用户名: 密码: 验证码:
虚轴钻尖刃磨机的设计与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,含有并联机构的机床得到越来越广泛的应用,以Stewart平台为基础的并联机床相对于传统的串连机床有其自身的优缺点。虚轴机床的运动是通过控制六根杆的长度实现的,由于杆只承受轴向力,所以切削时杆的变形小,机床零部件截面小。更重要的是虚轴机床六根杆没有误差累积,所以虚轴机床比传统机床刚度高、精度高、机床制造成本低,其缺点则是控制复杂。对这种机床机构进行研究,有利于开发新的机床品种,实现钻尖刃磨自动化、数控化。本论文主要研究虚轴钻尖刃磨机的设计以及控制方法。重点研究了相应虚轴钻尖刃磨机的机床活动空间计算方法和位姿控制方法;研究了钻头几何参数和刃磨参数之间的关系和求解方法。
     要设计和控制虚轴钻尖刃磨机,首先要建立描述钻头的数学模型。普通麻花钻的后刀面可以描述成锥面的一部分。论文论述了普通麻花钻锥面刃磨的数学模型,根据这个模型,可以求解钻头的几何参数和刃磨参数之间的关系,钻头刃磨参数决定刃磨时钻头和砂轮间的安装角度。根据钻头锥面刃磨的数学方程,可以求解钻头的刃磨方程,钻头的刃磨方程描述钻头刃磨时钻头和砂轮的相对运动。当钻头围绕锥面轴转动,就形成了钻头的锥形后刀面。
     为确定机床参数,首先根据机床活动空间的分析设定机床的一系列参数。根据机床的运动方程和机床参数,可以求解出钻头围绕锥轴转动时动平台的位置和姿态,从而可以计算出两平台每一个关节在固定坐标系中的坐标,就可以求解出每一根杆的杆长。然后验证设定的机床参数能否满足杆长和杆的干涉约束,如果不能,修改机床参数,重复以上步骤直到可以满足这些要求。确定了机床参数,根据钻头刃磨运动方程控制每根杆的长度,就可以控制动平台产生相应的运动,实现钻头的锥面刃磨。
Recently, the application of machine tools with parallel mechanism becomes more and more popular. There are many advantages also disadvantages of the Stewart platform based machine compared with traditional serial mechanism machine. The motions of a virtual axis machine tool are provided by the legs which bear only axial load. Due to its parallel construction, the deflection of the load is thus reduced significantly and legs with small cross section can be used. Moreover, the parallel structure does not accumulate the moving errors of its legs. As a result, the virtual axis machine tools are more rigid, more accurate and can move much faster than that of the conventional machine tools. But the control system of the virtual axis machine tools is much more complicated than that of the conventional machine tools. It is very helpful to using this kind of mechanism to develop new style grinder to realize cutting tools grinding automatically and numerically. In this paper, the author mainly deal with how to design
     and control the virtual axis drill point grinding machine; a solution of calculating the workspace needed when grinding and the way of controlling the position and orientation of the platform where machine spindle is installed relative to the platform which is immovable and the relationship between the design parameters and grinding parameters of the drill point and the way of calculating the grinding parameters also was presented.
    To design and control the virtual axis drill point grinding machine, mathematical representation to describe the drill point configuration is badly needed. According to former research, the flank of the conventional twist drill can be modeled as the surface of a cone. The mathematical model can be applied to the design of drill point grinder by examining the relationship between the grinding parameters and the design parameters. The grinding parameters were used to determine the drill fix angle and grinding wheel angle when grinding. By the mathematical model of drill point geometry, the grinding motion equation of drill points can be established. The grinding motion equation specifies the relative motion of the drill and the grinding wheel surface during the drill point grinding process. When the drill
    
    
    point revolves about the axis of cone (here the cone is the surface which forms the flank of the drill point to be grinded), the flank is generated.
    To design the drill point grinding machine, the diameters of the two platforms and the maximum and minimum length of the legs should be decided firstly,
    secondly, whether the workspace decided by the parameters meet the strut length constraints and the interference restriction of legs must be verified. The position and orientation of the movable platform and the length of each strut of each step when grinding can be calculated and controlled according to the grinding motion equation and the parameters of the grinding machine.
引文
[1]黄真,孔令富,方跃法,并联机器人机构学理论及控制,机械工业出版社
    [2]CHEN Wuyi, CHEN Dingchang, FAN Rui, Some Late Deelopment Of Virtual Axis Machine Tools
    [3]江洪道,虚轴数控钻尖刃磨机刃磨技术研究,北京航天航空大学机械制造及其自动化专业博士论文,1999
    [4]刘文涛,王知行等,Stewart平台的运动可控制条件,中国机械工程,第12卷第5期,2001年5月
    [5]汪劲松,李铁民,段广洪,并联构型装备的研究进展及若干关键技术,中国工程科学,第4卷第61期,2002年6月
    [6]倪志福,陈璧光,群钻,上海科技技术出版社
    [7]CHEN Wuyi, CHEN Dingchang, Kinematic Equation to Grind a Helical Drill Point on A Virtual Axis Drill Sharpener
    [8]李信能,麻花钻与群钻的计算机辅助设计(CAD)与自动化刃磨研究,北京航天航空大学研究生院博士论文,1990
    [9]陈五一,虚轴钻尖刃磨机研制,北京航天航空大学博士后研究报告,1996
    [10]Huade Sun, Hongdao Jiang, Wuyi Chen, The Kinematic Equation of a Virtual Axis Tool Grinder With a Redundant Dof And its Application In Drill Grinding, 5th International Conference on Process of Machine Technology
    [11]Chen Wuyi, Chen Dingchang, Some Late Development Of Virtual Axis Machine Tools
    [12]郝鹃,张建民等,基于Stewart机构的变轴机床数控系统,机电一体化,2000年第一期
    [13]High precision tool grinding, http://www.manufatureingcenter.com/tooling/archives/0699/699tnot.asp
    [14]Degrees More Freedom For Macine Tools http://www.hpch-ttn.org/successdetail.CFM?PressRelease ContactID=117
    
    
    [15]YuKitoshi lhara, Ziye li, Kinematics Calibration Of a Hexapod Machine Tool By Using Circular Test, Proceeding of the 2000 Japan-USA Flexible Automation Conference, July 23-26, 2000
    [16]Three Axis Milling Machine, ME230 Final Project, Fall 1998
    [17]A. J. Patel, K. F. Ehmann, Volumetric Error Analysis Of a Stewart Platform Based Machine Tool
    [18]N.N.Z.Gindy, A.G.Chrisp, The Variax Machining Centre, its Design and Application to a Rapid Response Integrated Manufacturing System, Rapid Response Aerospace Manufacture, The University of Nottingham England
    [19]S. M. Wu, A Mathematical Model for Drill Point Geometry, University of Wisconsin-Madison
    [20]S.M. Wu, Drill Analyzer, University of Wisconsin-Madison
    [21]黄田,王劲松,Whitehouse,Stewart并联机器人位置空间分析,中国科学,1998年,第28期
    [22]黄真,并联机器人机构学理论及控制,北京,机械工业出版社,1990
    [23]杨建新,郁鼎文,王立平,汪劲松,并联机床研究现状与展望,机械设计与制造工程,2000年5月,第三期
    [24]史晓鹃,帅梅,王广炎,并联机床位置控制系统的设计与实现,机床与液压,2002,No.1
    [25]文福安,杨光,并联机器人机构概述,机械科学与技术第19卷第1期,2000年1月
    [26]刘学杰,张峰等,6-sps机构运动学分析,包头钢铁学院学报,第19卷第4期,2000年12月
    [27]董彦良,吴盛林,一种实用的6-6Stewart平台的实时位置正解法,哈尔滨工业大学学报,第34卷第1期,2000年2月
    [28]张立杰,刘辛军,一种并联机构最大内切工作空间的几何求解,机械设计与研究,第18卷第1期,2002年1月
    [29]车仁生,黄庆成,崔长彩,并联六坐标测量机的研究,哈尔滨工业学报,第36卷,
    
    2002年
    [30]李鹭扬,吴洪涛,并联机构正运动学一维搜索法,扬州大学学报(自然科学版本),第3卷第1期,2000年2月
    [31]吕崇耀,熊有伦6—6并联机构封闭运动学位姿正解单解,华中理工大学学报,第27卷第7期,1999年7月
    [32]郭祖华,并联数控刀具磨床的动力学优化设计,北京航空航天大学博士论文
    [33]A. J. Patel, K. F. Ehmann, Volumetric Error Analysis of a Stewart Based Machine Tool, Annals of The CIRP Vol. 46/1/1997
    [34]T. Huang, J. Wang, D. J. Whitehouse, Closed Form Solution to Workspace of Hexapod-Based Virtual Axis Machine Tools, Transactions of the ASME, 26/Vol. 121, March 1999
    [35]Yitao Duan, Pete Retondo, Robert Hillaire, Three Axis Milling Machine, University of California At Berkeley, Mechanical Engineering, Dec 19, 1998
    [36]蒋大中,未来的机床,机械制造,1995,Vol.33,No.12 p5-6
    [37]Michael KAEVER, Stephan PLATEN, Manfred WECK, Control Integrated Process Monitoring for Rough Milling Operations-Innovative Logging Module Solutions, Laboratory for Machine Tools and Production Engineering(WZL), Aachen University of Technology
    [38]曹正铨等,钻尖的数学模型与钻削过程研究,北京,北京理工大学出版社,1993
    [39]曹正铨,龙腾辉,螺旋面钻尖的数学模型,湖南大学学报,1991,4
    [40]马天颖,群钻数控刃磨技术研究,北京航天航空大学博士论文,1992
    [41]将大中,未来的机床,机械制造,1995,Vol.33,No.12 P5-6
    [42]王忠华,汪劲松,杨向东,VAMTIY虚轴机床数控系统直线和圆弧插补方针研究,中国机械工程,1999,Vol.10,No.10 p1121—1123
    [43]江洪道,吕彦明,陈五一,陈鼎昌,麻花钻钻尖锥面刃磨参数优化求解,北京航空航天大学学报,2000,Vol.26,No.1 p99-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700