用户名: 密码: 验证码:
疫苗接种对我国新城疫病毒进化的影响及新城疫LaSota疫苗株全长cDNA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫是由新城疫病毒引起的一种烈性病毒性传染病,是当今全球范围内最严重的家禽传染病之一,也是我国所有鸡病中危害最大的一种,被国际兽疫局列为A类传染病。该病发病急、致死率高,对养禽业的发展构成严重的威胁。
     在我国主要广泛接种新城疫疫苗来控制该病的感染,由于减毒活疫苗使用相对方便,因此它常被用于群体免疫。我国NDV免疫密度和次数也远远超过世界水平。由于大面积的疫苗使用,新城疫得到了较好的控制,但近些年来,NDV出现了一些新的疫情,在免疫过的鸡群中即使能产生高的抗体滴度,新城疫仍时有爆发。而且大量使用的疫苗株难免流失到环境中,目前那些散落在环境中的疫苗毒株对新城疫病毒本身造成的影响并没有完全了解。
     为了确定在我国广泛应用的新城疫疫苗是否对该病毒进化进程产生影响,在本研究中,我们对在我国流行的新城疫病毒进行了系统发生和重组分析,获得了一系列NDV间疫苗参与的同源重组的证据,表明疫苗可能通过同源重组影响我国新城疫病毒的进程。由于疫苗与流行株之间的重组可能导致出现疫苗接种失败的后果,因此,在临床上应当尽可能避免疫苗与野生株之间的重组。故在NDV防治过程中,应该采用合适的免疫程序避免这种重组的发生。
     由于负链RNA病毒重组率很低的观点被广泛接受,因此尚没有人系统研究过NDV之间是否存在重组现象。当然,这个问题在NDV疫苗使用过程中也一直被忽略,至今没有任何有关NDV疫苗参与病毒进化方面的报道。NDV间重组的机制完全未知。通过评估病毒重组在NDV生物学性状,特别是疫苗重组后对病毒毒力变化中的影响,了解重组对NDV遗传多样性方面究竟有多大作用,以确定NDV是否能够开发为一种安全的疫苗载体。因此有必要建立NDV同源重组的实验系统,为NDV疫苗株和流行株的重组提供实验室证据。反向遗传系统的建立是研究NDV同源重组的前提,因此,本研究拟以广泛用来预防新城疫的一种弱毒疫苗的NDV LaSota株为材料,构建NDV反向遗传系统。首先我们对其进行了纯化和扩增。然后针对NDV LaSota株设计了十二对引物,然后采用RT-PCR对全基因组进行分段扩增,最终获得了涵盖全基因组的十二个cDNA片段,再将它们克隆入pMD18-T载体中并进行测序。通过生物信息学软件(DNAman)分析LaSota的核苷酸序列,找出各种限制性内切酶位点的分布,然后按照一定的先后顺序,将不同的限制性内切酶位点酶切、连接、转化,最终构建出NDV LaSota株基因组全长cDNA克隆pMC18-LaSota,本研究为NDVLaSota株与流行株之间重组的研究奠定了基础。
Newcastle disease (ND), caused by ND virus (NDV), is one of the most seriousavian contagious virus disease all over the world nowadays. It is also one of the mostserious illnesses of birds in our country. NDV has posed a great threaten to the poultryindustry. Because of the severe nature of the disease and the high mortality rates. NDis included as an Office International des Epizooties list A disease.
     Many commercial Newcastle disease virus (NDV) live vaccines are widely usedfor preventing infection of chickens from Newcastle disease in China. Theseattenuated live vaccines for mass vaccination is thought to be convenient and effective.Therefore, in China, the immune density and frequency of NDV far surpassinternational level, ND was controlled well as a result of the huge of vaccination area.Howover, in recent years, NDV emerged some new epidemic situation. ND stillbreaks out in those vaccinated flocks even though high titre antibody was produced.And the vaccinated strains are hard to avoid draining into the environment, however,the evolution role of a great quantity of vaccine strains is unknown in NDV. Atpresent, it is not clear whether the scattered vaccine strains have any influence on theenvironment.
     In this study, phylogenetic and recombination analyses were performed and got aseries of evidences for homologous recombination between NDV strains. Severalmosaics were proposed to be partially descended from vaccine strains. These resultsindicate that vaccines may also play roles in shaping NDV evolution via homologousrecombination. Recombination between vaccines and circulating viruses may causeimmunization failure in some cases. Therefore, appropriate immunization programsshould be adopted in NDV preventive treatment so as to avoid such recombination in clinical as much as possible.
     It is widely accepted that the recombination rate of negative-sense RNA virus isvery low, so the recombination phenomenon in NDV has not been systematicallystudied. This problem has not been concerned in the use of NDV vaccine. Themechanism of recombination in NDV is unknown. In order to know the influences ofrecombination in NDV biological characters, especially virulence variation, andgenetic diversity of of NDV, it is necessary to establish the experimental system ofNDV homologous recombination, to provide laboratory evidence for NDVrecombination. This study use NDV LaSota, a lentogenic vaccine strain widely usedto prevent Newcastle disease, to establish a reverse-transgenic system of NDV. First,we pretreat NDV LaSota by purification and amplification. Then we design twelvepairs of primers for NDV LaSota to amplify the whole genome, and ultimately gettwelve cDNA sections which cover the whole genome. And then, we clone thesetwelve fragments into the pMD18-T vector and sequence them. We use DNAman, abioinformatic software, to analyse the nucleotide sequence of LaSota and thedistribution of restriction enzyme sites. At last, we construct a full-length cDNA cloneof NDV strain LaSota, pMC18-NDV. This work is an important foundation for thestudy of homologous recombination between NDV LaSota strain and circulatingviruses.
引文
1. Giambrone, J.,R.P. Clay. Vaccination of day-old broiler chicks against Newcastle disease andinfectious bursal disease using commercial live and/or inactivated vaccines. Avian diseases,1986: 557-561.
    2. Lee, E.K., et al. Molecular epidemiological investigation of Newcastle disease virus fromdomestic ducks in Korea. Veterinary microbiology, 2009. 134(3-4): 241-248.
    3.曹殿军.新城疫诊断和流行病学的分子生物学时代.中国家禽, 2002. 24(20): 5-9.
    4. Chansiripornchai, N.,J. Sasipreeyajan. Efficacy of live B1 or Ulster 2C Newcastle diseasevaccines simultaneously vaccinated with inactivated oil adjuvant vaccine for protection ofNewcastle disease virus in broiler chickens. Acta Veterinaria Scandinavica, 2006. 48(1): 2.
    5. Gould, A.R., et al. Virulent Newcastle disease in Australia: molecular epidemiologicalanalysis of viruses isolated prior to and during the outbreaks of 1998-2000. Virus research,2001. 77(1): 51-60.
    6. Liang, R., et al. Newcastle disease outbreaks in western China were caused by the genotypesVIIa and VIII. Veterinary microbiology, 2002. 87(3): 193-203.
    7. Jeon, W.J., et al. Protective efficacy of commercial inactivated Newcastle disease virusvaccines in chickens against a recent Korean epizootic strain. Journal of veterinary science,2008. 9(3): 295.
    8. Huang, Y., et al. Genomic sequence of an isolate of Newcastle disease virus isolated from anoutbreak in geese: a novel six nucleotide insertion in the non-coding region of thenucleoprotein gene. Archives of virology, 2004. 149(7): 1445-1457.
    9. Zhang, S., et al. Phylogenetic and Pathotypical Analysis of Two Virulent Newcastle DiseaseViruses Isolated from Domestic Ducks in China. PloS one, 2011. 6(9): e25000.
    10.侯巍.新城疫病毒分子生物学及其疫苗的研究进展.草业与畜牧, 2011(9): 7-10.
    11. Peeters, B., et al. Genome replication of Newcastle disease virus: involvement of therule-of-six. Archives of virology, 2000. 145(9): 1829-1845.
    12. Yan, Y.,S.K. Samal. Role of intergenic sequences in Newcastle disease virus RNAtranscription and pathogenesis. Journal of virology, 2008. 82(3): 1323-1331.
    13. Iorio, R.M., et al. Neutralization map of the hemagglutinin-neuraminidase glycoprotein ofNewcastle disease virus: domains recognized by monoclonal antibodies that prevent receptorrecognition. Journal of virology, 1991. 65(9): 4999-5006.
    14. Phillips, R., A. Samson,P. Emmerson. Nucleotide sequence of the 5′-terminus of Newcastledisease virus and assembly of the complete genomic sequence: agreement with the“rule ofsix”. Archives of virology, 1998. 143(10): 1993-2002.
    15. Huang, Z., et al. A recombinant Newcastle disease virus (NDV) expressing VP2 protein ofinfectious bursal disease virus (IBDV) protects against NDV and IBDV. Journal of virology,2004. 78(18): 10054-10063.
    16. Westbury, H. Newcastle disease virus: an evolving pathogen? Avian Pathology, 2001. 30(1):5-11.
    17.王运湘,余为一.新城疫病毒的分子生物学研究进展(综述).安徽农业大学学报, 1997.24(003): 320-322.
    18. Mebatsion, T., et al. A recombinant Newcastle disease virus with low-level V proteinexpression is immunogenic and lacks pathogenicity for chicken embryos. Journal of virology,2001. 75(1): 420-428.
    19. Park, M.S., et al. Newcastle disease virus V protein is a determinant of host range restriction.Journal of virology, 2003. 77(17): 9522-9532.
    20. Morrison, T. Structure, function, and intracellular processing of paramyxovirus membraneproteins. Virus research, 1988. 10(2): 113-135.
    21. Seal, B.S., D.J. King,R.J. Meinersmann. Molecular evolution of the Newcastle disease virusmatrix protein gene and phylogenetic relationships among the paramyxoviridae. Virusresearch, 2000. 66(1): 1-11.
    22. R mer-Oberd rfer, A., et al. Contribution of the length of the HN protein and the sequence ofthe F protein cleavage site to Newcastle disease virus pathogenicity. Journal of generalvirology, 2003. 84(11): 3121-3129.
    23. Peeters, B.P.H., et al. Rescue of Newcastle disease virus from cloned cDNA: evidence thatcleavability of the fusion protein is a major determinant for virulence. Journal of virology,1999. 73(6): 5001-5009.
    24. Wilde, A., C. McQuain,T. Morrison. Identification of the sequence content of fourpolycistronic transcripts synthesized in Newcastle disease virus infected cells. Virus research,1986. 5(1): 77-95.
    25.周伦江,庄向生,陈少莺.新城疫病毒的分子生物学及应用研究进展.中国家禽, 2006.28(20): 65-69.
    26.宋长绪.新城疫病毒的分子生物学.动物医学进展, 1998. 19(1): 9-12.
    27. DiNapoli, J.M., et al. Newcastle disease virus-vectored vaccines expressing the hemagglutininor neuraminidase protein of H5N1 highly pathogenic avian influenza virus protect againstvirus challenge in monkeys. Journal of virology, 2010. 84(3): 1489-1503.
    28.徐文.新城疫疫苗的最新研究进展.家禽科学, 2008(006): 43-45.
    29.丁壮,金宁一.新城疫病毒HN蛋白及其基因的分子生物学.中国兽医科技, 1999.29(008): 17-21.
    30. Krishnamurthy, S.,S.K. Samal. Nucleotide sequences of the trailer, nucleocapsid protein geneand intergenic regions of Newcastle disease virus strain Beaudette C and completion of theentire genome sequence. Journal of general virology, 1998. 79(10): 2419-2424.
    31. Collins, P.L., L.E. Hightower,L.A. Ball. Transcriptional map for Newcastle disease virus.Journal of virology, 1980. 35(3): 682-693.
    32. Jestin, V.,A. Jestin. Detection of Newcastle disease virus RNA in infected allantoic fluids byin vitro enzymatic amplification (PCR). Archives of virology, 1991. 118(3): 151-161.
    33.王立柱.新城疫疫苗的使用及免疫效果分析.山东畜牧兽医, 2010(006): 55-56.
    34.武发菊, et al.新城疫疫苗的研究进展.中国畜牧兽医, 2011. 38(10): 145-148.
    35.李国旗,董运书.鸡新城疫疫苗免疫时应注意的事项.中国禽业导刊, 2002. 19(014):37-37.
    36.张俊红.鸡新城疫疫苗的产生,应用及发展.中国家禽, 2000. 22(2): 41-42.
    37.徐秀臣,王丽男,邓彦莉.鸡新城疫活疫苗的研究.中国预防兽医学报, 2003. 25(006):455-457.
    38.王忠田,陈溥言.新城疫病毒分子生物学最新研究进展.动物医学进展, 2002. 23(2):33-36.
    39.葛鑫, et al.新城疫疫苗的研究进展.黑龙江畜牧兽医, 2008(2): 23-24.
    40.邓茂刚.新城疫疫苗研究进展.畜牧兽医杂志, 2007. 26(4): 50-51.
    41.钱凤芹, et al.新城疫基因工程疫苗的研究与应用进展.动物医学进展, 2008. 29(9):67-69.
    42.钱凤芹.新城疫基因工程疫苗最新研究进展.中国畜牧兽医学会禽病学分会第十四次学术研讨会论文集, 2008.
    43.梅春升,周世霞,马立保.新城疫疫苗及其应用研究进展.国外畜牧学:猪与禽,2006(006): 50-53.
    44.杨百亮,吕慧强.不同鸡新城疫疫苗免疫鸡血清HI抗体的测定.中国畜牧兽医, 2006.33(5): 53-55.
    45.王贺民,秦素琴,魏涛.鸡新城疫疫苗研究进展.中国家禽, 2006. 28(18): 48-51.
    46.张体银, et al.新城疫疫苗研究进展.福建农业科技, 2007(002): 39-42.
    47. Kapczynski, D.R.,T.M. Tumpey. Development of a virosome vaccine for Newcastle diseasevirus. Avian diseases, 2003. 47(3): 578-587.
    48. DiNapoli, J.M., et al. Delivery to the lower respiratory tract is required for effectiveimmunization with Newcastle disease virus-vectored vaccines intended for humans. Vaccine,2009. 27(10): 1530-1539.
    49.陈吉祥,于康震. CTAB脂质体介导鸡新城疫病毒核酸免疫研究.动物医学进展, 2001.22(001): 41-43.
    50.秦智锋,贺东生.新城疫3组基因亚单位疫苗的免疫原性试验.中国兽医学报, 2003.23(1): 22-24.
    51. Yanhua, S.,L. Fuan. Preliminary Study on Expression Infectious Bronchitis Virus.中国病毒学, 1999. 14(3).
    52.霍龙飞,王莉林,卢景良.新城疫基因工程疫苗研究进展.生物技术, 1995. 5(5): 1-5.
    53. Khattar, S.K., P.L. Collins,S.K. Samal. Immunization of cattle with recombinant Newcastledisease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal andserum antibody responses and provides partial protection against BHV-1. Vaccine, 2010.28(18): 3159-3170.
    54.李楠,孙一敏,赵宝华.鸡新城疫病毒HeB02分离株F基因的克隆及其DNA疫苗的研究.生物工程学报, 2006. 22(3): 445-450.
    55. Sakaguchi, M., et al. Protection of chickens from Newcastle disease by vaccination with alinear plasmid DNA expressing the F protein of Newcastle disease virus. Vaccine, 1996. 14(8):747-752.
    56.张雪莲,魏荣.新城疫病毒F48E9株病毒F基因表达盒的火鸡疱疹病毒转移质粒载体构建.中国兽医科技, 2001. 31(8): 5-8.
    57.潘志明, et al.运送鹅源新城疫病毒DNA疫苗的减毒沙门氏菌及其免疫原性.农业生物技术学报, 2004. 12(4): 412-415.
    58. Nakaya, T., et al. Recombinant Newcastle disease virus as a vaccine vector. Journal ofvirology, 2001. 75(23): 11868-11873.
    59.王学理, et al.反向遗传操作在新城疫病毒中的应用.中国兽医学报, 2008. 28(005):618-622.
    60.智海东,王云峰.反向遗传操作在新城疫病毒中的应用.畜禽业, 2003(1): 44-45.
    61. Vigil, A., et al. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy.Molecular Therapy, 2008. 16(11): 1883-1890.
    62. Neumann, G., M.A. Whitt,Y. Kawaoka. A decade after the generation of a negative-senseRNA virus from cloned cDNA–what have we learned? Journal of general virology, 2002.83(11): 2635-2662.
    63. Krishna, N.K. Identification of structural domains involved in astrovirus capsid biology. Viralimmunology, 2005. 18(1): 17-26.
    64. R mer-Oberd rfer, A., et al. Generation of recombinant lentogenic Newcastle disease virusfrom cDNA. Journal of general virology, 1999. 80(11): 2987.
    65. Baron, M.D.,T. Barrett. Rescue of rinderpest virus from cloned cDNA. Journal of virology,1997. 71(2): 1265-1271.
    66. LaRue, R., et al. A wild-type porcine encephalomyocarditis virus containing a short poly (C)tract is pathogenic to mice, pigs, and cynomolgus macaques. Journal of virology, 2003. 77(17):9136-9146.
    67. Sasaki, J., et al. Construction of an infectious cDNA clone of Aichi virus (a new member ofthe family Picornaviridae) and mutational analysis of a stem-loop structure at the 5′end ofthe genome. Journal of virology, 2001. 75(17): 8021-8030.
    68. Herold, J.,R. Andino. Poliovirus requires a precise 5′end for efficient positive-strand RNAsynthesis. Journal of virology, 2000. 74(14): 6394-6400.
    69.郝景波, et al.利用反向遗传操作技术拯救重组新城疫病毒.东北农业大学学报, 2010.41(010): 73-77.
    70.葛金英,新城疫病毒反向遗传操作基础与应用研究[D]. 2006,南京农业大学.
    71. Kostakioti, M., et al. Mechanisms of protein export across the bacterial outer membrane.Journal of bacteriology, 2005. 187(13): 4306-4314.
    72. Garcin, D., et al. A highly recombinogenic system for the recovery of infectious Sendaiparamyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus.The EMBO journal, 1995. 14(24): 6087.
    73. Schnell, M.J., T. Mebatsion,K.K. Conzelmann. Infectious rabies viruses from cloned cDNA.The EMBO journal, 1994. 13(18): 4195.
    74. Singh, M.,M.A. Billeter. A recombinant measles virus expressing biologically active humaninterleukin-12. Journal of general virology, 1999. 80(1): 101-106.
    75.谢芝勋, et al.三株新城疫广西分离株全基因组序列的测定与分析.中国病毒学, 2006.21(3): 261-266.
    76.刘加波, et al. 10株新城疫病毒广西分离株HN蛋白基因的克隆与序列分析.畜牧与兽医, 2006. 37(7): 6-10.
    77.程龙飞, et al.番鸭源新城疫病毒F蛋白基因的克隆及序列分析.中国兽医学报, 2005.25(006): 578-580.
    78. Becher, P., M. Orlich,H.J. Thiel. RNA recombination between persisting pestivirus and avaccine strain: generation of cytopathogenic virus and induction of lethal disease. Journal ofvirology, 2001. 75(14): 6256-6264.
    79. Kew, O., et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1vaccine-derived poliovirus. Science, 2002. 296(5566): 356-359.
    80. Yang, C.F., et al. Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from1983 to 1993. Journal of virology, 2003. 77(15): 8366-8377.
    81. DiNapoli, J.M., et al. Immunization of primates with a Newcastle disease virus-vectoredvaccine via the respiratory tract induces a high titer of serum neutralizing antibodies againsthighly pathogenic avian influenza virus. Journal of virology, 2007. 81(21): 11560-11568.
    82. Park, M.S., et al. Engineered viral vaccine constructs with dual specificity: avian influenzaand Newcastle disease. Proceedings of the National Academy of Sciences, 2006. 103(21):8203-8208.
    83. Veits, J., et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickensagainst Newcastle disease and avian influenza. Proceedings of the National Academy ofSciences, 2006. 103(21): 8197-8202.
    84. Ge, J., et al. Newcastle disease virus-based live attenuated vaccine completely protectschickens and mice from lethal challenge of homologous and heterologous H5N1 avianinfluenza viruses. Journal of virology, 2007. 81(1): 150-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700