用户名: 密码: 验证码:
生物电化学系统处理藻渣及其产电效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国水污染物排放总量明显超过水环境承载力,水体污染严重。其中表现最突出的一个问题就是水体富营养化日趋严重。而富营养化最直接的后果就是引起藻类和其他水生植物的大量繁殖,形成水华。在给水厂中,对于含藻水的处理一直围绕着如何经济有效的除藻及减少处理过程中产生的藻类副产物展开。而很少从藻类资源回收利用的角度上来考虑如何更好地利用这部分处理过程中产生的废弃藻渣。我们可以借鉴海洋藻类资源利用和对富营养化水体藻类资源开发利用的经验,对给水厂中处理工艺产生的藻渣给予合理的利用,转化为能量,而回收这部分能量又可以为水厂带来收益,最终达到“变废为宝”的目的。生物电化学系统(BES)是近几年发展起来的新型的生物处理方法,可以在降解有机物的同时回收电能。本文围绕着藻渣在生物电化学系统中的降解效能、产电性能和能量回收、降解前后组分和结构的变化、及藻渣中有机物与副产物的生成关系等方面展开研究。
     首先研究了藻渣的主要成分藻及其代谢产物,包括藻胞内有机物和胞外有机物的性质及藻类副产物,包括消毒副产物、嗅味物质和藻毒素的生成规律。结果表明,藻分泌的胞外有机物较少,大部分有机物都存在藻细胞内部。在组成上,蛋白、碳水化合物是藻胞外有机物(EOM)的主要成分;蛋白是藻胞内有机物的主要成分(IOM)。在结构上,EOM比IOM中含有更多小分子量物质;IOM比EOM含有更多的芳香环化合物、以及蛋白、氨基酸类物质。不同时期藻胞内外有机物中蛋白、碳水化合物和脂类的比例分配决定三卤甲烷(THMs)的生成。当水中有溴离子存在时,恒定初始Br-/Cl2,藻胞内外有机物THMs生成及分配主要受Br-/TOC摩尔比值影响。藻毒素MC-LR和嗅味物质2-MIB的生成主要受藻密度影响,稳定期和衰亡期生成量最多。
     研究了生物电化学系统对藻渣的降解效能。比较了超声预处理、热碱预处理、碱预处理对藻渣中有机物的水解及释放可溶性有机物的效果,热碱处理优于碱处理、更优于超声处理。对比生物电化学系统对原藻渣和碱处理后藻渣中有机物的降解效能。碱处理后,SCOD、可溶性的蛋白、可溶性碳水化合物浓度均增加了三倍多。生物电化学系统对藻渣中可溶性有机物中各参数都有很好地去除效果,各参数去除率为碳水化合物>COD>UV254>蛋白>TOC。微生物在高负荷条件下对底物降解的更彻底,去除率更高。当高负荷低负荷藻类有机物交替运行时,从低浓度转化到高浓度运行时,微生物需要适应,对底物降解有所影响。利用DOC、SUVA、分子量、紫外可见光谱、三维荧光光谱、测定蛋白和碳水化合物含量等方法考察了生物电化学系统(闭路、开路)、厌氧控制三种不同操作条件下的进水和出水藻渣中有机物的组分及结构变化。结果表明,三种不同操作条件下藻渣有机物降解前后都是亲水性、含较少芳香环和双键结构的化合物,且不同条件下的出水中有机物分子量都呈现减少的趋势。蛋白、碳水化合物和THMs前体物的去除均为生物电化学系统闭路状态最好,其次是厌氧控制试验,生物电化学系统开路状态效果最差。利用牛血清蛋白、葡萄糖和鱼油三种纯物质计算蛋白、碳水化合物和脂类三种组分各自对藻类有机物中三卤甲烷生成势(THMFP)的贡献。结合三维荧光光谱技术、对不同生长时期的藻类有机物生物电化学降解前后的荧光数据进行解析,三种荧光解析方法(荧光强度、荧光区域面积、平行因子)获得的荧光参数与THMFP均有很强的线性相关性。
     在产电性能和电能回收方面,碱处理后的藻渣的峰值电压比原藻渣更大,且达到峰值电压更快。碱预处理藻渣比原藻渣获得更多的能量收益,这部分收益能抵消使用碱处理药剂产生的费用支出。功率密度随着藻渣中可溶性有机物浓度的增加而增加,最大的功率密度可达到7.86W/m3。由于生物电化学系统对不同组分物质降解能力的差异,不同生长时期的藻类和不同的藻种对产电性能都有影响。操作条件也会影响产电性能。研究表明,温度会影响阳极室微生物的生长活性和代谢速率,从而影响阳极电位和整个系统的产电性能。搅拌能提高传质效率,使微生物利用底物的速率加快,缩短三分之二的运行时间。加入电子中介体后微生物活性增强,输出电压和功率密度都得到提高。基于16S rRNA基因克隆文库系统发育分析可知在阳极生物膜上有大量的产电菌和发酵菌。生物电化学系统降解藻类有机物主要依靠发酵菌和产电菌之间的互养关系。大多数的产电菌优先利用发酵菌的发酵产物来产电。另外,根据循环伏安曲线得到的氧化还原峰的位置可以判断产电菌的类型主要为通过中介体传递电子的产电菌,且其主要的电子中介体成分与AQDS所含有的醌类物质相似。
At present, the total emissions of water pollutants has exceeded the waterenvironment load-bearing capacity, which cause serious water pollutions. The mostprominent problem is eutrophication. It directly lead to a bloom of algae and waterplants. How to treat algae-laden water effectively is always a focus in drinking watertreatment plant (DWTP). However, the waste algal sludges produced from the treatmentare rarely paid attention based on waste resource utilization. We can learn from theresources exploitation and utilization experiences of sea algae and the algae ineutrophication water bodies. Algae sludge produced from DWTP should be reasonableuse, and be transformed to energy. The energy can be recovered, thus it brings the profitto DWTP. Bioelectrochemical systems (BESs) is a new biological technology, whichcan oxidize organic matter and simultanous recovery of electricity. This research focuson the degradation and electricity production performance of the algal sludge in BES,changes in components and constructures during the degradation process, and therelationships between organic matters in algal sludge and algal byproducts.
     Characteristics of algae and their metabolites, including intracellular organic matter(IOM) and extracellular organic matter (EOM) were studied. We also investigated theformation of the algal byproducts, such as disinfection byproducts, microcystin-LR,taste and odor substances. The results demonstrated that concentrations of the organicmatter in EOM were less than that in IOM. Protein and carbohydrate were the majorcomponents for EOM, while only protein was the predominant components for IOM.EOM contained more small molecular weight fractions compared to IOM. There weremore aromatic compounds, protein and amino acid in IOM. The proportion of protein,carbohydrate and lipid in different algal growth phase determined THMs yields. Whenthe initial ratio of Br-/Cl2was constant, the formation and distribution of THMs wasdetermined by the mole ratio of Br-/TOC in the present of bromide. The formation ofMC-LR and2-MIB depended on algae density. The yields were the most at stationaryand dead phases.
     Degradation of algal sludge using BESs was investigated. Three pretreatments foralgal sludge were compared. Heat-alkali pretreatment was the best, alkali pretreatmentwas better than ultrasonic pretreatment. After alkali pretreatment, concentrations ofSCOD, soluble proteins, soluble carbohydrates were all increased three times. Solubleorganic matter could be effectively removed using BESs, and the removals had an orderas follows: carbohydrate> COD> UV254> protein> TOC. The removals were morecompletely in high load. The concentration from low to high influenced the removal ofalgal sludge. The changes in components and structures of organic matter from influent and effluent algal sludge samples among BESs reactor under open-circuit condition,BESs reactor under closed-circuit condition, and anaerobic reactor were investigatedusing methods, including DOC, SUVA, MW fraction, UV-VIS, EEM, anddetermination of protein and carbohydrate. There are hydrophilic componentscontaining few aromatic rings and double bond both in influent and effluent samplesamong three types of reactors. Organic matter in effluent contained larger proportions oflow MW fractions. The removal rates of protein, carbohydrate and lipid was higest inBESs reactor under closed-circuit condition, and then anaerobic reactor, and the lowestin BESs reactor under open-circuit condition. The contribution of the protein,carbohydrate and lipid, respectively to THMFP were calculated based on purechemicals of bovine serum albumin, glucose and fish oil. Fluorescence parametersthrough three analytic methods (fluorescence intensity, FRI and PARAFAC) wereestablished good relationships with THMFP.
     On the aspect of electricity generation and recovery, the peak of voltage fromalkali-pretreated algal sludge (A-AS) was better than that in raw algal sludge (R-AS). Itcan bring more profit in A-AS compared to R-AS. The extra profit can offset the costproduced from alkali chemical in DWTP. Power density increased with the increase ofsoluble organic matters, and the highest could reach7.86W/m3. The major componentsvaried with algae in different growth phase and different algae species. Changes of thecomponents during the degradation process could influence the electricity productionperformance. The operating conditions could also influence the electricity productionperformance. Temperature could influence the active growth and metabolism speed ofmicroorganisms, and futher affect the anodic potential and the reactor performance. Thestirring could enhance the mass transfer efficiency, which make a more rapiddegradation speed and reduce about two-thirds of running time. Adding AQDS couldincrease the microbial activity, and thus it can enhance the voltage output and powderdensity. According to the phylogenetic analysis of the16S rRNA gene clone library,degradation of algal sludge mainly depended on syntrophic interaction betweenfermentation bacteria and electrochemically active bacteria. Most of electrochemicallyactive bacteria first oxidized fermentation products to generate electricity. Moreover,the type of electrochemically active bacteria might use endogenous mediators based onpositions of the oxidation-reduction peak. The major component of the mediators wassimilar to the anthraquinones from AQDS.
引文
[1] Higgins J, Warnken J, Sherman P, et al. Survey of users and providers of recycledwater: quality concerns and directions for applied research[J]. Water Research,2002,36(20):5045-5056.
    [2] Liu W, Qiu R. Water eutrophication in China and the combating strategies[J].Journal of Chemical Technology and Biotechnology,2007,82(9):781-786.
    [3] Savage N. Algae: The scum solution[J]. Nature,2011,474(7352): S15-S16.
    [4] Testing A S f, Materials. Annual Book of ASTM Standards:[C].1989.
    [5] Hossain A, Salleh A, Boyce A N, et al. Biodiesel fuel production from algae asrenewable energy[J]. American Journal of Biochemistry and Biotechnology,2008,4(3):250-254.
    [6]王大志,朱友芳,李少菁等.七种微藻蛋白质含量和氨基酸组成的比较[J].1999,18(3):297-302.
    [7]范良民.滇池蓝藻成份分析及利用途径探讨[J].云南环境科学,1999,18(2):46-47.
    [8] Nallathambi Gunaseelan V. Anaerobic digestion of biomass for methaneproduction: a review[J]. Biomass and Bioenergy,1997,13(1-2):83-114.
    [9]周群英,高廷耀.环境工程微生物学[M].高等教育出版社,2000.
    [10]王娜,葛飞,吴秀珍等.藻类及其胞外分泌物对净水工艺的影响[J].水处理技术,2010,(2):19-24.
    [11]余国忠,刘军.藻细胞特性对净化工艺的影响研究[J].环境科学研究,2000,13(6):56-59.
    [12]金相灿,李兆春,郑朔方等.铜绿微囊藻生长特性研究[J].环境科学研究,2004,17(1):52-54.
    [13] Henderson R K, Baker A, Parsons S A, et al. Characterisation of algogenic organicmatter extracted from cyanobacteria, green algae and diatoms[J]. Water Research,2008,42(13):3435-3445.
    [14] Hoyer O, Lusse B, Bernhardt H. Isolation and characterization of extracellularorganic matter (EOM) from algae [J]. Zeitschrift für Wasser-undAbwasser-Forschung,1985,18(2):76-90.
    [15] Pivokonsky M, Kloucek O, Pivokonska L. Evaluation of the production,composition and aluminum and iron complexation of algogenic organic matter[J].Water Research,2006,40(16):3045-3052.
    [16] Hong H C, Mazumder A, Wong M H, et al. Yield of trihalomethanes and haloaceticacids upon chlorinating algal cells, and its prediction via algal cellular biochemicalcomposition[J]. Water Research,2008,42(20):4941-4948.
    [17] Whyte J N C. Biochemical composition and energy content of six species ofphytoplankton used in mariculture of bivalves[J]. Aquaculture,1987,60(3-4):231-241.
    [18] Brown M R. The amino-acid and sugar composition of16species of microalgaeused in mariculture[J]. Journal of Experimental Marine Biology and Ecology,1991,145(1):79-99.
    [19] Brown M R, Jeffrey S. Biochemical composition of microalgae from the greenalgal classes Chlorophyceae and Prasinophyceae.1. Amino acids, sugars andpigments[J]. Journal of Experimental Marine Biology and Ecology,1992,161(1):91-113.
    [20]曹吉祥,李德尚.10种淡水常见浮游藻类营养组成的研究[J].中山大学学报:自然科学版,1997,36(2):22-27.
    [21]孙建华,赵强.我国六个品系高直微藻营养组成的研究[J].海湖盐与化工,1997,26(3):20-22.
    [22] Brown M, Jeffrey S, Volkman J, et al. Nutritional properties of microalgae formariculture[J]. Aquaculture,1997,151(1-4):315-331.
    [23] Gatenby C M, Orcutt D M, Kreeger D A, et al. Biochemical composition of threealgal species proposed as food for captive freshwater mussels[J]. Journal ofApplied Phycology,2003,15(1):1-11.
    [24] Canizares-Villanueva R, Dominguez A, Cruz M, et al. Chemical composition ofcyanobacteria grown in diluted, aerated swine wastewater[J]. BioresourceTechnology,1995,51(2):111-116.
    [25] Vargas M, Rodriguez H, Moreno J, et al. Biochemical composition and fatty acidcontent of filamentous nitrogen-fixing cyanobacteria[J]. Journal of Phycology,1998,34(5):812-817.
    [26]朱雷,钟力,陈忠正. V型滤池在实际运行中的几个问题探讨[J].国外建材科技,2002,(2):49-52.
    [27]刘准.供水厂气浮渣厌氧处理试验研究[J].中国沼气,1996,14(1):12-14.
    [28] Aulenbach D B, Shammas N K, Wang L K, et al. Algae Removal by FlotationTechnology[M]. In Wang, Lawrence K., Shammas, Nazih K., Selke, WilliamA.Aulenbach, Donald B.(ed), Humana Press,2010,12:363-399.
    [29]陈路全,加碱和超声破解预处理对剩余污泥厌氧消化的影响[D].天津:天津大学,2008.
    [30]杨文进,陈才高,刘海燕等.气浮池藻渣成分及处置方法[J].给水排水,2008,34(12):19-21.
    [31] Fang J Y, Yang X, Ma J, et al. Characterization of algal organic matter andformation of DBPs from chlor(am)ination[J]. Water Research,2010,44(20):5897-5906.
    [32] Hua G H, Reckhow D A, Kim J. Effect of bromide and iodide ions on theformation and speciation of disinfection byproducts during chlorination[J].Environmental Science&Technology,2006,40(9):3050-3056.
    [33] Huang J, Graham N, Templeton M, et al. A comparison of the role of twoblue–green algae in THM and HAA formation[J]. Water Research,2009,43(12):3009-3018.
    [34]王红兵,朱惠刚.淡水浮游藻类污染及其毒性[J].上海环境科学,1995,14(8):38-41.
    [35] Duy T N, Lam P K S, Shaw G R, et al. Toxicology and risk assessment offreshwater cyanobacterial (blue-green algal) toxins in water[J]. Reviews ofEnvironmental Contamination and Toxicology,2000,163:113-186.
    [36] Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, et al. Liver tumor promotion by thecyanobacterial cyclic peptide toxin microcystin-LR[J]. Journal of Cancer Researchand Clinical Oncology,1992,118(6):420-424.
    [37] Hitzfeld B C, H ger S J, Dietrich D R. Cyanobacterial toxins: removal duringdrinking water treatment, and human risk assessment[J]. Environmental HealthPerspectives,2000,108(Suppl1):113.
    [38] Rinehart K L, Namikoshi M, Choi B W. Structure and biosynthesis of toxins fromblue-green algae (cyanobacteria)[J]. Journal of Applied Phycology,1994,6(2):159-176.
    [39] Watanabe M M, Kaya K, Takamura N. Fate of the toxic cyclic heptapeptides, themicrocystins, from blooms of Microcystis(Cyanobacteria) in a hypertrophiclake[J]. Journal of Phycology,1992,28(6):761-767.
    [40] Hart J, Fawell J, Croll B. The fate of both intra-and extracellular toxins duringdrinking water treatment[J]. Water Supply,1998,16(1):611-616.
    [41] Wicks R J, Thiel P G. Environmental factors affecting the production of peptidetoxins in floating scums of the cyanobacterium Microcystis aeruginosa in ahypertrophic African reservoir[J]. Environmental Science&Technology,1990,24(9):1413-1418.
    [42] Lahti K, Rapala J, F rdig M, et al. Persistence of cyanobacterial hepatotoxin,microcystin-LR in particulate material and dissolved in lake water[J]. WaterResearch,1997,31(5):1005-1012.
    [43]于建伟,李宗来,曹楠等.无锡市饮用水嗅味突发事件致嗅原因及潜在问题分析[J].环境科学学报,2007,27(11):1771-1777.
    [44] Zhang X, Chen C, Lin P, et al. Emergency Drinking Water Treatment during SourceWater Pollution Accidents in China: Origin Analysis, Framework andTechnologies [J]. Environmental Science&Technology,2011,45(1):161-167.
    [45] Steynberg M, Pieterse A, Geldenhuys J. Improved coagulation and filtration ofalgae as a result of morphological and behavioural changes due to pre-oxidation[J].Aqua J. Water Supply Res. Technol.,1996,45(6):292-298.
    [46] Plummer J D, Edzwald J K. Effect of ozone on algae as precursors fortrihalomethane and haloacetic acid production[J]. Environmental Science&Technology,2001,35(18):3661-3668.
    [47] Ma J, Liu W. Effectiveness and mechanism of potassium ferrate(VI) preoxidationfor algae removal by coagulation[J]. Water Research,2002,36(4):871-878.
    [48] Sukenik A, Teltch B, Wachs A, et al. Effect of oxidants on microalgalflocculation[J]. Water Research,1987,21(5):533-539.
    [49]罗晓鸿,周荣,王占生等.藻类及其分泌物对混凝过程的影响研究[J].环境科学学报,1998,18(3):318-324.
    [50] Huang W J, Lai C H, Cheng Y L. Evaluation of extracellular products andmutagenicity in cyanobacteria cultures separated from a eutrophic reservoir[J].Science of the Total Environment,2007,377(2):214-223.
    [51] Liang H, Gong W, Chen J, et al. Cleaning of fouled ultrafiltration (UF) membraneby algae during reservoir water treatment[J]. Desalination,2008,220(1):267-272.
    [52] Momba M, Kfir R, Venter S N, et al. Overview of biofilm formation in distributionsystems and its impact on the deterioration of water quality[J].Water SA,2000,26(1):59-66.
    [53] Middlebrooks E J, Porcella D B, Gearheart R A, et al. Techniques for algaeremoval from wastewater stabilization ponds[J]. Journal (Water Pollution ControlFederation),1974:2676-2695.
    [54] Lin Y F, Jing S R, Wang T W, et al. Effects of macrophytes and external carbonsources on nitrate removal from groundwater in constructed wetlands[J].Environmental Pollution,2002,119(3):413-420.
    [55] Shapiro J, Lamarra V A, Lynch M. Biomanipulation: an ecosystem approach tolake restoration[J].1975.
    [56] Perrow M R, Meijer M L, Dawidowicz P, et al. Biomanipulation in shallow lakes:state of the art[J]. Hydrobiologia,1997,342:355-365.
    [57] Horppila J, Peltonen H, Malinen T, et al. Top‐down or Bottom‐up Effects byFish: Issues of Concern in Biomanipulation of Lakes[J]. Restoration Ecology,1998,6(1):20-28.
    [58] Kasprzak P, Krienitz L, Koschel R. Biomanipulation: a limnological in-lakeecotechnology of eutrophication management?[J]. Memorie dell Istituto italiano diidrobiologia. Verbania Pallanza,1993,52:151-169.
    [59] Benndorf J. Possibilities and limits for controlling eutrophication bybiomanipulation[J]. Internationale Revue der gesamten Hydrobiologie undHydrographie,1995,80(4):519-534.
    [60] Toncheva-Panova T, Pouneva I, Mizinska-Boevska Y. Lysis of the green algaChoricystis minor by bacterial pathogen[J]. Dokladi na B lgarskata akademia nanaukite,2008,61(8):1013-1020.
    [61] Mayali X, Azam F. Algicidal Bacteria in the Sea and their Impact on AlgalBlooms1[J]. Journal of Eukaryotic Microbiology,2004,51(2):139-144.
    [62] Sohn J H, Lee J H, Yi H, et al. Kordia algicida gen. nov., sp. nov., an algicidalbacterium isolated from red tide[J]. International journal of systematic andevolutionary microbiology,2004,54(3):675-680.
    [63] Imai I, Ishida Y, Hata Y. Killing of marine phytoplankton by a gliding bacteriumCytophaga sp., isolated from the coastal sea of Japan[J]. Marine Biology,1993,116(4):527-532.
    [64] Jeong S Y, Ishida K, Ito Y, et al. Bacillamide, a novel algicide from the marinebacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodiniumpolykrikoides[J]. Tetrahedron letters,2003,44(43):8005-8007.
    [65]赵传鹏,浦跃朴,尹立红等.溶微囊藻菌的分离与溶藻作用[J].东南大学学报:自然科学版,2005,35(4):602-606.
    [66]田宝珍,曲久辉,雷鹏举.饮用水水源的化学灭藻[J].环境化学,2001,20(1):65-69.
    [67]王国祥,成小英,濮培民.湖泊藻型富营养化控制—技术,理论及应用[J].湖泊科学,2002,14(3):273-282.
    [68]小岛贞男,饭田稻作,滑川明夫.局部遮光控制藻类(微囊藻属)的验证研究[J].用水与废水(日本),2000,42(5):5-12.
    [69]刘海龙,杨栋,赵智勇等.高藻原水预臭氧强化混凝除藻特性研究[J].环境科学,2009,30(7):1914-1919.
    [70]王立宁,方晶云,马军等.化学预氧化对藻类细胞结构的影响及其强化混凝除藻[J].东南大学学报:自然科学版,2005,35(1):182-185.
    [71]陈杰,王波,张光明等.超声强化混凝去除蓝藻实验研究[J].环境工程学报,2007,1(3):66-69.
    [72]彭海清,谭章荣,高乃云等.给水处理中藻类的去除[J].中国给水排水,2002,18(2):29-31.
    [73]刘宏远,张燕.饮用水强化处理技术及工程实例[M].化学工业出版社,2005.
    [74]鲁承虎,孙青.欧洲部分国家水库和湖泊水处理特征[J].给水排水,1998,24(11):6-12.
    [75] Henderson R, Chips M, Cornwell N, et al. Experiences of algae in UK waters: atreatment perspective[J]. Water and Environment Journal,2008,22(3):184-192.
    [76]唐锋兵,时真男,任志强等.四种不同工艺对富营养化水源水的除藻效果[J].河北工程大学学报:自然科学版,2011,28(2):47-50.
    [77]贾瑞宝,刘军,王珂等.气浮/微絮凝/臭氧/活性炭工艺除藻效果[J].中国给水排水,2003,19(10):47-48.
    [78]梁恒,李圭白,李星等.不同水处理工艺流程对除藻效果的影响[J].中国给水排水,2005,21(3):5-7.
    [79]于莉君,赵虎,李圭白等.粉末活性炭-混凝-超滤联用处理含藻水的研究[J].中国给水排水,2008,24(19):51-54.
    [80]秦伯强,王小冬,汤祥明等.太湖富营养化与蓝藻水华引起的饮用水危机—原因与对策[J].地球科学进展,2007,22(9):896-906.
    [81]张大鹏.微絮凝直接过滤技术中试研究[D].上海:同济大学,1996.
    [82]王建平,黄长均.粉末活性炭吸附技术在水厂的应用[J].中国给水排水,2006,22(10):17-20.
    [83] Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. NatureReviews Microbiology,2009,7(5):375-381.
    [84] Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increasedpower production in air-cathode microbial fuel cells[J]. Environmental Science&Technology,2007,41(9):3341-3346.
    [85] Niessen J, Schr der U, Scholz F. Exploiting complex carbohydrates for microbialelectricity generation–a bacterial fuel cell operating on starch[J]. ElectrochemistryCommunications,2004,6(9):955-958.
    [86] Ha P T, Tae B, Chang I S. Performance and Bacterial Consortium of Microbial FuelCell Fed with Formate[J]. Energy&Fuels,2007,22(1):164-168.
    [87] Logan B E, Murano C, Scott K, et al. Electricity generation from cysteine in amicrobial fuel cell[J]. Water Research,2005,39(5):942-952.
    [88] Oh S E, Logan B E. Hydrogen and electricity production from a food processingwastewater using fermentation and microbial fuel cell technologies[J]. WaterResearch,2005,39(19):4673-4682.
    [89] Luo Y, Liu G, Zhang R, et al. Power generation from furfural using the microbialfuel cell[J]. Journal of Power Sources,2010,195(1):190-194.
    [90] Manohar A K, Mansfeld F. The internal resistance of a microbial fuel cell and itsdependence on cell design and operating conditions[J]. Electrochimica Acta,2009,54(6):1664-1670.
    [91] Huang L, Angelidaki I. Effect of humic acids on electricity generation integratedwith xylose degradation in microbial fuel cells[J]. Biotechnology andBioengineering,2008,100(3):413-422.
    [92] Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbialcommunity analysis of alcohol powered microbial fuel cells[J]. BioresourceTechnology,2007,98(13):2568-2577.
    [93] Pham H, Boon N, Marzorati M, et al. Enhanced removal of1,2-dichloroethane byanodophilic microbial consortia[J]. Water Research,2009,43(11):2936-2946.
    [94] Catal T, Xu S, Li K, et al. Electricity generation from polyalcohols insingle-chamber microbial fuel cells[J]. Biosensors and Bioelectronics,2008,24(4):849-854.
    [95] Jang J K, Chang I S, Moon H, et al. Nitrilotriacetic acid degradation undermicrobial fuel cell environment[J]. Biotechnology and Bioengineering,2006,95(4):772-774.
    [96] Luo H P, Liu G L, Zhang R D, et al. Phenol degradation in microbial fuel cells[J].Chemical Engineering Journal,2009,147(2-3):259-264.
    [97] Greenman J, Gálvez A, Giusti L, et al. Electricity from landfill leachate usingmicrobial fuel cells: comparison with a biological aerated filter[J]. Enzyme andMicrobial Technology,2009,44(2):112-119.
    [98] Sun J, Hu Y, Bi Z, et al. Simultaneous decolorization of azo dye and bioelectricitygeneration using a microfiltration membrane air-cathode single-chamber microbialfuel cell[J]. Bioresource Technology,2009,100(13):3185-3192.
    [99] Rezaei F, Xing D, Wagner R, et al. Simultaneous cellulose degradation andelectricity production by Enterobacter cloacae in a microbial fuel cell[J]. Appliedand Environmental Microbiology,2009,75(11):3673-3678.
    [100]Zuo Y, Maness P C, Logan B E. Electricity production from steam-exploded cornstover biomass[J]. Energy&Fuels,2006,20(4):1716-1721.
    [101]Catal T, Li K, Bermek H, et al. Electricity production from twelvemonosaccharides using microbial fuel cells[J]. Journal of Power Sources,2008,175(1):196-200.
    [102]Wang X, Feng Y, Ren N, et al. Accelerated start-up of two-chambered microbialfuel cells: effect of anodic positive poised potential[J]. Electrochimica Acta,2009,54(3):1109-1114.
    [103]Behera M, Ghangrekar M. Performance of microbial fuel cell in response tochange in sludge loading rate at different anodic feed pH[J]. BioresourceTechnology,2009,100(21):5114-5121.
    [104]Feng Y, Wang X, Logan B E, et al. Brewery wastewater treatment usingair-cathode microbial fuel cells[J]. Applied Microbiology and Biotechnology,2008,78(5):873-880.
    [105]Huang L, Logan B E. Electricity generation and treatment of paper recyclingwastewater using a microbial fuel cell[J]. Applied Microbiology andBiotechnology,2008,80(2):349-355.
    [106]Dumas C, Basseguy R, Bergel A. Microbial electrocatalysis with Geobactersulfurreducens biofilm on stainless steel cathodes[J]. Electrochimica Acta,2008,53(5):2494-2500.
    [107]Heilmann J, Logan B E. Production of electricity from proteins using a microbialfuel cell[J]. Water Environment Research,2006,78(5):531-537.
    [108]Velasquez-Orta S B, Curtis T P, Logan B E. Energy from algae using microbialfuel cells[J]. Biotechnology and Bioengineering,2009,103(6):1068-1076.
    [109]Lovley D R. Bug juice: harvesting electricity with microorganisms [J]. NatureReviews Microbiology,2006,4(10):797-797.
    [110]Kato Marcus A, Torres C I, Rittmann B E. Conduction‐based modeling of thebiofilm anode of a microbial fuel cell[J]. Biotechnology and Bioengineering,2007,98(6):1171-1182.
    [111]Torres C I, Kato Marcus A, Rittmann B E. Proton transport inside the biofilmlimits electrical current generation by anode‐respiring bacteria[J]. Biotechnologyand Bioengineering,2008,100(5):872-881.
    [112]Torres C I, Kato Marcus A, Rittmann B E. Kinetics of consumption offermentation products by anode-respiring bacteria[J]. Applied Microbiology andBiotechnology,2007,77(3):689-697.
    [113]夏青,陈艳卿,刘宪兵.水质基准与水质标准[M].中国标准出版社,2004.
    [114]DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determinationof sugars and related substances[J]. Analytical Chemistry1956,28(3):350-356.
    [115]Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation andpurification of total lipids from animal tissues[J]. J. Biol. Chem,1957,226(1):497-509.
    [116]张祖训,汪尔康.电化学原理和方法[M].科学出版社,2000.
    [117]Gerritse J, Drzyzga O, Kloetstra G, et al. Influence of different electron donors andacceptors on dehalorespiration of tetrachloroethene by Desulfitobacteriumfrappieri TCE1[J]. Appl Environ Microbiol,1999,65(12):5212-5221.
    [118]Singleton D R, Furlong M A, Rathbun S L, et al. Quantitative comparisons of16SrRNA gene sequence libraries from environmental samples[J]. Applied andEnvironmental Microbiology,2001,67(9):4374-4376.
    [119]Cole J R, Chai B, Marsh T L, et al. The Ribosomal Database Project (RDP-II):previewing a new autoaligner that allows regular updates and the new prokaryotictaxonomy[J]. Nucleic Acids Research,2003,31(1):442-443.
    [120]Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: what16S rDNA libraries can tell us[J]. FEMS Microbiology Ecology,2004,47(2):161-177.
    [121]Kemp P F, Aller J Y. Estimating prokaryotic diversity: When are16S rDNAlibraries large enough?[J]. Limnology and Oceanography: Methods,2004,2:114-125.
    [122]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].科学出版社,2003.
    [123]Ritz M, Lichtlé C, Spilar A, et al. Characterization of phycocyanin-deficientphycobilisomes from a pigment mutant of Porphyridium SP.[J]. Journal ofPhycology,1998,34(5):835-843.
    [124]周雯,吴璟瑜,商少凌等.2005年夏季台湾海峡南部有色溶解有机物质吸收特征及其来源初探[J].厦门大学学报:自然科学版,2007,46(4):538-542.
    [125]常建华,董绮功.波谱原理及解析[M].科学出版社,2001.
    [126]王斌,陈集,饶小桐.现代分析测试方法[M].石油工业出版社,2008.
    [127]Norwood D L, Johnson J D, Christman R F, et al. Reactions of chlorine withselected aromatic models of aquatic humic material[J]. Environmental Science&Technology,1980,14(2):187-190.
    [128]Crane A M, Kovacic P, Kovacic E D. Volatile halocarbon production from thechlorination of marine algal byproducts, including D-mannitol[J]. EnvironmentalScience&Technology,1980,14(11):1371-1374.
    [129]Marhaba T F, Van D. The variation of mass and disinfection by-product formationpotential of dissolved organic matter fractions along a conventional surface watertreatment plant[J]. Journal of Hazardous Materials,2000,74(3):133-147.
    [130]Scully Jr F E, Howell G D, Kravitz R, et al. Proteins in natural waters and theirrelation to the formation of chlorinated organics during water disinfection[J].Environmental Science&Technology,1988,22(5):537-542.
    [131]Rice J A, MacCarthy P. Statistical evaluation of the elemental composition ofhumic substances[J]. Organic Geochemistry,1991,17(5):635-648.
    [132]熊向陨,于京亭.水中腐殖酸O3氧化与其生物可降解性实验研究[J].环境工程,1998,16(6):7-11.
    [133]Dembitsky V M, Srebnik M. Natural halogenated fatty acids: their analogues andderivatives[J]. Progress in Lipid Research,2002,41(4):315-367.
    [134]Chen Y G, Jiang S, Yuan H Y, et al. Hydrolysis and acidification of waste activatedsludge at different pHs[J]. Water Research,2007,41(3):683-689.
    [135]Chen X, Yang X, Yang L, et al. An effective pathway for the removal ofmicrocystin LR via anoxic biodegradation in lake sediments[J]. Water Research,2010,44(6):1884-1892.
    [136]Bourne D G, Blakeley R L, Riddles P, et al. Biodegradation of the cyanobacterialtoxin microcystin LR in natural water and biologically active slow sand filters[J].Water Research,2006,40(6):1294-1302.
    [137]Eleuterio L, Batista J R. Biodegradation studies and sequencing of microcystin-LRdegrading bacteria isolated from a drinking water biofilter and a fresh waterlake[J]. Toxicon,2010,55(8):1434-1442.
    [138]Ho L, Sawade E, Newcombe G. Biological treatment options for cyanobacteriametabolite removal–A review[J]. Water Research,2011,46(5):1536-1548.
    [139]Confer D R, Logan B E. Molecular weight distribution of hydrolysis productsduring biodegradation of model macromolecules in suspended and biofilmcultures.1. Bovine serum albumin[J]. Water Research,1997,31(9):2127-2136.
    [140]Barker D J, Stuckey D C. A review of soluble microbial products (SMP) inwastewater treatment systems[J]. Water Research,1999,33(14):3063-3082.
    [141]Edzwald J. Coagulation in drinking water treatment: particles, organics andcoagulants[J]. Water Science&Technology,1993,27(11):21-35.
    [142]孟令芝,龚淑玲,何永炳.有机波谱分析[M].武汉大学出版社,2009.
    [143]Sheng G P, Yu H Q. Characterization of extracellular polymeric substances ofaerobic and anaerobic sludge using three-dimensional excitation and emissionmatrix fluorescence spectroscopy[J]. Water Research,2006,40(6):1233-1239.
    [144]Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-Emissionmatrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science&Technology,2003,37(24):5701-5710.
    [145]Ziegmann M, Abert M, Muller M, et al. Use of fluorescence fingerprints for theestimation of bloom formation and toxin production of Microcystis aeruginosa[J].Water Research,2010,44(1):195-204.
    [146]Her N, Amy G, Park H R, et al. Characterizing algogenic organic matter (AOM)and evaluating associated NF membrane fouling[J]. Water Research,2004,38(6):1427-1438.
    [147]Henderson R K, Baker A, Murphy K R, et al. Fluorescence as a potentialmonitoring tool for recycled water systems: A review[J]. Water Research,2009,43(4):863-881.
    [148]Swietlik J, Sikorska E. Application of fluorescence spectroscopy in the studies ofnatural organic matter fractions reactivity with chlorine dioxide and ozone[J].Water Research,2004,38(17):3791-3799.
    [149]Coble P G. Characterization of marine and terrestrial DOM in seawater usingexcitation emission matrix spectroscopy[J]. Marine Chemistry,1996,51(4):325-346.
    [150]Saadi I, Borisover M, Armon R, et al. Monitoring of effluent DOM biodegradationusing fluorescence, UV and DOC measurements[J]. Chemosphere,2006,63(3):530-539.
    [151]Lee H S, Parameswaran P, Kato-Marcus A, et al. Evaluation of energy-conversionefficiencies in microbial fuel cells (MFCs) utilizing fermentable andnon-fermentable substrates[J]. Water Research,2008,42(6-7):1501-1510.
    [152]Liu J L, Li X Y. Biodegradation and biotransformation of wastewater organics asprecursors of disinfection byproducts in water[J]. Chemosphere,2010,81(9):1075-1083.
    [153]Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable ofconverting glucose to electricity at high rate and efficiency[J]. BiotechnologyLetters,2003,25(18):1531-1535.
    [154]Picioreanu C, Katuri K P, Head I M, et al. Mathematical model for microbial fuelcells with anodic biofilms and anaerobic digestion[J]. Water Science andTechnology,2008,57(7):965-971.
    [155]Krasner S W, Westerhoff P, Chen B, et al. Impact of wastewater treatmentprocesses on organic carbon, organic nitrogen, and DBP precursors in effuentorganic matter[J]. Environmental Science&Technology,2009,43(8):2911-2918.
    [156]Chang E E, Lin Y P, Chiang P C. Effects of bromide on the formation of THMsand HAAs[J]. Chemosphere,2001,43(8):1029-1034.
    [157]Xue S, Zhao Q L, Wei L L, et al. Effect of bromide ion on isolated fractions ofdissolved organic matter in secondary effluent during chlorination[J]. Journal ofHazardous Materials,2008,157(1):25-33.
    [158]Hua G H, Reckhow D A. Relationship between Brominated THMs, HAAs, andTotal Organic Bromine during Drinking Water Chlorination[J]. Disinfectionby-Products in Drinking Water: Occurrence, Formation, Health Effects, andControl,2008,995:109-123
    [159]Debroux J-F.The physical-chemical and oxidant-reactive properties of effluentorganic matter (EfOM) intended for potable reuse[D]. University ofColorado.1998.
    [160]Sirivedhin T, Gray K A.2.Comparison of the disinfection by-product formationpotentials between a wastewater effluent and surface waters[J]. Water Research,2005,39(6):1025-1036.
    [161]Nakajima F, Hanabusa M, Furumai H. Excitation-emission fluorescence spectraand trihalomethane formation potential in the Tama River, Japan[J].3rd WorldWater Congress: Drinking Water Treatment,2002,2(5-6):481-486
    [162]Hua B, Veum K, Koirala A, et al. Fluorescence fingerprints to monitor totaltrihalomethanes and N-nitrosodimethylamine formation potentials in water[J].Environmental Chemistry Letters,2007,5(2):73-77.
    [163]Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewater usingmicrobial fuel cells[J]. Water Research,2005,39(20):4961-4968.
    [164]Nurmi J T, Tratnyek P G. Electrochemical properties of natural organic matter(NOM), fractions of NOM, and model biogeochemical electron shuttles[J].Environmental Science&Technology,2002,36(4):617-624.
    [165]Lovley D R, Coates J D, Blunt-Harris E L, et al. Humic substances as electronacceptors for microbial respiration[J]. Nature,1996,382(6590):445-448.
    [166]Luu Y S, Ramsay J A. Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World Journal of Microbiology and Biotechnology,2003,19(2):215-225.
    [167]Weber K A, Achenbach L A, Coates J D. Microorganisms pumping iron: anaerobicmicrobial iron oxidation and reduction[J]. Nature Reviews Microbiology,2006,4(10):752-764.
    [168]Ratasuk N, Nanny M A. Characterization and quantification of reversible redoxsites in humic substances[J]. Environmental Science&Technology,2007,41(22):7844-7850.
    [169]Jiang J, Kappler A. Kinetics of microbial and chemical reduction of humicsubstances: implications for electron shuttling[J]. Environmental Science&Technology,2008,42(10):3563-3569.
    [170]Reguera G, Nevin K P, Nicoll J S, et al. Biofilm and nanowire production leads toincreased current in Geobacter sulfurreducens fuel cells[J]. Applied andEnvironmental Microbiology,2006,72(11):7345-7348.
    [171]Coppi M V, Leang C, Sandler S J, et al. Development of a genetic system forGeobacter sulfurreducens[J]. Applied and Environmental Microbiology,2001,67(7):3180-3187.
    [172]Lu L, Ren N Q, Zhao X, et al. Hydrogen production, methanogen inhibition andmicrobial community structures in psychrophilic single-chamber microbialelectrolysis cells[J]. Energy&Environmental Science,2011,4(4):1329-1336.
    [173]Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducensattached to electrodes[J]. Applied and Environmental Microbiology,2003,69(3):1548-1555.
    [174]Nevin K P, Holmes D E, Woodard T L, et al. Geobacter bemidjiensis sp nov andGeobacter psychrophilus sp nov., two novel Fe(III)-reducing subsurface isolates[J].International Journal of Systematic and Evolutionary Microbiology,2005,55:1667-1674.
    [175]Juang D F, Yang P C, Chou H Y, et al. Effects of microbial species, organic loadingand substrate degradation rate on the power generation capability of microbial fuelcells[J]. Biotechnology Letters,2011,33(11):2147-2160.
    [176]Friman H, Schechter A, Nitzan Y, et al. Effect of external voltage on Pseudomonasputida F1in bio electrochemical cell using toluene as a sole carbon and energysource[J]. Microbiology,2012,158(2):414-423.
    [177]White H K, Reimers C E, Cordes E E, et al. Quantitative population dynamics ofmicrobial communities in plankton-fed microbial fuel cells[J]. Isme Journal,2009,3(6):635-646.
    [178]Nien P C, Lee C Y, Ho K C, et al. Power overshoot in two-chambered microbialfuel cell (MFC)[J]. Bioresource Technology,2011,102(7):4742-4746.
    [179]Ha P T, Tae B, Chang I S. Performance and bacterial consortium of microbial fuelcell fed with formate[J]. Energy&Fuels,2008,22(1):164-168.
    [180]Fedorovich V, Knighton M C, Pagaling E, et al. Novel Electrochemically ActiveBacterium Phylogenetically Related to Arcobacter butzleri, Isolated from aMicrobial Fuel Cell[J]. Applied and Environmental Microbiology,2009,75(23):7326-7334.
    [181]Ren Z, Steinberg L M, Regan J M. Electricity production and microbial biofilmcharacterization in cellulose-fed microbial fuel cells[J]. Water Sci Technol,2008,58(3):617-622.
    [182]Lu L, Xing D, Ren N. Pyrosequencing reveals highly diverse microbialcommunities in microbial electrolysis cells involved in enhanced H2productionfrom waste activated sludge[J]. Water Research,2012,46(7):2425-2434.
    [183]Grabowski A, Tindall B J, Bardin V, et al. Petrimonas sulfuriphila gen. nov., spnov., a mesophilic fermentative bacterium isolated from a biodegraded oilreservoir[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:1113-1121.
    [184]Nakasaki K, Tran L T H, Idemoto Y, et al. Comparison of organic matterdegradation and microbial community during thermophilic composting of twodifferent types of anaerobic sludge[J]. Bioresource Technology,2009,100(2):676-682.
    [185]Liu G L, Yates M D, Cheng S A, et al. Examination of microbial fuel cell start-uptimes with domestic wastewater and additional amendments[J]. BioresourceTechnology,2011,102(15):7301-7306.
    [186]Ren Z Y, Yan H J, Wang W, et al. Characterization of Microbial Fuel Cells atMicrobially and Electrochemically Meaningful Time scales[J]. EnvironmentalScience&Technology,2011,45(6):2435-2441.
    [187]Kim G T, Webster G, Wimpenny J W T, et al. Bacterial community structure,compartmentalization and activity in a microbial fuel cell[J]. Journal of AppliedMicrobiology,2006,101(3):698-710.
    [188]Chung K M, Okahe S. Characterization of Electrochemical Activity of a StrainIS02-3Phylogenetically Related to Aeromonas sp Isolated From a Glucose-FedMicrobial Fuel Cell[J]. Biotechnology and Bioengineering,2009,104(5):901-910.
    [189]Mechichi T, Stackebrandt E, Fuchs G. Alicycliphilus denitrificans gen. nov., sp.nov., a cyclohexanol-degrading, nitrate-reducing beta-proteobacterium[J]. Int JSyst Evol Microbiol,2003,53(1):147-152.
    [190]Heylen K, Lebbe L, De Vos P. Acidovorax caeni sp nov., a denitrifying specieswith genetically diverse isolates from activated sludge[J]. International Journal ofSystematic and Evolutionary Microbiology,2008,58:73-77.
    [191]Khan S T, Hiraishi A. Diaphorobacter nitroreducens gen nov, sp nov, apoly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activatedsludge[J]. J Gen Appl Microbiol,2002,48(6):299-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700