用户名: 密码: 验证码:
船体零件数控切割路径优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船体零件切割是船舶制造中重要的工序之一,主要包括装配线划线、内孔切割、零件外轮廓切割三部分内容。由于切割工序没有进行合理的规划,在实际生产中存在划线空走路径长、切割点火次数多、切割空走路径长等问题,导致了切割效率的低下和切割成本的浪费。本文的研究旨在如何合理有效地减小切割机的空走路径长度,提高切割机的工作效率,减少切割成本。
     本文根据船体零件切割路径优化的特点,分别对船体零件图形预处理技术、装配线划线路径优化、内孔切割路径优化及船体零件连续切割等四个方面内容采用不同的方法进行研究。主要内容如下:
     (1)把零件分层和零件定向两个关键技术转化为计算机图形学中的两个重要基础问题:点与多边形的包含关系识别和多边形方向识别。
     针对传统转角和法无法适应点与含有圆弧的多边形包含关系识别,对算法进行了改进并用实例验证了算法的性能。提出了一种基于边的改进Qi函数法判别点与多边形的包含关系,并针对含有圆弧的多边形进行了算法的修正。实例表明两种算法都能有效判别点与多边形包含关系。
     提出了一种基于三极点序号大小的多边形方向识别算法。在识别多边形方向时,只需判断多边形任意三个极值顶点在多边形顶点序列中的序号大小就能准确得到多边形的方向。对含有圆弧的多边形,采用折线取代圆弧进行识别。实例表明基于三极点序号的多边形方向识别算法简单、稳定、高效并能对含圆弧的复杂多边形进行方向识别。
     (2)将装配线划线路径优化等同于TSP问题,以划线顺序和划线方向为参数,划线空走路径最短为目标,采用多参数混合编码法,建立了划线路径优化的遗传算法模型(HMPOGA)运用“贪心策略”初始化种群,提高了种群的适应度;分别对划线顺序和划线方向采用不同的遗传策略,采用“精英子自进化策略”使模型能适应特殊的划线路径并收敛到最优解。仿真试验表明HMPOGA可有效地减少划线空走路径。
     针对划线路径优化问题的特殊性,基于最大-最小蚁群算法建立了两种蚁群算法优化模型LMPACO和PMPACO,并给出了具体实现策略;引进了局部最差蚂蚁信息素更新模型和全局最优蚂蚁“自变异算子”。仿真试验表明,LMPACO和PMPACO两种算法具有很好的全局收敛性和收敛速度,能有效地减少划线空走路径。通过大量的仿真试验,详细分析了蚁群算法求解划线路径优化模型中各参数的选取对算法性能的影响,并给出了算法各参数的合理选择范围。
     (3)基于欧拉定理,建立了船体零件连续切割的模型,为实现连续切割提供了理论基础。将船体零件连续切割求解问题转化为图论中构造最小生成树问题,建立了基于遗传算法的求解模型。引入序列编码法、CBMST初始化种群、PMST交叉算子和新的变异算子,改善了算法的性能。仿真试验证明基于遗传算法和最小生成树的连续切割模型能有效减少切割点火次数和空走路径长度,实际应用表明该模型能切实地提高切割机的工作效率,减少切割成本。
     (4)基于人工蜂群算法,构建了求解内孔切割路径优化问题的算法模型并给出主要实现步骤。通过与人工鱼群算法和遗传蚁群算法对比表明,人工蜂群算法在求解内孔切割路径优化问题中具有较强的优势,能取得最优解并且收敛速度较快。通过仿真试验,分析并探讨了人工蜂群算法中三个主要参数的选取对算法性能的影响,并给出了参数的选择范围。对含有零件的内孔,结合连续切割技术及人工蜂群算法进行优化,实现了内孔与孔内零件的连续切割,使切割附加路径最短,并通过实例验证了模型的合理性。
     (5)基于对船体零件切割路径优化四个基本问题的研究,构建了船体零件切割路径优化软件系统,设计了软件的输入输出接口,实现了对切割路径的优化、优化数据统计、优化前后路径对比、切割路径模拟、零件干涉检查等功能。最后给出了软件系统的应用实例。
The hull parts cutting is one of the shipbuilding processes, including three sections: markline marking, the inner hole cutting and the outer contour cutting.The cutting process is no reasonable planning that the marking route in air is very long, the number of cutting ignition frequency and the cutting route in air long in the actual production,which the results is the low cutting efficiency and a waste of cutting costs. This research work is mainly focused on how reasonable and effective to reduce the route in air and to improve the efficiency of the cutting machine, reducing cutting costs.
     Based on the characteristics of the hull parts cutting route optimization, the marking routes optimization problem, the problem of the hull parts graphics pretreatment technology, within the hole cutting route optimization problem and the hull parts consecutive cutting problem will be reached, respectively, using different research method. The specific studies are as follows:
     (1) Direct parts stratification and parts directionary into two important basic problems in computer graphics:point and polygon containment relationship recognition and polygon direction identification.
     Traditional algorithms can not adapt to identify the relationship of point and the polygon containing arc, this paper improved algorithm and examples to verify the performance. The Qi function method discriminant point improvements based on edge polygon containment relationship and correction algorithm for polygon containing arc. The examples show that the two algorithms can effectively determine a point and polygon containment relationship.
     Recognition algorithm based on three-pole serial number size of polygon direction. Identify polygons direction, just to determine the size of the serial number of vertices in the polygon vertices sequence three polygons arbitrary extremal can accurately polygon direction. The examples show that the algorithm based on three-pole serial number of polygon direction recognition is simple, stable and efficient.
     (2) According to the features of the marking, taking the marking order and the marking direction as the parameters and taking the minimum marking path in air as the objective, a math model of marking optimization is established on the base of hybrid encode. The use of "greedy strategy " initial population, improve the fitness of the population. The different strategies have been used for the marking order and the marking direction. The random mutation operator maintain the diversity of the population. The simulation results show that the model is effective, which can effectively reduce the idle marking path.
     The marking route planning problem would be regarded as the Traveling Salesman Problem. According to the special of the marking path, a planning model was proposed based on an improved ant colony optimization algorithm and Max-Min ant system was applied to optimize the problem. By analysis and simulation, the best value range and combinatorial optimization settings of parameters was given. Then the comparison with Genetic Algorithms was given. The simulation results show that the optimization model is effective, which can effectively reduce the idle marking path.
     (3) Based on the famous konigsberg Seven Bridges and Euler's theorem, the establishment of the hull parts consecutive cutting model provides a theoretical foundation for the realization of continuous cutting. Into the the hull parts consecutive cutting issues to construct a minimum spanning tree problem in graph theory, the establishment of a model based on genetic algorithms to solve. Introduced a sequence encoding method, CBMST initialize population, PMST crossover operator and a new mutation operator to improve the performance of the algorithm. The simulation tests proved genetic algorithms and the minimum spanning tree-based continuous cutting model can effectively reduce the number of cutting ignition and the length of the route in air, improve the efficiency of the cutter.
     (4) Based on artificial bee colony algorithm, problem solving within the hole cutting path optimization algorithm model and implementation steps were constructed. By artificial fish swarm algorithm and genetic ant colony algorithm comparison show that the artificial bee colony algorithm has a strong advantage in solving the inner hole cutting path optimization problem, and can achieve the optimal solution and convergence speed. Through simulation experiments, analyzed and discussed the impact of the ABC algorithm in three main parameters select the algorithm performance, and given the choice of the parameters. Bore containing parts, combined with continuous cutting technology and artificial bee colony algorithm to optimize continuous cutting within the hole and the hole parts, cutting additional shortest path, and the rationality of the model is verified by examples.
     (5) Based on the study of four basic problems about the hull parts cutting route optimization, the hull parts cutting path optimization software system is designed,including input and output interfaces of the software, the cutting path optimization, optimize data statistics, the comparison of before and after the path optimizing, cutting path simulation, part interference checking function. Finally, the application of the software system instance is given.
引文
[1]何汉武.数控等离子切割机的路径优化[D]:上海交通大学,2008.
    [2]Manber U, Israni S. PIERCE POINT MINIMIZATION AND OPTIMAL TORCH PATH DETERMINATION IN FLAME CUTTING [J]. Journal of Manufacturing Systems,1984,3(1):81-89.
    [3]Boogert R M, Kals H J J, Van houten F J A M. Tool paths and cutting technology in computer-aided process planning [J]. International Journal of Advanced Manufacturing Technology,1996,11 (3):186-197.
    [4]Fu Z, Wang S, Wang J, et al. Algorithm of optimal cutting tool path planning based on the theory of Voronoi diagram [J]. Gaojishu Tongxin/High Technology Letters,2000, 10(5):57-60.
    [5]Jackson S D, Mittal R 0. Path planning and automatic generation of NC programs for laser cutting. Proceedings of the 2nd Industrial Engineering Research Conference, May 26, 1993-May 28,1993. Los Angeles, CA, USA:Publ by IIE,1993:56-60.
    [6]Jackson S D, Mittal R 0. Automatic generation of 2-axis laser-cutter NC machine program and path planning from CAD. Proceedings of the 2nd Industrial Engineering Research Conference, May 26,1993-May 28,1993. Los Angeles, CA, USA:Publ by IIE,1993:223-231.
    [7]Han G-C, Na S-J. A study on torch path planning in laser cutting processes part 2:Cutting path optimization using simulated annealing. Journal of Manufacturing Processes. Langford Lane, Kidlington, Oxford,0X51GB, United Kingdom:Elsevier Ltd,1999:62-70.
    [8]Han G-C, Na S-J. A study on torch path planning in laser cutting processes part 1:Calculation of heat flow in contour laser beam cutting. Journal of Manufacturing Processes,1. Langford Lane, Kidlington, Oxford,0X51GB, United Kingdom:Elsevier Ltd, 1999:54-61.
    [9]Han J-F, Li M-Q, Kou J-S. New GA encoding scheme and application for solving TSP. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology,36:Tianjin University,2003:225-229.
    [10]Okumoto Y. Optimization of torch movements of welding and cutting using ant colony method [J]. Journal of Ship Production,2009,25(3):136-141.
    [11]Lebowitz M D, Holberg C J,0'Rourke M K, et al. GAS STOVE USAGE, CO AND TSP, AND RESPIRATORY EFFECTS. Proceedings 76th APCA Annual Meeting,1. Atlanta, Ga, USA:APCA, 1983:APCA, Pittsburgh, Pa, USA.
    [12]张伟.矩形件排样与切割路径优化技术研究[D]:南京航空航天大学,2010.
    [13]张伟,安鲁陵,张臣,et al基于蚁群算法的矩形件切割路径优化[J].机械科学与技术,2011,(03):390-393.
    [14]李泳.激光切割雕刻系统加工路径算法的研究[D]:天津理上大学,2007.
    [15]李泳,张宝峰.复杂轮廓激光切割路径优化算法的研究[J].天津理工大学学报,2007,(03):76-79.
    [16]李建涛,黄星梅,钟志华.二维矩形件切割的路径优化[J].机械设计与制造,2005,(04):86-87.
    [17]王书文,黄星梅,李建涛.二维矩形件组块优化切割的研究与实现[J].苏州大学学报(工科版),2007,(06):49-52.
    [18]刘会霞,王霄,蔡兰.钣金件数控激光切割割嘴路径的优化[J].计算机辅助设计与图形学学报,2004,(05):660-665.
    [19]刘会霞,王霄,蔡兰.分层实体制造激光头切割路径的建模与优化[J].中国激光,2004,(09):1137-1142.
    [20]刘会霞,王霄,周明,et al共边排样件激光切割路径的规划[J].中国激光,2004,(10):1269-1274.
    [21]余国兴,丁玉成,李涤尘.平面多轮廓加工路径优化模型及其近似算法[J].西安交通大学学报,2004,(01):39-42.
    [22]季国顺,王文,陈子辰.数控多轮廓加工走刀空行程路径优化[J].农业机械学报,2008,(07):154-158+172.
    [23]徐建明,林示麟,董辉,et al基于遗传算法的轮廓切割顺序受限路径优化[J].控制工程,2011,(05):767-770.
    [24]傅强.图形交互式数控激光切割自动编程系统的研发[D]:江苏大学,2008.
    [25]傅强,钱爱萍.激光切割数控自动编程系统中加工路径优化的实现[J].南昌航空大学学报(自然科学版),2009,(04):82-85+90.
    [26]李郝林,陈飒,郭弘其.激光切割最短路径的一种计算方法[J].工具技术,2005,(12):25-27.
    [27]黄小毛,叶春生,莫健华,et al考虑潜在起点的RP路径排序问题研究[J].中国机械工程,2008,(03):317-320.
    [28]朱光宇.新的求解钻削路径优化问题算法研究[J].中国工程机械学报,2006,(02):215-219.
    [29]朱光宇.面向钻削路径规划问题的微粒群优化算法研究[J].信息与控制,2008,(01):103-107+112.
    [30]Walas R A, Askin R G. ALGORITHM FOR NC TURRET PUNCH PRESS TOOL LOCATION AND HIT SEQUENCING [J]. IIE Transactions (Institute of Industrial Engineers),1984,16(3):280-287.
    [31]Ssemakula M E, Rangachar R M. Prospects of process sequence optimization in CAPP systems [J]. Computers and Industrial Engineering,1989,16(1):161-170.
    [32]Roychoudhury B, Muth J F. Tool path optimization procedures for machine tools [J]. Computers & Industrial Engineering,1995,28(2):367-367.
    [33]Roychoudhury B, Muth J F. Solution of travelling salesman problems based on industrial data [J]. Journal of the Operational Research Society,1995,46(3):347-353.
    [34]钟经农,孙宗禹,陈志杨.神经网络理论在CAPP系统中的应用——孔群加工的路径优化[J].湖南大学学报(自然科学版),1996,(05):80-84.
    [35]王恒.二维多孔数控钻床加工路径的生成及优化[J].机械科学与技术,2002,(03):463-464.
    [36]卫葳,李建勇,王恒.基于遗传算法的PCB数控钻孔路径优化[J].计算机工程与应用,2008,(25):229-232.
    [37]周鲲,邵华.基于Hopfield算法的孔群加工路径规划[J].模具技术,2003,(01):48-50.
    [38]肖人彬,陶振武.孔群加工路径规划问题的进化求解[J].计算机集成制造系统,2005,(05):725-732.
    [39]周正武,丁同梅.基于TSP和GA孔群加工路径优化问题的研究[J].组合机床与自动化加工技术,2007,(07):30-32.
    [40]周正武,丁同梅,王晓峰,et al孔群加工路径优化方法的研究[J].机械研究与应用,2006,(03):35-37.
    [41]张礼兵,吴婷,袁根福,et al基于遗传算法的激光打孔路径优化[J].机电工程,2007,(06):77-79.
    [42]马兆敏,戴青玲,黄玲,et al基于双钻头的孔群加工路径优化算法[J].机床与液压,2010,(06):13-15.
    [43]马兆敏,黄玲,胡波,et al带基准孔的孔群加工路径优化算法[J].机床与液压,2008,(11):28-29+32.
    [44]凌玲,胡于进,王青青,et al基于改进遗传算法的孔群加工路径优化[J].华中科技大学学报(自然科学版),2009,(08):88-91.
    [45]邹焱飚,张铁,陈伟华.孔群钻削机械手的运动规划和加工路径优化[J].华南理工大学学报(自然科学版),2010,(08):56-60.
    [46]蔡芸,周立炜.人工鱼群算法在孔群加工路径优化中的应用研究[J].武汉科技大学学报,2011,(03):182-185.
    [47]王春香,郭晓妮.基于遗传蚁群混合算法的孔群加工路径优化[J].机床与液压,2011,(21):43-45+4.
    [48]吕亚军.钣金激光切割工艺优化方法及应用研究[D]:华中科技大学,2011.
    [49]吕亚军,韩青江,饶运清.基于共边切割方法的板材切割路径优化[J].机械设计与制造,2011,(06):120-122.
    [50]田仲廉,李伟,刘希君.数控切割机借边连续切割软件在生产中的应用[J].一重技术,2002,(Z1):75-76.
    [51]王丽.数控切割机借边连续切割[J].一重技术,2006,(04):78-79.
    [52]Kunikubo H, Hiyoku K, Okumoto Y. Optimization of torch movements of marking using ant colony method. International Conference on Computer Applications in Shipbuilding 2011, September 20,2011-September 22,2011,3. Trieste, Italy:Royal Institution of Naval Architects,2011:231-235.
    [53]Lee K. Simulated annealing by grand canonical ensemble and the TSPs [J]. WSEAS Transactions on Computers,2005,4(8):890-897. [54] Fang L, Chen P, Liu S. Particle swarm optimization with SA for TSP problem [J]. WSEAS Transactions on Information Science and Applications,2007,4(6):1157-1162.
    [55]Meer K. Simulated Annealing versus Metropolis for a TSP instance [J]. Information Processing Letters,2007,104(6):216-219.
    [56]Luo J-P, Li X. Improved shuffled frog leaping algorithm for solving TSP [J]. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2010,27(2):173-179.
    [57]Takano H, Shirai Y, Matsumoto N. Performance evaluation of hybrid procedure of self-organizing MAP and SA for TSP [J]. International Journal of Innovative Computing, Information and Control,2011,7 (5 B):2931-2944.
    [58]孙燮华.用模拟退火算法解旅行商问题[J].中国计量学院学报,2005,(01):68-73.
    [59]高尚.求解旅行商问题的模拟退火算法[J].华东船舶工业学院学报(自然科学版),2003,(03):13-16.
    [60]高尚,杨静宇,吴小俊,et al圆排列问题的蚁群模拟退火算法[J].系统工程理论与实践,2004,(08):102-106.
    [61]杨理云.用模拟退火算法求解旅行商问题[J].微电子学与计算机,2007,(05):193-196.
    [62]苗卉,杨韬.旅行商问题(TSP)的改进模拟退火算法[J].微计算机信息,2007,(33):241-242+236.
    [63]郭茂祖,洪家荣.基于模拟退火算法旅行商问题的并行实现[J].哈尔滨理工大学学报,1997,(05):82-85.
    [64]张德富,顾卫刚,沈平.一种解旅行商问题的并行模拟退火算法[J].计算机研究与发展,1995,(02):1-4.
    [65]Grefenstette J J. OPTIMIZATION OF CONTROL PARAMETERS FOR GENETIC ALGORITHMS [J]. IEEE Transactions on Systems, Man and Cybernetics,1986, SMC-16(1):122-128.
    [66]Kramer 0, Koch P. Self-adaptive partially mapped crossover.9th Annual Genetic and Evolutionary Computation Conference, GECCO 2007, July 7,2007-July 11,2007. London, United kingdom:Association for Computing Machinery,2007:1523.
    [67]Niemack M D, Beall J, Becker D, et al. Optimizing Feedhorn-Coupled TES Polarimeters for Balloon and Space-Based CMB Observations [J].2012:1-6.
    [68]Singh V, Choudhary S. Genetic algorithm for traveling salesman problem:Using modified partially-mapped crossover operator.2009 International Multimedia, Signal Processing and Communication Technologies, IMPACT 2009, March 14,2009-March 16,2009. Aligarh, India:IEEE Computer Society,2009:20-23.
    [69]Davis G W, Ansari A. SENSITIVITY ANALYSIS OF HOPFIELD NEURAL NET. IEEE First International Conference on Neural Networks. San Diego, CA, USA:SOS Printing,1987: iii/325-328.
    [70]Whitley D, Starkweather T, Bogart C. Genetic algorithms and neural networks. Optimizing connections and connectivity [J]. Parallel Computing,1990,14 (3):347-361.
    [71]Starkweather T, McDaniel S, Mathias K, et al. Comparison of genetic sequencing operators. Proceedings of the 4th International Conference on Genetic Algorithms, Jul 13-161991. San Diego, CA, USA:Publ by Morgan-Kaufmann Publ, Inc.,1991:69-69.
    [72]胡纯德,祝延军,高随祥.基于人工免疫算法和蚁群算法求解旅行商问题[J].计算机工程与应用,2004,(34):60-63.
    [73]李茂军,舒宜,童调生.旅行商问题的人工免疫算法[J].计算机科学,2003,(03):80-82+89.
    [74]黎湖广,邹北骥,欧阳广,et al一种求解TSP问题的改进人工免疫算法[J].科学技术与工程,2007,(01):60-64.
    [75]Dorigo M, Gambardella L M. Ant colony system:A cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997, 1(1):53-66.
    [76]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1996, 26(1):29-41.
    [77]Stuetzle T, Hoos H. MAX-MIN Ant System and local search for the traveling salesman problem. Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, ICEC'97, April 13,1997-April 16,1997. Indianapolis, IN, USA:IEEE,1997:309-314.
    [78]Stutzle T, Hoos H H. MAX-MIN Ant System [J]. Future Generation Computer Systems, 2000,16(8):889-914.
    [79]萧蕴诗,李炳宇.小窗口蚁群算法[J].计算机工程,2003,(20):143-145.
    [80]叶志伟,郑肇葆.蚁群算法中参数a、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,(07):597-601.
    [81]高尚.蚁群算法理论、应用及其与其它算法的混合[博士]:南京理工大学,2005.
    [82]张军英,敖磊,贾江涛,et al求解TSP问题的改进蚁群算法[J].西安电子科技大学学报,2005,(05):681-685.
    [83]吴隽,李文锋,陈定方.基于C-均值法的蚁群算法在TSP中的应用(英文)[J]Journal of Southeast University(English Edition),2007, (S1):156-160.
    [84]马文霜,张洪伟.基于改进ACS-3-opt蚁群算法的TSP[J].计算机工程,2008,(19):200-202.
    [85]Eberhart R C K J. A new optimizer using particle swarm theory. Proceeding of the 6th International Symposium on Micro Machine and HUman Science. Piscataway: IEEE Press, 1995:39-43.
    [86]Knnedy J E R C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks Piscataway:IEEE Press,1995:1492-1498.
    [87]Shi Y E R. A modified particle swarm optimizer. Proceedings of The IEEE international conference on evolutionary computation. Piscataway:IEEE Press,1998:69-73.
    [88]Shi Y E R. Fuzzy adaptive particle swarm optimization. Proceedings of The IEEE international conference on evolutionary computation. Seoul, Korea:IEEE Press, 2001:101-106.
    [89]黄岚,王康平,周春光,et al粒子群优化算法求解旅行商问题[J].吉林大学学报(理学版),2003,(04):477-480.
    [90]Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation,2002, 6(1):58-73.
    [91]肖健梅,李军军,王锡淮.改进微粒群优化算法求解旅行商问题[J].计算机工程与应用,2004,(35):50-52.
    [92]王翠茹,张江维,王玥,et al改进粒子群优化算法求解旅行商问题[J].华北电力大学学报,2005,(06):47-51+59.
    [93]庞巍,王康平,周春光,et al模糊离散粒子群优化算法求解旅行商问题[J].小型微型计算机系统,2005,(08):1331-1334.
    [94]李盘荣.基于量子粒子群优化算法的斜齿轮设计[J].机械研究与应用,2008,(03):70-72+74.
    [95]郭文忠,陈国龙.求解TSP问题的模糊自适应粒子群算法[J].计算机科学,2006,(06):161-162+185.
    [96]钟一文,蔡荣英.求解二次分配问题的离散粒子群优化算法[J].自动化学报,2007,(08):871-874.
    [97]钟一文,宁正元,蔡荣英,et al一种改进的离散粒子群优化算法[J].小型微型计算机系统,2006,(10):1893-1896.
    [98]钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,(06):88-94.
    [99]王文峰.离散粒子群算法的改进研究及其在优化问题中的应用[D]:西南大学,2007.
    [100]王文峰,刘光远,温万惠.求解TSP问题的混合离散粒子群算法[J].西南大学学报(自然科学版),2007,(01):85-88.
    [101]王文峰,刘光远,温万惠.求解TSP问题的自逃逸混合离散粒子群算法研究[J].计算机科学,2007,(08):143-144+195.
    [102]詹仕华,王长缨,钟一文.求解TSP问题的伪贪婪离散粒子群优化算法[J].小型微型计算机系统,2011,(01):181-184.
    [103]Banharnsakun A, Achalakul T, Sirinaovakul B. ABC-GSX:A hybrid method for solving the traveling salesman problem.20102nd World Congress on Nature and Biologically Inspired Computing, NaBIC 2010, December 15,2010-December 17,2010. Kitakyushu, Japan:IEEE Computer Society,2010:7-12.
    [104]Hu Z-H, Zhao M. Simulation on traveling salesman problem(TSP) based on artificial bees colony algorithm [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology,2009,29(11):978-982.
    [105]Karabulut K, Tasgetiren M F. A discrete artificial bee colony algorithm for the traveling salesman problem with time windows.2012 IEEE Congress on Evolutionary Computation, CEC2012, June 10,2012-June 15,2012. Brisbane, QLD, Australia:IEEE Computer Society,2012.
    [106]Kiran M S, Iscan H, Gunduz M. The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem [J].2012:1-13.
    [107]Li L, Cheng Y, Tan L, et al. A discrete artificial bee colony algorithm for TSP problem.7th International Conference on Intelligent Computing, ICIC2011, August 11,2011-August 14,2011,6840 LNBI. Zhengzhou, China:Springer Verlag,2011:566-573.
    [108]Li W, Li W, Yang Y, et al. Artificial bee colony algorithm for traveling salesman problem.2011 International Conference on Advanced Design and Manufacturing Engineering, ADME 2011, September 16,2011-September 18,2011,314-316. Guangzhou, China:Trans Tech Publications,2011:2191-2196.
    [109]Niu B, Chen Y, Tan L, et al. Discrete artificial bee colony algorithm for low-carbon traveling salesman problem.9.10 ed.25650 North Lewis Way, Stevenson Ranch, California,91381-1439, United States:American Scientific Publishers,2012:1766-1771.
    [110]Singh V, Tiwari R, Singh D, et al. RGBCA-genetic bee colony algorithm for travelling salesman problem.2011 World Congress on Information and Communication Technologies, WICT 2011, December 11,2011-December 14,2011. Mumbai, India:IEEE Computer Society,2011:1002-1008.
    [111]Wong L-P, Low M Y H, Chong C S. Bee colony optimization with local search for traveling salesman problem.19.3 ed.5 Toh Tuck Link, Singapore,596224, Singapore:World Scientific Publishing Co. Pte. Ltd,2010:305-334.
    [112]丁海军,冯庆娴.基于boltzmann选择策略的人工蜂群算法[J].计算机工程与应用,2009,(31):53-55.
    [113]胡中华,赵敏.基于人工蜂群算法的机器人路径规划[J].电焊机,2009,(04):93-96.
    [114]胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,(11):978-982.
    [115]胡中华,赵敏.基于人工蜂群算法的无人机航迹规划研究[J].传感器与微系统,2010,(03):35-38.
    [116]胡中华,赵敏,撒鹏飞.基于人工蜂群算法的JSP的仿真与研究[J].机械科学与技术,2009,(07):851-856.
    [117]刘敏,邹杰,冯星et al人工蜂群算法的无人机航路规划与平滑[J].智能系统学报,2011,(04):344-349.
    [118]Balbes R, Siegel J. Robust method for calculating the simplicity and orientation of planar polygons [J]. Computer Aided Geometric Design,1991,8(4):327-335.
    [119]Manninen A T. Orientational approximation of convex polygons with rectangles [J]. Pattern Recognition Letters,1994,15(7):677-682.
    [120]Rusaw S, Gupta K, Payandeh S. Determining polygon orientation using model based force interpretation. Proceedings of the 1998 IEEE International Conference on Robotics and Automation Part 1 (of 4), May 16,1998-May 20,1998,1. Leuven, Belgium:IEEE, 1998:544-549.
    [121]Wang Z, Xiao L, Hong J. Simplicity, orientation, and inclusion test algorithms for polygons [J]. Jisuanji Xuebao/Chinese Journal of Computers,1998,21(2):183-187.
    [122]Feito F, Torres J C, Urena A. Orientation, simplicity, and inclusion test for planar polygons [J]. Computers & Graphics (Pergamon),1995,19(4):595-595.
    [123]Zhao J, Cheng Y, Gao M, et al. An algorithm for determining the orientation and convexity-concavity of simple polygons.1st International Workshop on Education Technology and Computer Science, ETCS 2009, March 7,2009-March 8,2009,2. Wuhan, Hubei, China: Inst. of Elec. and Elec. Eng. Computer Society,2009:463-467.
    [124]Zhao J, Gao M, Wang S. Orientation, convexity-concavity and inclusion test algorithms for polygons.2009 International Conference on Information Technology and Computer Science, ITCS 2009, July 25,2009-July 26,2009,2. Kiev, Ukraine:IEEE Computer Society,2009:406-409.
    [125]王志强,肖立瑾,洪嘉振.多边形的简单性、方向及内外点的判别算法[J].计算机学报,1998,(02):183-187.
    [126]陈炳发,钱志峰,廖文和.简单多边形凸凹性自识别算法[J].计算机辅助设计与图形学学报,2002,(03):214-217.
    [127]丁健,江南,芮挺.基于边方向角长度表示的多边形方向、凹凸性及点包含算法[J].计算机辅助设计与图形学学报,2005,(06):1233-1239.
    [128]丁健,江南,芮挺.简单多边形方向识别的健壮算法[J].计算机辅助设计与图形学学报,2005,(03):442-447.
    [129]丁健,江南,芮挺.一种多边形方向识别的新算法[J].计算机工程,2006,(09):47-50.
    [130]庞明勇,卢章平.基于象限划分的简单多边形方向与顶点凸凹性快速判别算法[J].计算机应用与软件,2005,(09):111-114.
    [131]李维诗,李江雄,柯映林.平面多边形方向及内外点判断的新方法[J].计算机辅助设计与图形学学报,2000,(06):405-407.
    [132]Li W, Xu S, Ong E T, et al. Orientation and point inclusion tests for simple polygons [J]. International Journal of Computational Engineering Science,2004, 5(3):665-671.
    [133]Li W-S, Li J-X, Ke Y-L. Orientation and point inclusion test for planar polygon [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design & Computer Graphics,2000,12(6):405-407.
    [134]Sloan S W. POINT-IN-POLYGON PROGRAM [J]. Advances in Engineering Software,1985, 7(1):45-47.
    [135]Sloan S W. Point-in-polygon program [J].1993:155-157.
    [136]Jimenez J J, Feito F R, Segura R J. A new hierarchical triangle-based point-in-polygon data structure [J]. Computers and Geosciences,2009,35 (9):1843-1853.
    [137]Jimenez J J, Feito F R, Segura R J. Robust and optimized algorithms for the point-in-polygon inclusion test without pre-processing [J]. Computer Graphics Forum,2009, 28(8):2264-2274.
    [138]Wang W, Li J, Wu E.2D point-in-polygon test by classifying edges into layers [J]. Computers and Graphics (Pergamon),2005,29 (3):427-439.
    [139]Li J, Wang W, Wu E. Point-in-polygon tests by convex decomposition [J]. Computers and Graphics (Pergamon),2007,31 (4):636-648.
    [140]Li J, Wang W-C. Point-in-polygon test method based on center points of grid [J]. Ruan Jian Xue Bao/Journal of Software,2012,23 (9):2481-2488.
    [141]李基拓,陆国栋,冯星.基于单调性与相关边的多边形内外点判断算法[J].中国图象图形学报,2002,(06):78-82.
    [142]王相海.制定点是否包容于简单多边形中的一个三角剖分方法[J].松辽学刊(自然科学版),1995,(02):19-23.
    [143]文和平,柯映林,程耀东.任意多边形边界内散乱点的三角划分[J].工程图学学报,1994,(02):65-69.
    [144]温星,陆国栋,李基拓.基于拓扑映射的点集在凸多边形内外判断算法[J].中国图象图形学报,2003,(04):110-113.
    [145]胡景松,张丽芬,王晓华,et al点与简单.多边形关系的新算法[J].计算机工程,2004,(20):86-88.
    [146]李静,王文成.基于网格中心点的点在多边形内的高效判定[J].软件学报,2012,(09):2481-2488.
    [147]李静,王文成,吴恩华.基于凸剖分的点在多边形内的高效判定[J].自然科学进展,2007,(07):995-1000.
    [148]刘民士,王春.射线法判断点与多边形内外关系的改进算法[J].滁州学院学报,2010,(02):14-16.
    [149]张卡,盛业华,叶春.基于方向因子和方向边的多边形内外点判断算法[J].测绘科学,2010,(04):174-176.
    [150]董秀山,刘润涛.判断点与简单多边形位置关系的新算法[J].计算机工程与应用,2009,(02):185-186+196.
    [151]江平,刘民士.射线法判断点与包含简单曲线多边形关系的完善[J].测绘科学,2009,(05):220-222.
    [152]刘德儿,漆文成,兰小机.基于反向射线与顶点退化判断点在多边形内外的算法及应用[J].测绘科学,2008,(04):84-86.
    [153]刘德儿,王永君,间国年.基于向量代数的点与多边形拓扑关系的推理[J].大地测量与地球动力学,2011,(02):89-93.
    [154]吴坚,姜虹,王小椿.快速判断点是否在自交多边形内的方法[J].系统仿真学报,2003,(11):1592-1594.
    [155]吴坚,郑康平,王小椿.一种检测点是否在多边形或多面体内的方法.第五届海内外青年设计与制造科学会议.中国辽宁大连,2002:2.
    [156]Knowles J, Corne D. A new evolutionary approach to the degree-constrained minimum spanning tree problem [J]. Evolutionary Computation, IEEE Transactions on,2000, 4(2):125-134.
    [157]Raidl G R. An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem. Evolutionary Computation,2000 Proceedings of the 2000 Congress on, 1:IEEE,2000:104-111.
    [158]Raidl G R, Julstrom B A. A weighted coding in a genetic algorithm for the degree-constrained minimum spanning tree problem. Proceedings of the 2000 ACM symposium on Applied computing-Volume 1:ACM,2000:440-445.
    [159]宋海洲.求解度约束最小生成树的单亲遗传算法[J].系统工程理论与实践,2005,(04):61-66.
    [160]周荣敏,雷延峰.基于遗传算法的最小生成树的参数优化研究[J].郑州大学学报(工学版),2002,(02):9-12.
    [161]帅训波,马书南.一种基于遗传算法的度约束最小生成树求解方法[J].曲阜师范大学学报(自然科学版),2010,(01):55-58.
    [162]韩世芬.基于DNA计算的遗传算法解决最小生成树问题[J].鄂州大学学报,2008,(02):22-24.
    [163]来卫国,李鸥,程军.一种新的求解度约束最小生成树的遗传算法[J].计算机仿真,2008,(08):162-165.
    [164]周荣敏,买文宁,雷延峰.基于遗传算法的最小生成树算法[J].郑州大学学报(工学版),2002,(01):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700