用户名: 密码: 验证码:
黄东海胶质浮游动物水母类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,胶质类浮游动物尤其是水母类在近岸高生产力的海洋生态系统中的作用越来越受到全球科学家们的关注。这种关注很大程度上是由于近年来很多海域或海湾出现水母类大量繁殖的现象而引起的,这种现象与过度捕捞、气候变化、富营养化以及生物入侵等因素有着内在的联系,给人们带来经济,社会和生态等各方面的损失。这种损失包括:当水母大量出现时,由于它们与鱼类存在食物和捕食竞争,使渔业资源和渔业生产锐减;由于它们会堵塞和撕破渔业生产网,干扰了人们的渔业生产活动;另外水母增多增加了海滨游泳爱好者被蛰伤甚至死亡事件发生的频率,对旅游者们的娱乐行为造成不便。到目前为止全球范围内报道了许多水母大量繁殖并对经济社会或海洋生态系统造成负面影响的事件。在北海水母数量爆发的频率与气候相关的事实表明了该海域将要面临一个更多的胶质类浮游动物的未来。所有这些都表明海洋中水母的生态学问题仍旧是全球的一个研究热点。到目前为止,在世界上许多海湾和海区有关水母生态学问题的研究上,均已取得方方面面有意义的进展。但在我国,由于对水母功能群的研究缺乏足够的重视,对于大型水母来讲它们被认为是渔业生产的副产品或者‘垃圾’,在渔业拖网捕获后把它们直接扔入海中并不去研究;对于小型水母来讲,因为它们为非饵料生物,并且有易碎,粘糊糊等难操作的特点,对浮游生物网同步采集到的水母的研究力度远不如对其他浮游动物类群的研究力度,因此我国对水母功能群生态学的研究基础相当薄弱。
     本论文基于以上背景对黄东海大型和小型水母类的生物地理分布格局进行了研究,对其生物量或丰度等生态学指标进行了定量研究。(1)利用浮游生物网样品对黄海小型水母类的种类组成及其丰度的时空变化进行了研究,表明黄海测区内小型水母整体丰度很低,且主要分布在50 m等深线以浅海域,各水母类群以及优势种类的季节更替非常明显。比较不同海区的小型水母的丰度水平及其占浮游动物丰度的比例,发现黄海的小型水母丰度水平最低,为0.8(0.04–1.3)ind.m-3,只占浮游动物丰度的< 0.5 %,表明小型水母在黄海海域并非占优势的功能群。(2)在中国黄东海采集的沙海蜇和在日本采集的越前水母的COI基因序列差异(0.2%)处于种内水平,从分子水平上证明两者为同一个种类,基于形态学和分子生物学的证据,我国大型水母沙海蜇的分类地位可初步订正为:Nemopilema nomurai Kishinouye, 1922(Scyphozoa:Rhizostomeae:Rhizostomatidae)。(3)利用渔业底层拖网的方法对黄东海大型水母的种类组成,总生物量及各优势种类生物量的时空分布进行了半定量研究。结果共鉴定到11个种(类),其中沙海蜇(Nemopilema nomurai),洋须水母(Ulmaridae genus sp.)以及多管水母(Aequorea spp.)为黄海的优势种(类),沙海蜇(只在东海北部)和霞水母(Cyanea spp.)为东海的优势种(类);这四个种(类)的湿重随着伞径的增大成冪增长的方式。大型水母平均总生物量的季节变化模式为:3月份水母总生物量最低,为4.6±9.4 kg km–2,春夏季随着海水表层温度的升高,大型水母的生物量逐渐增加,9月初水母的总生物量达到最高值,为22891±25888 kg km–2,随后随着海水的温度下降,生物量也逐渐下降。洋须水母的生物量在10月份达到最高值(2780 ind. km–2,1807 kg km–2),主要在黄海中部出现。多管水母在5月份丰度最高,为8262 kg km–2,且主要分布在30°N以北海域。
     聚焦大量爆发的水母种(类)沙海蜇和霞水母,基于实测的拖网资料,提供了该种可见的浮游阶段1周年的地理发生和生物量数据;结果表明,这两个种(类)表现了不同的季节出现和生物量格局:首先是黄海出现的沙海蜇(5–12月在黄海出现),5月份少量幼水母体在黄东海的交界处出现,6月它们的分布范围在南黄海扩大,到8月末及9月初沙海蜇几乎遍布黄海,其生物量和丰度以压倒其他大型水母类的优势形成“bloom”(生物量占所有大型水母的96.7%,丰度占93%,在南黄海平均生物量20446 kg km-2,平均占渔获物生物量的86.1 %),10月份至12月,沙海蜇的生物量逐渐减少甚至为零,其分布区域也向北回缩。其次为东海出现的霞水母(5月–10月):霞水母在5月初达到生物量的高值(平均生物量为380 kg km-2),其伞径随纬度的升高而变小,8月至10月其生物量骤然下降。这两个种类的生物量高值分布在温度或潮汐锋区。结合水文条件及沙海蜇和霞水母关键的生活史策略推测了黄东海该种浮游阶段的生活史模型。
     最后,通过对黄海8、9月份沙海蜇生物量的最高峰或暴发时期的呼吸率,摄食率进行估算,获得其每天对浮游动物现存量及生产力的潜在摄食压力,结果表明2006年9月在对沙海蜇最大捕获率的情况下,沙海蜇的摄食率为8.37(0.12–37.83)mg C m-2d-1,假设都以浮游动物为食,这时每天对浮游动物现存量及生产力的摄食压力分别为11.2%(0.17–50.6%),134.1%(1.98–605.7%)。因此在沙海蜇暴发期间对浮游动物的潜在的消耗非常大,甚至为毁灭性的。
In recent years, the ecological role of gelatinous zooplankton especially jellyfish and ctenophore within coastal marine ecosystems with high production has been increasingly concerned globally. This attention is largely a result of forming jellyfish and ctenophore blooms that may intrinsically be linked to over-fishing, eutrophication, climate change, and species invasions. Usually the nuisance blooms cause enormous ecological, economic and societal losses, e.g. diminishing the fish standing stock and commercial harvest due to potential food competitor or predator, hampering fishing activities by clogging and bursting trawl nets, and making swimmer or tourists stung and inconvenient in the beach. So far many cases of jellyfish bloom events affecting negatively to economies or ecosystem have been reported worldwide. Furthermore, it was thought for the North Sea that climate-related increases in jellyfish frequency suggested a more gelatinous future. All about that are suggesting this issue remain to be hotspot. By far various and significant advances on this theme have been made in many sea areas; however, the baseline knowledge of this issue such as ecology and biogeography of large jellyfish except species names was almost ignorant in coastal China Sea among East Asian waters. Because of lack of enough attention to medusas from scientists, basic studies on jellyfish functional group are very weak in our country. Large jellyfishes are usually not studied but directly thrown out to the sea considering as nuisance when they are collected in the trawl. The same status with large ones, not forage, slimy, frangible and hard to process, small medusas are usually ignored for study compared with other forage zooplankton.
     Based on background mentioned above, this thesis focus on the basic information on seasonal geographical distribution of medusas including large and small size, and qualify ecological indexes such as biomass or abundance in the Yellow Sea and East China Sea. This study, as a fundamental knowledge, may be helpful to describe problems with the causes and effects of jellyfish blooms in the YS and ECS There are some results:
     Temporal and spatial variation of species composition and abundance of small medusas in the Yellow Sea are studied using samples collected vertically by zooplankton net. Total abundance of small medusas is generally low in the Yellow Sea area. Small medusa mainly distributed the shallower water than 50m Isobath. Seasonal replacement of medusas classes such as hydromedusae, siphonophores and ctenophores, and dominant taxon are extremely apparent. Comparing abundance level and percentage of small medusas occupied total zooplankton abundance among several sea areas, we found that the abundance (0.8 (0.04–1.3) ind. m-3) and percentage (< 0.5 %) of small medusas in the Yellow Sea were all lowest, which indicate that small medusas are not dominant assemblage among zooplankton functional groups
     The difference of COI gene series is small (0.2%) between Stomolophus meleagris L. Agassiz, 1862 collected from China coastal sea and Nemopilema nomurai Kishinouye, 1922 collected from Japan Sea, which is species level. This result preliminarily indicates these two samples are same species. So the taxonomy position of S. meleagris collected from China coastal sea may change into N. nomurai (Scyphozoa:Rhizostomeae:Rhizostomatidae).
     Semi-qualification on seasonal geographical distribution of biomass/ abundance of large jellyfish in the Yellow Sea and East China Sea are studied, based on swept area method by bottom trawl surveys and surface investigation cruise. 11 taxon are identified, among them N. nomurai, Aequorea spp., Ulmaridae genus sp. are dominant taxon in the Yellow Sea, comparatively, N. nomurai and Cyanea spp., in the East China Sea. Wet weight of these four jellyfish taxon increase exponentially with the bell diameter. The seasonal pattern of total biomass of large jellyfish is: The total biomass is lowest (4.6±9.4 kg km–2) in March when the surface temperature is also lowest during one year; they increase with the increasing temperature. The biomass reach to the highest (22891±25888 kg km–2), and then they will decrease with the drop of temperature. The biomass of Ulmaridae genus sp., species preferring cold temperature, is up to the highest (2780 ind. km–2, 1807 kg km–2) in October, and they mainly distributed in the middle part of the Yellow Sea. N. nomurai and Aequorea spp. usually adapt themselves in cold waters. The biomass of Aequorea spp. is highest in May (8262 kg km–2), and this species mainly distributed northern part of 30°N.
     Based on the in situ bottom trawl data, seasonal geographical occurrence and distribution of pelagic life stages of N. nomurai and Cyanea spp., bloom forming jellyfish, are studied. Two different patterns of seasonal occurrence and biomass are found: (1) the occurring N. nomurai in the YS (May–December), in May very few young medusas of this species appear at the junction of the YS and ECS; in June they began to expand distribution area in the southern YS; up to August and early September medusas are widespread throughout the YS, and form bloom with overwhelming other gelatinous species (Average biomass is 20446 kg km–2, and averagely account for 86.1 % of the total catch); and then the biomass and distribution area of them gradually shrink from October to December, even decrease to zero in the later month. (2) The appearing Cyanea spp. in ECS (May–October). The biomass of this species reach the maximum in May (Average biomass: 380 kg km–2) and early June; they decrease in August and later month. The high density of these two species distribute in the tidal front or temperature front area. Combining hydrographic condition and fishery data, distributional pattern and life cycle of N. nomurai and Cyanea spp. are discussed and speculated.
     At last, we acquire the potential feeding pressure of collective N. nomurai on standing stock and production of zooplankton per day, through estimating respiration rate and feeding rate of this species during blooming period. Results indicate that the feeding rate is 8.37 (0.12–37.83) mg C m-2 d-1 in September, 2006, the blooming time, assuming the capture rate of the bottom trawl is 0.1. The feeding pressure of collective N. nomurai on standing stock and production of zooplankton is 11.2% (0.17-50.6%), 134.1% (1.98-605.7%), respectively, assuming food requirement are all zooplankton. So the potential depletion of N. nomurai is very large, even destructive when they are blooming.
引文
1. Alvarino A (1971) Siphonophora of the Pacific with a review of the world distribution. Bull Scripps Inst Oceanogr 16: 432 pp.
    2. Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, London
    3. Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451: 69–87
    4. Attrill MJ, Wright J, Edwards M (2007) Climate–related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52: 480–485
    5. Barz K, Hirche HJ (2007) Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Mar Biol 151: 1021–1033
    6. Billett DSM, Bett BJ, Jacobs CL, Rouse IP, Wigham BD (2006) Mass deposition of jellyfish in the deep Arabian Sea. Limnol Oceanogr 51: 2077–2083
    7. Biscaye PE, Anderson RF, Deck BL (1988) Fluxes of particles and constituents to the eastern United States continental slope and rise: SEEP–1. Cont Shelf Res 8: 855–904
    8. Boero F, Bouillon J, Piraino S, Schmid V (2002) Asexual reproduction in the Hydrozoa (Cnidaria). In: Hughes RN (ed) Reproductive biology of invertebrates XI: progress in asexual reproduction. Oxford and IBH Publishing, New Delhi, p 141–158
    9. Bolton TF, Graham WM (2006) Jellyfish on the rocks: bioinvasion threat of the international trade in aquarium live rock. Biol Invasions 8: 651–653
    10. Botsford LW, Castilla JC, Peterson CH (1997) The management of Fisheries and marine ecosystems. Science 277: 509–515
    11. Bouillon J, Boero F (2000) The Hydrozoa: a new classification in the light of old knowledge. Thalassia Salentina 24: 3–296
    12. Breitburg DL, Adamack A, Rose KA, Kolesar SE, Decker MB, Purcell JE, Keister JE, Cowan JH Jr (2003) The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26: 280–297
    13. Brewer RH, Feingold JS (1991) The effect of temperature on the benthic stages of Cyanea (Cnidaria:Scyhozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. J Exp Mar Biol Ecol 152: 49–60
    14. Brodeur RD, Wilson MT, Napp JM (1997) Distribution of juvenile Pollock relative to frontal structure near the Pribilof Islands, Bering Sea. In: Forage Fishes in Marine Ecosystems, American Fisheries Society, Lowell Wakefield Fisheries Symposium Series, no.14: 573–589
    15. Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8(4): 296–306
    16. Brodeur RD, Sugisaki H, Hunt Jr GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233: 89–103
    17. Bucklin A, Bentley AM, Franzen SP (1998) Distribution and relative abundance of Pseudocalanus moultoni and P. newmani (Copepoda: Calanoida) on Georges Bank using molecular identification of sibling species. Mar Biol 132(1): 97–106
    18. Bucklin A, Frost BW, Grieve JB, Allen LD, Copley NJ (2003) Molecular systematic assessment of thirty-four calanoid copepod species of the Calanidae and Clausocalanidae using DNA sequences of mtCOI and nuclear 18S rRNA. Mar Biol 142: 333–343
    19. Burger G, Lavrov DV, Forget L, Lang BF (2007) Sequencing complete mitochondrial and plastid Genomes. Nat Publishing Group http://www.nature.Com/natureproto -cols
    20. Burnett JW (2001) Medical aspects of jellyfish envenomation: pathogenesis,case reporting and therapy. Hydrobiologia 451: 1–9
    21. Cargo DG (1974) Comments on the laboratory culture of Scyphozoa. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Publishing, New York, p 145–154
    22. Condon RH, Decker MB, Purcell JE (2001) Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polps (Chrysaora quinquecirrha). Hydrobiologia 451: 89–95
    23. Costello JH, Klos E, Ford MD (1998) In situ time budgets of the scyphomedusae Aurelia aurita, Cyanea sp., and Chrysaora quinquecirrha. J Plankton Res 20(2): 383–391
    24. Daskalov GM, Grishin AN, Rodionov S, Mihneva V (2007) Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc Natl Acad Sci USA 104: 10518–10523
    25. Dawson MN (2005) Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. J. Mar. Biol. Ass. U.K. 85: 679–694
    26. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull, Mar Biol Lab, Woods Hole, 200: 92–96
    27. Delap MJ (1905) Notes on the rearing, in an aquarium, of Cyanea lamarchi Péron et lesueur. Rep Sea Inland Fish Irel 1902–1903 2: 20–22
    28. Dong J, Liu CY, Wang YQ, Wang B (2006) Laboratory observations on the life cycle of Cyanea nozakii (Semeostomida, Scyphozoa). Acta Zool Sin 52(2): 389–395
    29. Doyle TK, Houghton JDR, Buckley SM, Hays GC, Davenport J (2007) The broad-scale distribution of five jellyfish species across a temperate coastal environment. Hydrobiologia 579: 29–39
    30. Dumont H, Shiganova TA, Nierman U (eds) (2004) Aquatic invasions in the Black, Caspian, and Mediterranean seas. Kluwer, Dordrecht
    31. FAO (Food and Agriculture Organization of the United Nations) (2007) Fisheries and Aquaculture Department website. Available at www.fao.org
    32. Fenner PJ, Williamson JA (1996) Worldwide deaths and severe envenomation from jellyfish stings. Med J Aust 165: 658–661
    33. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294–299
    34. Galil BS, Spanier E, Ferguson WW (1990) The Scyphomedusae of the Mediterranean coast of Israel, including two lessepsian migrants new to the Mediterranean Zool Meded 64: 95–105
    35. Gershwin LA (2001) Systematics and Biogeography of the Jellyfish Aurelia labiata (Cnidaria: Scyphozoa). Biol Bull 201: 104–119
    36. Goy J, Morand P, Etienne M (1989) Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep-Sea Res 36: 269–279
    37. Graham WM, Pages F, Hamner WM (2001) A Physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451: 199–212
    38. Graham WM, Martin DL, Felder DL, Asper VL, Perry HM (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5: 53–69
    39. Graham WM, Bayha KM (2007) 14 Biological invasions by marine jellyfish. In: Nentwig W (ed) Ecological studies, Vol 193, biological invasions. Springer-Verlag, Berlin, p240–255
    40. Greve W (1994) The 1989 German Bight Invasion of Muggiaea atlantica. ICES J Mar Sci 5l(4): 355–358
    41. Gr?ndahl F, Hernroth L (1987) Release and growth of Cyanea capillata (L) ephyrae in the Gullmar Fjord, western Sweden. J Exp Mar Biol Ecol 106: 91–101
    42. Gr?ndahl F (1988) A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, Western Sweden, 1982 to 1986. Mar Biol 97: 541–550
    43. Hamner WM, Hamner PP, Strand SW (1994) Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in SaanichInlet, British Columbia. Mar Biol 119: 347–356
    44. Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20: 907–917
    45. Hansson LJ, Moeslund O, Ki?rboe T, Riisg?rd HU (2005) Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar Ecol Prog Ser 304: 117–131
    46. Hansson LJ (2006) A method for in situ estimation of prey selectivity and predation rate in large plankton, exemplified with the jellyfish Aurelia aurita (L.). J Exp Mar Biol Ecol 328: 113–126
    47. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270: 313–321
    48. Holland BS, Dawson MN, Crow GL Dietrich H (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145(6): 1119–1128
    49. Holst S, S?tje I, Tiemannn H (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151: 1695–1710
    50. Hsieh YH P, Leong FM, Rudloe J (2001) Jellyfish as food. Hydrobiologia 451: 11–17
    51. Huo Y, Sun S, Zhang F (2008) Seasonal and geographical variations of size-fractional biomass and production of zooplankton in the Yellow Sea, China. J Mar Syst Submitted.
    52. Hur HB, Jacobs GA, Teague WJ (1999) Monthly variations of water masses in the Yellow and East Chica Seas, November 6, 1998. J Oceanogr 55: 171–184
    53. Hwang UW, Kim W (1999) General properties and phylogenetic utilities ofnuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. The Korean J of Parasitol 37: 215–228
    54. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    55. JMBA (2005) Gelatinous zooplankton. J Mar Biol Assoc UK 85: 434–739
    56. Kasuya T, Ishimaru T, Murano M (2001) In situ measurement of the lobate ctenophore Bolinopsis mikado (Moser) abundance by the video recording system. J Oceanogr 57: 115–118
    57. Kawahara M, Ohtsu K, Uye S (2007) Growth, respiration and food requirement of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae). Poster. 4th International Zooplankton Symposium May 28– June 1, 2007, Hiroshima, Japan
    58. Kawahara M, Uye S, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant Jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307: 161–173
    59. Kishinouye K (1922) Echizen Kurage (Nemopilema nomurai). Dobutsugaku Zasshi 34: 343–346 (in Japanese)
    60. Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc: Biol Sci 265(1412): 2257–2263
    61. Kovalev AV, Piontkovski SA (1998) Interannual changes in the biomass of the Black Sea gelatinous zooplankton. J Plank Res 20: 1377–1385
    62. Kramp PL (1961) Synopsis of the medusae of the world. J Mar Biol Assoc UK 40: 1–569
    63. Kristofersson D, Anderson JL (2006) Is there a relationship between fisheries and farming? Interdependence of fisheries, animal production and aquaculture. Mar Policy 30: 721–725
    64. Liu GM, Sun S, Wang H, Zhang Y, Yang B, Ji P (2003) Abundance ofCalanus sinicus across the tidal front in the Yellow Sea, China. Fish Oceanogr 12: 291–298
    65. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S, (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387: 897–900
    66. Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 41: 229–246
    67. Lynam CP, Hay SJ, Brierley AS (2005). Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. J Mar Biol Assoc UK 85(3): 435–450
    68. Lynam CP, Brierley AS (2006) Enhanced survival of 0-group gadoid fish under jellyfish umbrellas. Mar Bio 150: 1397–1401
    69. Matsushita Y, Honda N (2006) Method of designing and manufacturing JET (Jellyfish Excluder for Towed fishing gear) for various towed fishing gears. Bull Fish Res Agency (Japan) 16: 19–27
    70. Mayer AG (1910) Medusae of the world III The Scyphomedusae. Carnegie Inst. Washington, Washington DC, p 449–735
    71. Meyran JC, Monnerot M, Taberlet P (1997) Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Mol Phylogenet Evol 8: 1–10
    72. Mianzan HW (1999) Ctenophora. In: Boltovskay D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, p561–573
    73. Mianzan HW, Cornelius PFS (1999) Cubomedusae and Scyphomedusae. In Boltovskay D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, p 513–559
    74. Mills CE (1995) Medusae siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52: 575–581
    75. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451: 55–68
    76. M?ller LF, Riisg?rd HU (2007) Population dynamics, growth and predation impact of the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa, and Aequorea vitrina in Limfjorden (Denmark). Mar Ecol Prog Ser 346: 153–165
    77. Nagai T (2003) Recovery of fish stocks in the Seto Inland Sea. Mar Pollut Bull 47: 126–131
    78. Nielsen A, Pedersen A, Riisg?rd HU (1997) Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82: 297–305
    79. Olesen NJ (1995) Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar Ecol Prog Ser 124: 63–72
    80. Omori M, Hamner WM (1982) Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar Biol 72: 193–200
    81. Omori M, Kitamura M (2004) Taxonomic review of three Japanese species of edible jellyfish (Scyphozoa: Phizostomeae). Plankton Biol Ecol 51(1): 36–51
    82. Omori M, Nakano E (2001) Jellyfish fisheries in southeast Asia. Hydrobiologia 451: 19–26
    83. Pagés F (2001) Past and present anthropogenic factors promoting the invasion, colonization and dominance by jellyfish of a Spanish coastal lagoon. In: Gelatinous zooplankton outbreaks: theory and practice. CIESM Workshop Series 14, Monaco, p69–71
    84. Palumbi SR, Benzie J (1991) Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. Mol Mar Biol Biotechnol 1: 27–34
    85. Pauly D, Christensen J, Dalsgaard J, Froese R, Torres FJr, (1998) Fishing down marine food webs. Science 279: 860–863
    86. Peek AS, Gustafson RG, Lutz RA, Vrijenhoek RC (1997) Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams(Bivalvia: Vesicomyidae): results from mitochondrial cytochrome oxidase subunit I. Mar Biol 130: 151–161
    87. Péres-Ruzafa A, Gilabert J, Gutiérrez JM, Fernández AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475/476: 359–369
    88. Pfannkuche O, Lochte K (2000) The biogeochemistry of the deep Arabian Sea: Overriew. Deep Sea Res II 47: 2615–2628
    89. Pitt KA, Koop K, Rissik D (2005) Contrasting contributions to inorganic nutrient recycling by the co-occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). J Exp Mar Biol Ecol 315: 71–86
    90. Pitt KA, Kingsford MJ, Rissik D, Koop K (2007) Jellyfish modify the response of planktonic assemblages to nutrient pulses. Mar Ecol Prog Ser 351: 1–13
    91. Pugh PR (1999) Siphonophorae. In: Boltovskay D Boltovskay D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, p 467–511
    92. Purcell JE, Cresswell FP, Cargo DG, Kennedy VS (1991) Differential ingestion and digestion of bivalve larvae by the scyphozoan Chrysaora quinquecirrha and by the ctenophore Mnemiopsis leidyi. Biol Bull (Woods Hole) 180: 103–111
    93. Purcell J (1992) Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, USA. Mar Ecol Prog Ser 87: 65–76
    94. Purcell JE, Brown ED, Stokesbury KDE, Haldorson LH, Shirley TC (2000) Aggregations of the jellyfish Aurelia labiata: abundance, distribution, association with age-0 walleye pollock, and behaviors promoting aggregation in Prince William Sound, Alaska, USA. Mar Ecol Prog Ser 195: 145–158
    95. Purcell JE, Graham WM, Dumont HJ (2001a) Jellyfish blooms: ecologicaland societal importance. Kluwer, Dordrecht
    96. Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2001b) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. Am Geophys Union, Washington DC, Coast Estuar Stud 58: 77–100
    97. Purcell JE, Shiganova TA, Decker MB, Houde ED (eds) (2001c) The ctenophore Mnemiops is in native and exotic habitats: US estuaries versus the Black Sea basin. Hydrobiologia 451: 145–176
    98. Purcell JE, Arai MN (2001d) Interaction of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44
    99. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476
    100. Purcell JE, Decker MB (2005) Effects of climate on relative predation by ctenophores and scyphomedusae on copepods in Chesapeake Bay during 1987-2000. Limnol Oceanogr 50: 376–387
    101. Purcell JE, Uye S, Lo WT (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350: 153–174
    102. Raskoff KA (2001) The impact of El Ni?o events on populations of mesopelagic hydromedusae. Hydrobiologia 451: 121–129
    103. Riisg?rd HU, Christensen PB, Olesen NJ, Petersen JK, M?ller MM, Andersen P (1995) Biological structure in a shallow cove (Kertinge Nor, Denmark): control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia 41: 329–344
    104. Robison BH, Reisenbichler KR, Sherlock RE (2005) Giant larvacean houses: Rapid carbon transport to the deep sea floor. Science 308: 1609–1611
    105. Rutherford LD Jr, Thuesen EV (2005) Metabolic performance and survival of medusae in the estuarine hypoxia. Mar Ecol Prog Ser 294: 189–200
    106. Schneider G, Behrends G (1994) Population dynamics and the trophic role ofAurelia aurita medusae in the Kiel Bight and western Baltic. Ices J Mar Sci 51: 359–367
    107. Schroth W, Jarms G, Streit B et al. (2002) Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. Bio Med Cent Evol Biol 2(1): 1–10
    108. Shiganova TA (1998) Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish Oceanogr 7: 305–310
    109. Shiganova T (2005) Changes in appendicularian Oikopleura dioia abundance caused by invasion of alien ctenophores in the Black Sea. J Mar Biol Assoc UK 85: 477–494
    110. Shimomura T (1959) On the unprecedented flourishing of“Echizen-kurage”, Stomolophus nomurai (Kishinouye), in the Tsushima warm current regions in Autumn, 1958. Bull Jpn Sea Reg Fish Res Lab 7: 85–107 (in Japanese with English abstract)
    111. Shoji J, Masuda R, Yamashita Y, Tanaka M (2005) Predation on fish larvae by moon jellyfish Aurelia aurita under low dissolved oxygen concentrations. Fish Sci 71: 748–753
    112. Silfen R, Vilan A, Wohl I, Leviav A (2003) Mediterranean jellyfish (Rhopilema nomadica) sting. Burns 29: 868–870
    113. Silguero JMB, Robison BH (2000) Seasonal abundance and vertical distribution of mesopelagic calycophoran siphonophores in Monterey Bay, CA. J Plankton Res 22: 1139–1153
    114. Suchman CL, Brodeur RD (2005) Abundance and distribution of large medusae in surface waters of the northern California Current. Deep-Sea Res II 52: 51–72
    115. Sugahara T, Ueno M, Goto Y, Shiraishi R, Doi M, Akiyama K, Yamauchi S (2006) Immunostimulation effect of jellyfish collagen. Biosci Biotechnol Biochem 70: 2131–2137
    116. Sullivan BK, Van Keuren D Claucy M (2001) Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in NarragansettBay, RI. Hydrobiologia 451: 113–120
    117. Sun S, Huo Y, Yang B (2008) Zooplankton functional groups on the continental shelf of the Yellow Sea. Deep Sea Res, in press.
    118. Tang DL, Kester DR, Wang Z, Lian J, Kawamura H (2003) AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay nuclear power station, China. Remote Sens Environ 84: 506–515
    119. Uchida T (1954) Distribution of Scyphomedusae in Japanese and its adjacent water. J Fac Sci Hokkaido Univ Ser 6 Zool 12: 209–219
    120. UNEP (United Nations Environmental Programme) (1984) Workshop on jellyfish blooms in the Mediterranean. 31 Oct–4 Nov 1983, Athens
    121. UNEP (1991) Jellyfish blooms in the Mediterranean Sea. UNEP MAP Tech Rep Ser 47
    122. US Census Bureau (2006) Total midyear population for he world: 1950–2050. Available at www.census. gov/idb/www/worldpop.html
    123. Uye S, Shimauchi H (2005) Population biomass, feeding, respiration, and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27(3): 237–248
    124. Uye S, Ueta Y (2004) Recent increase of jellyfish populations and their nuisance to fisheries in the inland sea of Japan. Bull Jpn Soc Fish Oceanogr 68: 9–19
    125. Uye. S, Fujii N, Takeoka H (2003) Unusual aggregations of the scyphomedusa Aurelia aurita in coastal waters along western Shikoku, Japan. Plankton Biol Ecol 50: 17–21
    126. Wei H, Su J, Wan R, Wang L, Lin Y (2003) Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the Yellow Sea. Fish Oceanogr 12: 434–442
    127. Wiebe PH, Madin LP, Haury LR, Harbison GR, Philbin LM (1979) Diel vertical migration by Salpa aspersa and its potential for large-scale particulate organic matter transport to the deep sea. Mar Biol 53: 249–255
    128. Xian WW, Kang B, Liu RY (2005) Jellyfish blooms in the Yangtze Estuary. Science 307: 41
    129. Yamada M (1997) Scyphozoa. In: Chihara M, Murano M (eds) An illustrated guide to marine plankton. Tokai University Press, Tokyo, p 541–547 (in Japanese)
    130. Yamaji L (1966) Illustrations of the Marine Plankton of Japan. Hoikusha Publ Tokyo. 372pp (in Japanese)
    131. Youngbluth MJ (1985) Investigations of soft-bodied zooplankton and marine snow using research submersibles. Int Symp Mar Plankton 37(2): 782–783
    132. Zimmer M (2005) Glowing genes: a revolution in biotechnology. Prometheus Books, Amherst, NY
    133.陈介康,丁耕芜(1983)温度对海蜇横裂生殖的影响。动物学报29(3):195–206
    134.程家骅,丁峰元,李圣法,严利平,凌建忠,李建生,刘勇(2005)东海区大型水母数量分布特征及其与温盐度的关系。生态学报25(3):440–445
    135.程家骅,李圣法,丁峰元,严利平(2004)东、黄海大型水母暴发现象及其可能成因浅析。现代渔业信息19(5):10–12
    136.丁峰元,程家骅(2005)东海区夏、秋季大型水母分布区渔业资源特征分析。海洋渔业27(2):120–128
    137.董婧,王彬,刘春洋(2006)白色霞水母各发育阶段的形态。水产学报30(6):761–766
    138.高尚武(1982)东海水母类的研究。海洋科学集刊19:33–42
    139.高尚武,洪恵馨,张士美(2002)中国动物志无脊椎动物刺胞动物门水螅虫纲管水母亚纲钵水母纲27:1–275
    140.和振武,许人和(1996)我国海域的水螅水母及其分布。河南师范大学学报(自然科学版)24(4):69–76
    141.赫崇本,汪园祥,雷宗友,徐斯(1959)黄海冷水团的形成及其性质的初步探讨。海洋与湖沼2(1):11–15
    142.洪恵馨,张士美(1982)中国沿海的食用水母类。厦门水产学院院报1:12–17
    143.洪惠馨(2002)水母和海蛰。生物学通报37(2):13–16
    144.洪惠馨,张士美,王景池(1978)海蜇。北京:科学出版社1–70
    145.黄宗国主编(1994)中国海洋生物种类与分布。北京:海洋出版社261–283
    146.霍元子(2008)黄海浮游动物功能群的研究。博士学位论文,中国科学院海洋研究所
    147.蒋双,陈介康(1994)黄渤海水螅水母、管水母和栉水母的地理分布。海洋通报13(3):17–23
    148.金显仕,赵宪勇,孟田湘等(2005)黄、渤海生物资源与栖息环境。北京:科学出版社1–405
    149.马喜平,高尚武(2000c)渤海水母类生态的初步研究—种类组成、数量分布与季节变化。生态学报20(4):533–540
    150.马喜平,孙松,高尚武(2000a)胶州湾水母类生态的初步研究I.群落结构及其年季变化。海洋科学集刊42:91–99
    151.马喜平,孙松,高尚武(2000b)胶州湾水母类生态的初步研究II.数量时空变化及同环境因子的关系。海洋科学集刊42:100–107
    152.丘书院(1954)论中国东南沿岸的水母类。动物学报6(1):49–57
    153.苏翠荣,徐家铸,李忠武(1996)江苏海州湾浮游动物的种类组成和分布南京师大学报(自然科学版)19(1):64–67
    154.苏纪兰,黄大吉(1995)黄海冷水团的环流结构。海洋与湖沼增刊。26(5):1–7
    155.孙濡泳编著(1992)动物生态学原理(第二版)。北京:北京师范大学出版社p 356–357
    156.汤毓祥,郑义芳(1990)关于黄、东海海洋锋的研究。海洋通报9(5):89–96
    157.唐启升(2006)中国专属经济区海洋生物资源与栖息环境。北京:科学出版社
    158.王真良(1996)黄海区水母类的生态研究。黄渤海海洋14(1):41–50
    159.翁学传,张以恳,王从敏,张启龙(1989)黄海冷水团的变化特征。青岛海洋大学学报19(1):119–131
    160.徐宾铎,金显仕粱振林(2002)黄海夏季不同取样网具渔获物组成比较分析。青岛海洋大学学报32(2):224–230
    161.徐兆礼,陈亚瞿(1989)东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系。生态学杂志8(4):13–15
    162.徐兆礼,高倩,陈佳杰,蔡萌,陈华,黄梅玲(2008)东海栉水母对温度和盐度生态适应的Yield-Density模型生态学杂志27(1):68–72
    163.徐兆礼,林茂(2006)东海水母类多样性分布特征。生物多样性14(6):508–516
    164.徐兆礼,张金标,蒋玫(2003a)东海管水母类生态研究。水产学报,27(增刊)82–90
    165.徐兆礼,张金标,王云龙(2003b)东海水螅水母类生态研究。水产学报27(增刊)91–97
    166.许人和,和振武(1997)大连沿海的水螅水母。河南师范大学学报(自然科学版)25(3):70-72
    167.严利平,李圣法,丁峰元(2004)东海、黄海大型水母类资源动态及其与渔业的关系初探。海洋渔业26(1):9–12
    168.杨关铭,何德华,王春生等(1999)台湾以北海域浮游桡足类生物海洋学特征的研究II.群落特征。海洋学报21(6):72–80
    169.张芳,孙松,杨波(2005a)胶州湾水母类生态学研究I种类组成与群落特征。海洋与湖沼36(6):507–517
    170.张芳,杨波,张光涛(2005b)胶州湾水母类生态学研究II优势种丰度的时空分布。海洋与湖沼36(6):518–526
    171.张金标(1977)江苏、浙江沿海水螅水母类和栉水母类的调查研究。海洋科技7:95–107
    172.张金标(1979)中国海域水螅水母类区系的初步分析。海洋学报1(1):127–137
    173.张金标,许振祖(1980)中国海管水母的地理分布。厦门大学学报自然科学版19(3):100–107
    174.张启龙,翁学传,杨玉岭(1996)南黄海春季水团分析。海洋与湖沼27(4):421–428
    175.张姝,张芳,刘媛,崔朝霞(2008)我国海域两种大型水母的分子鉴定。海洋与湖沼(投稿)
    176.赵保仁(1985)黄海冷水团封面与潮混合。海洋与湖沼16(6):451–459
    177.郑重、李少菁、许振祖(1984)海洋浮游生物学,海洋出版社,北京。
    178.仲霞铭,汤建华,刘培廷(2004)霞水母(Cyanea nozakii Kisninouye)暴发与海洋生态之关联性探讨。现代渔业信息19(3):15–17
    179.周太玄,黄明显(1958)烟台水螅水母类的研究。动物学报10(2):173–191
    180.周永东,刘子潘,薄治礼,薛利建(2004)东、黄海大型水母及其调查监测。水产科技情报31(5):224–227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700