andResearch,1965,4(4):205-221.
    [84] Williams R. A. A study of the basic mechanics of the chisel edge of a twist drill.International Journal of Production Research,1970,8(4):325-343.
    [85] Hamade R. F.,Seif C. Y.,Ismail F. Extracting cutting force coefficients fromdrilling experiments. Int. J. Mach. Tools Manuf.,2006,46(3):387-396.
    [86] Koehler W. Analysis of the high performance drilling process:influence of shapeand profile of cutting edge of twist drills. J. Manuf. Sci. Eng.,2008,130(5).
    [87] Williams R. A. A study of the drilling process. J. Eng. Ind.,1974,96:1207-1215.
    [88] Armarego E. J. A.,Cheng C. Y. Drilling with flat rake face and conventional twistdrills-I:theoretical investigation. Int. J. Mach. Tools Manuf.,1972,12:17-35.
    [89] Armarego E. J. A.,Cheng C. Y. Drilling with flat rake face and conventional twistdrills-II:experimental investigation. Int. J. Mach. Tools Manuf.,1972,12:37-54.
    [90] Shaw M. C. Metal Cutting Principles. Oxford:Clarendon Press,1984.
    [91] Watson A. R. Drilling model for cutting lip and chisel edge and comparison ofexperimental and predicted results. I-initial cutting lip model. Int. J. Mach. ToolDes Res,1985,25(4):347-365.
    [92] Watson A. R. Drilling model for cutting lip and chisel edge and comparison ofexperimental and predicted results. II-reversed cutting lip model. Int. J. Mach.Tool Des Res,1985,25(4):367-376.
    [93] Watson A. R. Drilling model for cutting lip and chisel edge and comparison ofexperimental and predicted results. III-drilling model for chisel edge. Int. J. Mach.Tool Des Res,1985,25(4):377-392.
    [94] Wang J. L. Development of new drilling force models for improving drill pointgeometries. University of Michigan,1994.
    [95] Pirtini M.,Lazoglu I. Forces and hole quality in drilling. Int. J. Mach. ToolsManuf.,2005,45(11):1271-1281.
    [96] Guibert N.,Paris H.,Rech J. A numerical simulator to predict the dynamicalbehavior of the self-vibratory drilling head. Int. J. Mach. Tools Manuf.,2008,48(6):644-655.
    [97] Guibert N.,Paris H.,Rech J.,et al. Identification of thrust force models forvibratory drilling. Int. J. Mach. Tools Manuf.,2009,49(9):730-738.
    [98] Claudin C.,Poulachon G.,Lambertin M. Correlating between drill geometry andmechanical force in MQL conditions. Int. J. Mach. Sci. Technol.,2008,12(1):133-144.
    [99] Chen Y. Modeling for new drilling process development. University of Michigan,1999.
    [100] Strenkowski J. S.,Hsieh C. C.,Shih A.J. An analytical finite element techniquefor predicting thrust force and torque in drilling. Int. J. Mach. Tools Manuf.,2004,44(12-13):1413-1421.
    [101] Vijayaraghavan A,Dornfeld D. Automated drill modeling for drilling processsimulation. J. Computing and Information Science in Engineering,2007,7:276-283.
    [102] Singh I,Bhatnagar N.,Viswanath P. Drilling of uni-directional glass fiberreinforcement plastics:experimental and finite element study. Mater Des,2008,29:546-553.
    [103]黎正科,周志雄,黑大全,等.深孔麻花钻三维参数化设计及其优化.广西大学学报(自然科学版),2012,37(5):959-964.
    [104]胡仲勋,蔡逸玲,温松明,等.群钻钻削力研究(IV)-群钻钻削力预测模型.湖南大学学报,1996,23(2):74-77,83.
    [105]朱方来,叶仲新,陈育荣,等.钻削力数学模型.湖北汽车工业学院学报,1997,2(19):13-17.
    [106]白万民,贾培刚,白震平.深孔钻削时的力学特性分析.新技术新工艺,2000,(6):19-2.
    [107]练章华,倪军,林学文,等.任意形状钻头切削刃的受力预测模型.中国机械工程,2001,12(6):616-620.
    [108]董丽华,刘大昕.钻削力模型的建立及仿真.机械工程师,2003,(7):27-30.
    [109]曲海军,王贵成,朱云明,等.金属切削毛刺生成机理与预报技术研究进展.煤矿机械,2007,28(11):9-11.
    [110] Roukema J. C.,Altintas Y. Generalized modeling of drilling vibrations. Part I:Time domain model of drilling kinematics,dynamics and hole formation.International Journal of Machine Tools and Manufacture,2007,47(9):1455-1473.
    [111] Roukema J. C.,Altintas Y. Generalized modeling of drilling vibrations. Part II:Chatter stability in frequency domain. International Journal of Machine Toolsand Manufacture,2007,47(9):1474-1485.
    [112] Guo Y. B.,Dornfeld D. A.Finite element analysis of drilling burr minimizationwith a backup material. Trans. North Am. Manuf. Res Inst SME,1998,26:207-212.
    [113] Min S.,Dornfeld D. A.,Kim J.,et al. Finite element modeling of burr formationin metal cutting. Mach. Sci. Technol.,2001,5:307-322.
    [114]熊镇芹.深孔钻削孔轴线偏斜机理及纠偏方法研究.西安石油学院,1999.
    [115]高本河,郑力,李志忠,等.深孔钻削中孔轴线偏斜的纠偏理论与方法研究.兵工学报,2003,24(2):234-237.
    [116]胡凤兰,刘军安,魏华,等.深孔钻削中的孔轴线偏斜机理与控制方法.现代制造工程,2011,(7):73-77.
    [117]孔令飞,孙瑾,魏锋涛,等.基于稳健设计理论的深孔加工孔直线度研究.机电产品开发与创新,2007,20(5):178-180.
    [118]李言,孔令飞.振动切削深孔加工初始偏差对孔直线度误差的影响.机械工程学报,2012,48(13):167-173.
    [119] Zhang J. Z.,Chen J. C. Surface roughness optimization in a drilling operationusing the Taguchi design method. Mater Manuf. Process,2009,24(4):459-467.
    [120] Spur G.,Masuha J. R. Drilling with Twist Drills of Different Cross SectionProfiles. CIRP Ann-Manuf. Technol.,1981,30(1):31-35.
    [121] Chen W. C. Applying the finite element method to drill design based on drilldeformations. Finite Elements in Analysis and Design,1997,26(1):57-81.
    [122]万光珉,孙东明.高扭转刚度异形截面麻花钻的研究.昆明工学院学报,1991,1:41-49.
    [123]董黎敏,李强,王泽巍,等.螺旋刃刀具CAD中的有限元分析.工具技术,1999,(1):17-20.
    [124]谢大纲,赵清亮,袁哲俊,等.麻花钻刚度的有限元分析.中国机械工程,2001,12(z1):154-156.
    [125]曹秋霞,马国亮,赵建敏,等.有限元法在深孔钻头扭转计算中的应用.工具技术,2003,37(11):61-63.
    [126]言兰,周志雄.微钻头刚度的有限元分析.工具技术,2006,40(4):65-67
    [127]刘小川,张平宽.采用Pro/E和ANSYS的微小钻头刚度分析.现代制造工程,2008,(8):69-70,83.
    [128]宁明志,易建军,何云,等.整体硬质合金麻花钻刚度有限元分析.硬质合金,2007,24(2):99-102.
    [129]张春梅,刘静香.基于ANSYS的硬质合金钻头切削变形的研究.煤矿机械,2009,30(2):62-63.
    [130]李超.基于有限元方法的钻头动静态分析与研究.华中科技大学,2009
    [131]孔虎星,郭拉凤,尹晓霞,等.基于ANSYS的深孔钻结构有限元分析.机械,2011,38(6):21-23,29.
    [132]熊良山,师汉民,陈永洁,等.钻头与钻削研究的历史、现状与发展趋势.工具技术,2005,39(8):11-14
    [133]王磊,王贵成,马利杰,等.钻削加工有限元仿真的研究进展.工具技术,2007,41(8):8-13.
    [134] Jrad M.,Devillez A.,Dudzinski D. Analytical and finite element approaches forthe drilling modelling.10TH ESAFORM CONFERENCE on MATERIALFORMING. AIP Conference Proceedings,2007,907:757-762.
    [135]吴健,韩荣第.麻花钻3D建模及钻削过程的有限元分析.2007全国机械工程博士生学术论坛论文集,2007:640-651.
    [136]韩荣第,杨昌琪,吴健,等.麻花钻的数学建模及钻削过程有限元分析.工具技术,2008,42(4):52-58.
    [137]杨军,周利平,吴能章,等.基于Deform3D的钻削力仿真研究.工具技术,2007,41(4):50-53.
    [138]周利平.基于FEM的钻削力预报研究.西华大学学报(自然科学版),2009,28(3):1-5.
    [139]黄立新.钻削加工的三维建模及可视化.工具技术,2009,43(6):69-72.
    [140]白大山,黄树涛,周丽,等.金刚石涂层钻头钻削SiCp/Al复合材料的仿真有限元分析.工具技术,2011,45(10):12-15.
    [141]侯恩光.基于有限元法的钻削力预报研究.西华大学,2010.
    [142]范亚夫,段祝平.Johnson-Cook材料模型参数的实验测定.力学与实践,2003,25(5):40-43.
    [143] Yamada Y.Visco-elasticity plasticity.Japan:Baifukan,1980.
    [144]徐晓霞,胡永祥,孙姚飞,等.基于ANSYS/LS-DYNA钻削过程的数值仿真.机械设计与研究,2012,28(1):85,87-89.
    [145] M Vaz Jr.The Numerical Simulation of Machining Processes.Journal of theBrazilian Society of Mechanical Sciences,2000,22(2):221-226.
    [146] Devdas S.,Tom E.,Claudio C..New approach to the inspection of cooling holesin aero-engines. Optics and Lasers in Engineeing,2009,(47):686-694.
    [147]陈日曜.金属切削原理.北京:机械工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700