用户名: 密码: 验证码:
北京铁矿废弃地植被恢复技术与效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京铁矿开采形成的废弃地水土流失严重、生态系统退化,直接影响了矿山及周边居民的生产生活,严重制约了区域经济可持续发展,对铁矿废弃地进行植被恢复是首都生态涵养发展带生态环境建设的迫切需要。
     通过对具有典型代表性的北京首云铁矿的地形、地貌、植被、土壤等进行调查,采用空间代替时间的方法,对矿山废弃地的植被、土壤理化性质及植被恢复生态效应进行分析,了解矿山废弃地植被恢复的演替动态,研究适宜土壤改良和乡土植物品种选配技术,结果表明:
     (1)在尾矿砂阳坡缓坡、碎石夹微土阳坡缓坡、土石混合物阳坡缓坡覆盖10cm山皮土结合栽种适生植物,在裂隙裸岩及风化物阳坡陡坡采用合理配置基质和植物种子进行挂网喷播,使得各立地类型土壤结构和土壤肥力状况均有不同程度的改善。随着植物生长对土壤肥力的消耗,需要结合适当的培肥措施促进植被恢复。
     (2)土壤种子库特征分析表明,尾矿砂阳坡缓坡和碎石夹微土阳坡缓坡土壤种子库植物种类均较少,均为草本植物,且地上植被与土壤种子库之间差异较大。
     (3)不同立地类型矿山废弃地的人工恢复植被主要包含禾本科、豆科和菊科,一二年生草本植物所占比例较大。碎石夹微土阳坡缓坡自然恢复20年内,由优势种不明显的灌草群落演替为以荆条为优势种的灌草群落。裂隙裸岩及风化物阳坡陡坡自然恢复10年和自然恢复20年群落,喜阳、耐旱的乔木是群落中优势物种。自然恢复30年群落,荆条为群落优势物种。土石混合物阳坡缓坡自然定居的植物中草本植物较多。
     (4)尾矿砂阳坡缓坡人工恢复1年植物群落与棕壤阳坡缓坡植物群落物种丰富度差异显著,人工恢复3年植物群落与棕壤阳坡缓坡植物群落物种丰富度差异极显著,人工恢复4年植物群落与棕壤阳坡缓坡植物群落Simpson多样性指数差异显著。以棕壤阳坡缓坡植物群落为参照,尾矿砂阳坡缓坡植物群落β多样性指数大小顺序为:人工恢复4年>人工恢复3年>人工恢复1年>人工恢复10年。人工植被恢复10年内7个主要物种分组结果为:波斯菊、稗草2个物种为衰退种组;沙打旺为过渡种组;黄花蒿、狗尾草、紫穗槐、荆条4个物种为进展种组。
     碎石夹微土阳坡缓坡自然恢复和人工恢复植物群落物种丰富度指数随恢复时间增加而减小,其它3个多样性指数随恢复时间增加而增加。以棕壤阳坡缓坡植物群落为参照,碎石夹微土阳坡缓坡植物群落β多样性指数大小顺序为:人工恢复1年>自然恢复10年>人工恢复2年>自然恢复20年。人工和自然植被恢复20年内8个主要物种分组结果为:波斯菊、苋草、猪毛蒿3个物种为衰退种组;紫花苜蓿、稗草、狗尾草、籽蒿4个物种为过渡种组;荆条为进展种组。
     裂隙裸岩及风化物阳坡陡坡自然恢复群落α多样性随恢复时间增加而呈波动变化。人工恢复植被的多项多样性指数均明显高于棕壤阳坡缓坡植物群落多样性水平。以棕壤阳坡缓坡植物群落为参照,裂隙裸岩及风化物阳坡陡坡植物群落β多样性指数大小顺序为:自然恢复10年>人工恢复2年>自然恢复20年>自然恢复30年。人工和自然植被恢复30年内11种主要物种分组结果为:马唐、苋草、籽蒿、狗尾草、苍耳5个物种为衰退种组;白蒿、青杨2个物种为过渡种组;臭椿、猪毛蒿、榆树、荆条4个物种为进展种组。
     土石混合物阳坡缓坡植物群落α多样性明显高于棕壤阳坡缓坡植物群落多样性。以棕壤阳坡缓坡植物群落为参照,土石混合物阳坡缓坡β多样性指数大小顺序为:人工恢复2年>自然恢复10年>人工恢复1年。人工和自然植被恢复10年内7种主要物种分组结果为:狗尾草、紫花苜蓿2个物种划为衰退种组;铁杆蒿划为过渡种组;荆条、侧柏、藜、油松4个物种划为进展种组。
     (5)根据TWINSPAN对矿山废弃地自然和人工植物群落类型进行划分结果分析其生态效应:自然恢复群落与棕壤阳坡缓坡植物群落相似性大小顺序为臭椿群落>荆条-狐尾草群落>榆树-白蒿群落>狗尾草-籽蒿群落>苋草-灰绿藜群落。苋草-灰绿藜群落土壤容重和pH值最小、狗尾草-籽蒿群落土壤有机质、全氮和速效钾最大、榆树-白蒿群落土壤速效磷最大。人工恢复群落与棕壤阳坡缓坡植物群落相似性大小顺序为狗尾草-臭椿群落>紫穗槐-锦鸡儿>紫花苜蓿-刺槐群落>波斯菊-狼尾草群落>沙打旺群落>黑麦草-萱草群落。
The wastelands formed by iron ore mining have caused serious soil erosion and ecosystem degradation in Beijing, which directly impact the production and living conditions of residents around mining areas as well as regional economic sustainable development. So the revegetation on iron ore wastelands is of great significance for the ecological environment requirements of the belt named ecological conservation and development of capital..
     Through the investigation of terrain, landforms, vegetation, soil and so on in typical representative Shou Yun iron ore in Beijing, the vegetation, soil characteristics and the revegetation ecological effect were analyzed. By using the space-time method the succession dynamics of vegetation restoration was found. The techniques suitable for soil improvement and native plant species matching were study. The main results are as follows:
     (1) The mine tailing on gentle sunny slope, gravel with little soil on gentle sunny slope and earth-rock on gentle sunny slope can be covered with 10cm soil, planted with right plants and fertilized and the bare rock fissure with regolith on steep sunny slope can be restored accelerated by rational allocating matrix with plant seeds, so as to improve the soil structure and fertility status with different degree. It is necessary to build up soil fertility continuously for consumed soil nutrients with plant growing.
     (2) The characteristics analysis of mine tailing and gravel with little soil on gentle sunny slope showed that the seeds were less and belonged to the herb. There was great different between the seed bank and the aboveground vegetation.
     (3) The revegetation composition of different restoration measures of mine tailing mainly includes Gramineae, Leguminosae, and Compositae. The annual and biennial herb has a large proportion. During 20 years of natural restoration for gravel with little soil on gentle slope, the plant community was transformed from shrub-grass community without obvious dominant species to the shrub-grass community dominated by Vitex negundo. The heliophilous and drought tolerant tree population is the dominant species for the 10-year and 20- year plant communities of natural restoration. The 30-year natural restoration community is mainly consisted by shrub community dominated by Vitex negundo. For earth-rock on gentle sunny slope the herb is dominant among the natural settlement plants.
     (4) There was significant difference of species richness between 1-year artificial restoration and natural plant communities. There was extremely significant difference of species richness between 3-year artificial restoration and natural plant communities. The Simpson diversity index was significant difference between 4-year artificial restoration and natural plant communities. In reference to the plant community of burozem on gentle sunny slope, theβdiversity index of plant community for mine tailing on gentle sunny slope is in the order of 4-year artificial restoration > 3-year artificial restoration > 1-year artificial restoration > 10-year artificial restoration. The 7 species grouping result of 10-year artificial vegetation restoration is: Cosmos bipinnatus and Echinochloa crusgalli are degenerative species group; Astragalus adsurgens is transitional species; Artemisia annua, Setaria viridis, Amorpha fruticosa and Vitex negundo are progressing species group.
     For gravel with little soil on gentle sunny slope the species richness of natural and artificial vegetation restoration decreased with time, while the other three diversity indexes were increased with time. In reference to the plant community of burozem on gentle sunny slope, theβdiversity index of plant community for gravel with little soil on gentle sunny slope is in the order of: 1-year artificial restoration > 10-year natural restoration >2-year artificial restoration >20-year natural restoration. The 8 species grouping result of 20-year artificial and natural vegetation restoration is: Cosmos bipinnatus , Amaranthus mangostanus and Artemisia scoparia are degenerative species group; Medicago sativa, Echinochloa crusgalli, Setaria viridis and Artemisia sphaerocephala are transitional species; Vitex negundo is progressing species group.
     For bare rock fissure with regolith on steep sunny slope the a diversity index of natural vegetation restoration fluctuated in process of time. The diversity index of artificial vegetation restoration is apparently higher than that of plant community in burozem on gentle sunny slope. In reference to the plant community of burozem on gentle sunny slope, theβdiversity index of bare rock fissure with regolith on steep sunny slope is in the order of: 10-year natural restoration> 2-year artificial restoration> 20-year natural restoration> 30-year of natural restoration. The 11 species grouping result of 30-year artificial and natural vegetation restoration is: Digitaria sanguinalis , Amaranthus mangostanus, Artemisia sphaerocephala, Setaria viridis and Xanthium sibiricum are degenerative species group; Arteimiaisia sieuersiana and P.cathayana are transitional species; Ailanthus altissima, Artemisia scoparia, Ulmus pumila, Vitex negundo are progressing species group.
     For earth-rock on gentle sunny slope the a diversity index is apparently higher than that of natural plant community. In reference to the plant community of burozem on gentle sunny slope, theβdiversity index of earth-rock on gentle sunny slope is in the order of: 2-year artificial restoration> 10-year natural restoration > 1-year artificial restoration. The 7 species grouping result of 10-year artificial and natural vegetation restoration is: Setaria viridis and Medicago sativa are degenerative species group; Artemisia sacrorum is transitional species; Vitex negundo, Platycladus orientalis, Chenopodium album and Pinus tabulaeformis are progressing species group.
     (5) According to the partition result of natural and artificial plant community with TWINSPAN the ecological effects were analyzed. The similarity order between natural restoration communities and natural plant communities is: Ailanthus altissima community> Vitex negundo -Alopecurus pratensis community> Ulmus pumila- Arteimiaisia sieuersiana community > Setaria viridis-Artemisia sphaerocephala community>Amaranthus mangostanus-Chenopodium glaucum community. The soil bulk density and pH value of Amaranthus mangostanus- Chenopodium glaucum community are minimum,The soil organic matter, nitrogen and potassium of Setaria viridis-Artemisia sphaerocephala community are largest.The soil available phosphorus of Ulmus pumila- Arteimiaisia sieuersiana community is largest.The similarity order between artificial restoration community and natural plant community is: Setaria viridis-Ailanthus altissima community>Amorpha fruticosa-Caragana sinica community>Medicago sativa-Robinia pseudoacacia community>Cosmos bipinnatus-Pennisetum alopecuroides community>Astragalus adsurgens community> Lolium perenne-Hemerocallis fulva community.
引文
1.北京林业大学.土壤学[M].中国林业出版社,1982.
    2.卞正富,张国良.矿山土复垦利用试验[J].中国环境科学,1999,19(1):81-84.
    3.陈波,包志毅.国外采石场的生态和景观恢复[J].水土保持学报.2003,17(5):71-73.
    4.陈法扬.城市化过程中的废弃采石场治理技术探讨[J].中国水土保持,2002(5):39-40.
    5.陈法扬.生态修复与可持续发展[A].全国水土保持生态修复研讨会论文汇编[C],2004,32-37.
    6.陈芳清,张丽萍,卢斌.隔河岩水电站废弃地植被的初始生态恢复[J].三峡大学学报:自然科学版,2003,25(2):180-184.
    7.陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境,2004,13(3):286-291.
    8.陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替[J].生态学报,2001,21(8):1347-1353.
    9.丁青坡,王秋兵,魏忠义,等.抚顺矿山不同复垦年限土壤的养分及有机碳特性研究[J].土壤通报,2007,38(2):262-267.
    10.高国雄,高保山,周心澄,等.国外工矿山土地复垦动态研究[J].水十保持,2001,3(1):98-103.
    11.古锦汉,冯光饮,梁亦肖,等.矿山迹地恢复树种选择技术研究[J].湖南林业科技,2006,33(5):18-20.
    12.郭逍宇,张金屯,宫辉力,等.安太堡矿山恢复过程主要种生态位梯度变化研究[J].西北植物学报,2004,24(12):2329-2334.
    13.郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地恢复过程中的植被动态[J].生态学报,2003,23(8):1470-1476.
    14.何念鹏,吴泠,等.松嫩草地次生光碱斑种子流及其生态恢复意义[J].生态学报,2004,24(4):843-847.
    15.贺金生,陈伟烈.长江三峡地区退化生态系统植物群落物种多样性特征[J].生态学报,1998,18(4):399-407.
    16.胡振琪,张光灿,魏忠义,等.煤矸石山的植物种群生长及其对土壤理化特性的影响[J].中国矿业大学学报,2003,(4):491-496.
    17.蒋高明.英国圣·海伦斯Bold Moss Tip煤矿废弃地恢复实验研究[J].植物学报,1993,35(12):951-962.
    18.蒋承菘.完善环境地质学科促进环境地质工作[J].地质通报,2004,23(8):732-736.
    19.蒋文伟,周国模,余树全,等.安吉山地主要森林类型土壤养分状况的研究[J].2004,18(4):73-76,100.
    20.兰平和,李新玉.北京市矿业发展研究[J].资源产业,2003,5(4):42-45.
    21.李怀永.北京市矿山环境调查方法及成果简介[J].西北地质,2003,36:22-25.
    22.李晋川,王文英,卢崇恩.安太堡露天煤矿新垦土地恢复的探讨[J].河南科学,1999,17:92-95.
    23.李明顺,唐绍清,张杏辉,等.金属矿山废弃地的生态恢复实践与对策[J].矿业安全与环保,2005,32(4):16-18.
    24.李树志,周锦华,张怀新.矿山生态破坏防治技术[M].北京:煤炭工业出版社,1998.
    25.李新玉.论大都市矿业发展--以北京市为例[J].中国矿业,2003,12(12):7-11.
    26.李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    27.李忠佩,王效举.小区域水平土壤有机质动态变化的评价与分析[J].地理科学,2000,20(2):182-188.
    28.林开敏,俞新妥,黄宝龙,等.杉木人工林林下植物物种多样性的动态特征[J].应用与环境生物学报,2001,7(1):13-19.
    29.林心雄,文启孝.秸秆对土壤肥力的影响.中国土壤科学的现状与展望[M].南京:江苏科学技术出版社,1991.
    30.刘国华,舒洪岚.矿山废弃地生态恢复研究进展[J].江西林业科技,2003,13(3):20-25.
    31.刘国华,舒洪岚,张金池,等.南京幕府山矿山废弃地恢复模式研究[J].水土保持研究,2005,12(1):141-144.
    32.刘金福,洪伟.格氏栲群落生态学研究[J].生态学报,1999,19(3):347-352.
    33.马克平.论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    34.马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ-丰富度均匀度和物种多样性指数.生态学报,1995,15(3):268-277.
    35.马克平,等.北京东灵山地区植物群落多样性研究Ⅷ.群落组成随海拔梯度的变化[J].生态学报,1997,17(6):593-600.
    36.马克平.生物群落多样性的测度方法--α多样性的测度方法(上)[J].生物多样性,1994a,2(3):162-168.
    37.马克平.生物群落多样性的测度方法.中国科学院生物多样性委员会编:生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994b,141-165.
    38.马晓勇,上官铁梁,庞军柱.太岳山森林群落优势种群生态位研究[J].山西大学学报(自然科学版),2004,27(2):209-212.
    39.麦少芝,等.矿业废弃地的特点和环境影响[J].云南地理环境2005,17(3):23-26.
    40.莫测辉,蔡全英,全江海.城市污泥在矿山废弃地复垦的应用探讨[J].生态学杂志,2001,20(2):44-47.
    41.聂湘平,蓝崇钰,张志权,等.铜对大叶相思-根瘤菌共生固氮体系的影响[J].应用生态学报,2002,13(2):137-140.
    42.聂湘平,蓝崇钰,张志权.锌对大叶相思-根瘤菌共生固氮体系的影响[J].植物生态学报,2002,26(3):264-268.
    43.彭少麟,王伯荪.鼎湖山森林群落主要物种生态位重叠的研究[A].热带亚热带森林生态系统(6),北京:科学出版社,1990,19-27.
    44.彭少麟.中国热带亚热带恢复生态学研究与实践[M].北京:科学出版社,2003.
    45.曲刊湘,吴玉树,王焕校,等.植物生态学(第二版)[M].北京:高等教育出版社,1980:180.
    46.任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    47.邵彬,邓坤枚.长白山北坡亚高山云冷杉林的植物种类组成及重要值[J].自然资源学报,2000,15(1):66-73.
    48.时红.山西煤矿的生态环境问题及其对策[J].重庆环境科学,2002,24(2):11-13.
    49.束文圣,蓝崇钰,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].1997,8(3):314-318.
    50.束文圣,叶志鸿,张志权.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1630-1636.
    51.束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究(Ⅰ)[J].生态科学,2000,19(2):24-29.
    52.苏光全,何书金,郭焕成.矿山废弃土地资源适宜性评价[J].地理科学进展,1998,17(4):39-45.
    53.宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001(5):43-49.
    54.孙庆业,刘付程.铜陵铜尾矿理化性质的变化对植被重建的影响[J].农村生态环 境,1998,14(1):21-23.
    55.汤惠君,胡振琪.试论采石场的生态恢复[J].中国矿业,2004.7:38-42.
    56.唐文杰,李明顺.广西锰矿区废弃地优势植物重金属含量及富集特征[J].农业环境科学学报,2008,27(5):1757-1763.
    57.王宏镔,文传浩,谭晓勇,等.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学,1998,17(2):43-46.
    58.武雄,韩兵,管清花,等.北京市固体矿山生态环境现状及修复对策[J].地学前缘,2008,15(5):324-329.
    59.夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11):1471-1477.
    60.徐友宁,何芳,袁汉春,等.中国西北地区矿山环境地质问题调查与评价[M].北京:地质出版社,2006.
    61.徐友宁.矿山地质环境调查研究现状及展望[J].地质通报,2008,27(8):1235-1244.
    62.阎海平,谭笑,孙向阳,等.北京西山人工林群落物种多样性的研究[J].北京林业大学学报,2001,23(2):16-19.
    63.阳含熙,卢泽愚.植物生态学数量分类方法[M].北京:科学出版社,1983.
    64.杨修,高林.德兴铜矿山废弃地恢复与重建研究[J].生态学报,2001,21(11):1932-1940.
    65.于君宝,刘景双,王金达,等.矿山复垦土壤典型元素时空变化研究[J].中国环境科学,2001,21(3):235-239.
    66.余树全.浙江淳安天然次生林演替的定量研究[J].林业科学,2003,39(1):17-22.
    67.岳明,任毅.佛坪国家级自然保护区植物群落物种多样性特征[J].生物多样性,1999,7(4):263-269
    68.张光灿,刘霞,王燕.煤矿山生态重建过程中风化矸石山植被生长及土壤水文效应[J].水土保持学报,2002,16(5):20-23.
    69.张家来.应用最优分割法划分森林群落演替阶段的研究[J].植物生态学与地植物学学报,1993,17(3):224-231.
    70.张建彪,闫美芳,上官铁梁.山西采煤的主要生态问题及恢复和重建对策[J].安徽农业科学,2008,36(24):10668-10670.
    71.张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    72.张咏梅,何静,等.土壤种子库对原有恢复的贡献[J].应用与环境生物学报,2003,9(3):326-332.
    73.张志权,束文圣,蓝崇钰,等.土壤种子库与矿业废弃地恢复研究:定居植物对重金属的吸收和再分配[J].植物生态学报,2001,25(3):306-311.
    74.张志权,束文圣,蓝崇钰,等.引入土壤种子库对铅锌尾矿废弃地恢复的作用[J].植物生态学报.2000,24(5):336-374.
    75.张志权,束文圣,廖文波,等.豆科植物与矿业废弃地恢复[J].生态学杂志,2002,21(2):47-52.
    76.赵方莹,徐邦敬,周连兄,等.采石边坡生态修复技术组合模式研究[J].中国水土保持,2006,5:24-26.
    77.赵海燕.我国钢矿资源节约利用剖析[J].矿产保护与利用,2007,3:6-9.
    78.赵丽娅,李锋瑞,于先之.草地沙化过程地上植被与土壤种子库变化特征[J].生态学报,2003,23(9):1746-1756.
    79.赵平,彭少麟.种、种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,2001,12(1):132-136.
    80.赵志模,郭依泉.群落生态学原理与方法[M].重庆:科学技术文献出版社重庆分社,1990.
    81.中国标准出版社.中国林业标准汇编(营造林卷)[M].中国标准出版社.1998.
    82.邹健.2006年中国铁矿业面临的形式[J].金属矿山,2006,1:15-18.
    83.Bradshaw A.,程志勤译.西欧废弃地的管理与恢复[J].生态学报,1990,10(1):28-35.
    84.Southwood R V.,罗河清等译.生态学研究方法:适用于昆虫种群的研究[M].北京:科学出版社.1984.
    85.Adel J,Behnam H,& Younes A,et al..Soil seed banks in the Arasbaran proested area of Iran and their significance for conservation management[J].Biol Conserv.2003,109:425-431.
    86.Bradshaw A D.Restoration of mined lands:using natural processes[J].Ecological Engineering,1997,(8):255-269.
    87.Martinez-Ruiz C,Fernández-Santos B.Natural revegetation on topsoiled mining-spoils according to the exposure[J].Acta Oecologica,2005,28:231-238.
    88.Burton C M,Burton P J,Hebda R,et al.Determining the optimal sowing density for a mixture of native plants used to revegetate degraded ecosystems[J].Restoration Ecology,2006,14(3),379-390.
    89.Chapin F S,Ⅲ,Matson P A & Mooney H.Principles of terrestrial ecosystem ecology[M].New York:Springer-Verlag,2002.
    90.Coffin D P,Lauenroth W R.Spatial and temporal variation in the seed bank of semiarid grassland[J].American Journal of Botany,1989,76(1):53-58.
    91.Cullen W R,Wheater C P and Dunleavy P J.Establishment of species-rich vegetation on reclaimed limestone quarry faces in Derbyshire[J].Biological Conserration,1998,84:25-33.
    92.Damigos D,Kaliampakos D.Assessing the benefits of reclaiming urban quarries:a CVM analysis[J].Landscape and Urban Planning,2003,64:249-258.
    93.Darina Hodacová,Karel Prach.Spoil heaps from brown coal mining:technical reclamation versus spontaneous revegetation[J].Restoration Ecology,2003,11(3),385-391.
    94.Davis B N K.Chalk and limestone quarries as wildlife habitats[J].Minerals and the Environment,1979,1:48-56.
    95.Duque J F,Matin J,Pedraza A et al.A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain[J].Landscape and Urban Plann,1998,42:1-14.
    96.Falinska K.Seed bank dynamics in abandoned meadows during a 20-year period in the Bialowieza National Park[J].Ecol.1999,87:461-475.
    97.Gemmell R P.Colonisation of Industrial Wasteland[M].London:Arnold,1977,21-47.
    98.Grant C D,Campbell C J,Charnock N R.Selection of species suitable for derelict mine site rehabilitation in New South Wales,Australia[J].Water,Air,& Soil Pollution,2002,139:215-235.
    99.Hill M O.Decorana-a fortran program for detrended correspondence analysis and reciprocal averaging[M].Ithaca:Cornell University Press,1979,1-49.
    100.Hill M O.TWINSPAN -a fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes[M].Ithaca,New York:Cornell University Press,1979,1-52.
    101.Holl K D.Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA[J].Journal of Applied Ecology,2002,39(6),960-970.
    102.Johnson E A.Buried seed populations in the subarctic forest east of Great Slave Lake,North West Territories[J].Canadian Journal of Botany,1975,53:2933-2941.
    103.Lubke R A,Avis A M.A review of the concepts and application of rehabilitation following heavy mineral dune mining[J].Marine Pollution Bulletin,1999,37(8):546-557.
    104. Magurran A E. Ecological diversity and its measurement[M]. New Jersy: Princeton University Press, 1998.
    
    105. Martinez-Ruiz C, Fernandez-Santos B. Effect of substrate coarseness and exposure on plant succession in uranium-mining wastes[J].Plant Ecology,2001,155(1):79-89.
    
    106. Nathalie C, Jean R E, Bruno C, et al. Modeling vertical and lateral seed bank movements during mouleboard ploughing[J].European Jouranl of Agronomy,2000,13(2-3): 111-124.
    
    107. Peco B, Ortega M & Levassor C. Similarity between seed bank and vegetation in Mediterranean grassland:a predicitive model[J].Veg.Sci.l998,9:815-828.
    
    108. Peet R K. The measurement of species diversity[J]. Ann Rey Ecol System, 1974,5:285-307.
    
    109. Pensa M, Sellin A, Luud A, et al. An analysis of vegetation restoration on opencast oil shale mines in estonia[J].Restoration Ecology ,2004,12(2),200-206.
    
    110. Pielou E C. An introduction to mathematical ecology[M]. New York: Wiley Interscience.1969.
    
    111. Pianka E R. The structure of lizard communities [J]. Ann Rev Ecol System, 1973,4:53-73.
    
    112. Prakash K J, Suresh N, Gopinathan M C, et al. Suitability of rhizobia-inoculated wild legumes Argyrolobium flaccidum, Astragalus graveolens, Indigofera gangetica and Lespedeza stenocarpa in providing a vegetational cover in an unreclaimed limestone quarry[J].Plant and Soil,1995,177:139-149.
    
    113. Qian H. Largescale biogeographic patterns of vascular plant richness in North America: an analysis at the genera level[J]. Journal of Biogeography, 1998,25:829-836.
    
    114. Rao A V, Tak R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM) -fungi in Indian arid zone[J].Journal of Arid Environments, 2002,51(1):113-119.
    
    115. Ruiz-Jaen MC, Aide TM. Restoration success: How is it being measured?[J] Restoration Ecology,2005,13(3):569-577.
    
    116. Simpson EH. Measurement of diversity[J]. Nature, 1949,163:688.
    
    117. Singarayer K, FloretineM, Westbrooke E. Restoration on abandoned tropical pasturelands-do we know enough[J].Nature Conservation.2004:85-94.
    
    118. Vander V A G.& Davis C B A. The role of seed bank in the vegetation dynamics of prairie glacial marshes[J].Ecology,1978,59:322-335.
    
    119. Vitousek P M & Howarth R W. Nitrogen limitation on land and in the sea : how can it occur ?[J] Biogeochemistry ,1991,13:87-115.
    
    120. Whittaker R H. Evolution and measurement of species diversity[J]. Taxon,1972,21:213-251.
    
    121. Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona. V.Biomass, production, and diversity along the elevation gradients[J].Ecology,1975,56:771-790.
    
    122. Whittaker R H. Evolution of species diversity in land communities In M K Hecht W C Steereand B Wallace (eds ) [J]. Evolutionary Biology, 1977,10:1-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700