用户名: 密码: 验证码:
甲型肝炎病毒3C蛋白的原核表达及其抗原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人民生活水平提高,甲型肝炎的发病率逐年下降,群体免疫力却随之减弱,极易造成大规模的爆发流行。国家因此通过人工主动免疫的方式提升甲型肝炎群体免疫力。但甲型肝炎疫苗的普种却引发了一些负面问题。现行的甲型肝炎诊断试剂,如被用于检测甲型肝炎病毒感染的Abbott HAV Ab诊断试剂盒只能检测病毒结构蛋白诱发的抗体,自然感染和疫苗接种时都可以诱发机体产生此类抗体,因此试剂盒无法区分上述两种情况。甲型肝炎病毒自然感染能诱发机体产生针对病毒结构蛋白和非结构蛋白的抗体,而灭活疫苗接种诱生的抗体只针对病毒结构蛋白,减毒活疫苗接种诱发的抗非结构蛋白的抗体水平低下。因此可以建立一种特异检测甲肝病毒非结构蛋白抗体的ELISA方法来表征病毒复制的发生。已有文献证实,在实验感染野生型病毒株的灵长类血清和自然感染的人血清中能够检测到anti-3Cpro抗体的存在(3Cpro为一种病毒非结构蛋白),同时文献还指出迄今为止,3Cpro是甲肝病毒中唯一的能够通过原核表达系统产生功能蛋白的病毒非结构蛋白。重组3Cpro蛋白通过原核表达系统以包涵体的形式大量表达,可以通过标准的生物化学方法进行纯化,得到均质的蛋白。
     将3Cpro蛋白的基因插入到T7启动子控制外源蛋白表达的、含有硫氧还蛋白编码序列的表达质粒M48中,构建融合蛋白的基因工程表达质粒。目的蛋白在Escherichia coli工程菌中进行表达,以包涵体的形式存在,可占菌体总蛋白量的40%以上。融合蛋白通过亲和层析和阴离子交换后可达到高度均质。可利用SDS-PAGE来鉴定纯化结果。
     在这项研究中,我们检测了建立的ELISA方法是否能够鉴定出实验室水平和临床水平鉴定的急性期病人血清中的anti-3C IgM抗体,并与接种减毒活疫苗半年内的儿童血清结果进行对比。结果显示,利用HAV 3Cpro作为诊断抗原建立的ELISA方法能够有效地检测出针对非结构蛋白的抗体,可以将自然感染和疫苗接种的情况区分开来。另外,这种ELISA的方法可以用来检测体内病毒没有达到检测水平、症状没有出现时病毒的有限复制。这个检测方法也利于我们更好地了解非结构蛋白抗体在机体对HAV感染的免疫应答中所起的作用。
Current diagnostic assays, such as the Abbott HAVAB test, used to determine exposure to HAV detect antibodies only to the structural proteins and as a result are not able to distinguish between a natural infection and vaccination with an inactivated virus. Hepatitis A virus (HAV) natural infection can stimulate the production of antibodies to structural and nonstructural proteins of the virus, while vaccination with an inactivated vaccine produces antibodies exclusively to the structural proteins and the level of these antibodies induced by attenuated live vaccine were limited to a certain one. Therefore, an ELISA was developed that is specific for antibodies to the nonstructural protein of HAV and thus serves to document the occurrence of viral replication. It is conformed that antibodies to 3Cpro (a viral nonstructural protein) was detected in the serum of all primates experimentally infected with virulent HAV and in the serum of naturally infected humans. The 3Cpro is the only nonstructural protein of HAV to date that has been expressed from a recombinant vector to yield a functional protein. The recombinant 3Cpro was chosen for the ELISA because it can be recovered with a high yield from Escherichia coli as an Inclusion-Body protein that can be purified by standard biochemical methods.
     The 3Cpro gene of HAV was cloned into a multicopy expression vector with a fragment of Thio following the T7 promoter which controls the expression of the insertion element in Escherichia coli.The resulting plasmid construction produced a fusion protein containing 3Cpro and Thio as an inclusion-body constituting above 40% of total cellular proteins. The protein was purified by an anion-exchange chromatography named DEAE following an affinity chromatography and was certified by SDS-PAGE to apparent homogeneity.
     In this study, we determined whether the ELISA could detect anti-3C IgM in sera from acute-phase patients that had been experimentally and clinically identified as a natural infection and compared the results with those from the children that had been immunized with an attenuated live vaccine before long.
     Our data indicate that the ELISA using HAV 3Cpro as the antigen can accurately detect antibodies to a nonstructural protein and therefore distinguish an immune response to a natural infection from vaccination with an attenuated live vaccine, let alone with an inactive vaccine. In addition, the ELISA appears to provide a useful and simple method for the detection of limited replication in cases in which virus is not excreted to detectable levels and disease does not occur and thus are of utility of the diagnosis of Hepatitis A in situations in which vaccination is widespread. This assay may facilitate a better understanding of the role of the nonstructural antibodies in the immune response to HAV infection.
引文
[1]Jennifer A. Cuthbert. Hepatitis A:Old and New. Clinical Microbiology Reviews, Jan.2001, p.38-58.
    [2]Cederna, J. B., and J. T. Stapleton. Hepatitis A virus. Manual of clinical Microbiology,6th ed. ASM Press, Washington, D.C,1995, p.1025-1032.
    [3]Miller, M. J. Summary of current nomenclature, taxonomy, and classification of various microbial agents. Clin. Infect. Dis,1993,16:597-615.
    [4]Locarnini SA, Ferris AA, Stott AC, et al. The relationship between a 27-nm virus-like particle and hepatitis A as demonstrated by immune electron microscopy. Intervirology,1974; 4:110-118.
    [5]Jeffrey I. Cohen, John R. Ticehurst, et all. Hepatitis A Virus cDNA and Its RNA Transcripts Are Infectious in Cell Culture. Journal of Virology, OCt.1987, p. 3035-3039.
    [6]Jeffrey I. Cohen, John R.et al. Complete Nucleotide Sequence of Wild-Type Hepatitis A Virus:Comparison with Different Strains of Hepatitis A Virus and Other Picornaviruses. Journal of Virology Jan.1987, p.50-59.
    [7]Robertson BH, Jansen RW, Khanna B, et al. Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. J Gen Virol,1992,73: 1365-77.
    [8]LI-Hua Ping, Stanley M. Lemon. Antigenic Structure of Human Hepatitis A Virus Defined by Analysis of Escape Mutants Selected against Murine Monoclonal Antibodies. Journal of Virology, Apr.1992, p.2208-2216.
    [9]Hadler, S. C., H. M. Webster, J. J. Erben,et al. Hepatitis A in day-care centers:a community-wide assessment.N. Engl. J. Med.1980.302:1222-1227.
    [10]Smith, P. F., J. C. Grabau, A. Werzberger, et al. The role of young children in a Community-wide outbreak of hepatitisA.EpidemiolInfect,1997,118:243-252.
    [11]Anderson DA. Locarnini SA, Ross BC, et al. Single-cycle growth kinetics of hepatitis A virus in BSC-1 cells. In:Brinton MA, Rueckert RR, eds. Positive Strand RNA Viruses. New York:Alan R. Liss,1987, pp:497-507.
    [12]Hollinger, F. B., J. Ticehurst. Hepatitis A virus, B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology,3rd ed.Lippincott-Raven Publishers, Philadelphia, Pa.1996, p.735-782.
    [13]Provost, P. J., and M. R. Hilleman. Propagation of human hepatitis A virus in cell culture in vitro. Proc. Soc. Exp. Biol. Med.,1979,160:213-221.
    [14]Ambrosch F, Wiedermann G, Andre FE, et al. Comparison of HAV antibodies induced by vaccination, passive immunization, and natural infection. In: Hollinger FB, Lemon SM, Margolis HS, eds. Viral Hepatitis and Liver Disease. Baltimore:Williams & Wilkins; 1991,98-100.
    [15]Robertson, B. H., X. Y. Jia, H. Tian, H. S. Margolis,et al. Antibody response to nonstructural proteins of hepatitis A virus following infection. J. Med. Virol, 1993,40:76-82.
    [16]Omana V. Nainan, Guoliang Xia, et al. Diagnosis of Hepatitis A Virus Infection: a Molecular Approach. Clinical Microbiology Reviews, Jan.2006, p.63-79.
    [17]Robertson BH, Jia XY, Tian H, Margolis HS, Summers DF, Ehrenfeld E. Antibody response to nonstructural proteins of hepatitis A virus following infection. J Med Virol, May.1993,40(l):76-82.
    [18]Andre FE, D'Hondt E, Delem A, et al. Clinical assessment of the safety and efficacy of an inactivated hepatitis A vaccine:Rationale and summary of findings. Vaccine,1992,10:S160-S168.
    [19]Allen S. Craig and William Schaffner. Prevention of Hepatitis A with the Hepatitis A Vaccine. N Engl J Med,2004,350:476-81.
    [21]Allaire M, Chernaia MM, Malcolm BA, et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature,1994,369:72-76.
    [22]Bazan, J. F., and R. J. Fletterick. Viral cysteine proteinases are homologous to the trypsin-like family of serine proteinases:structural and functional implications. Proc. Natl. Acad. Sci. USA,1988,85:7872-7876.
    [23]Gorbalenya, A. E., V. M. Blinov, and A. P. Donchenko. Poliovirus encoded proteinase 3C:a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Lett,1986,243:103-114.
    [24]Joanne R. Petithory, Frank R. Masiarzt, Jack F. Kirsch, et al. A rapid method for determination of endoproteinase substrate specificity:Specificity of the 3C proteinase from hepatitis A virus. Biochemistry,1991, Vol.88, pp. 11510-11514.
    [25]Gauss-Muller V, Jurgensen D, Deutzmann R. Autoproteolytic cleavage of recombinant 3C proteinase of hepatitis A virus. Virology,1991,182:861-4.
    [26]Harmon SA, Updike W, Jia XY, Summers DF, Ehrenfeld E. Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli. J Virol,1992,66:5242-7.
    [27]Jia, X.-Y., D. F. Summers, and E. Ehrenfeld. Primary cleavage of the HAV capsid precursor in the middle of the proposed 2A coding region. Virology,1993, 193:515-519.
    [28]Martin, A., N. Escriou, S.-F. Chao, M. Girard, et.al. Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein:functional impact on the infectivity of HAV RNA transcripts. Virology,1995,213:213-222.
    [29]Schultheiss, T., Y. Y. Kusov, and V. Gauss-Muller. Proteinase 3C of Hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology,1994,198:275-281.
    [30]Allaire, M., M. M. Chernaia, B. A. Malcolm, et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature, 1994,369:72-76.
    [31]Tesar, M., I. Pak, X.-Y. Jia, O. C. Richards, et al. Expression of hepatitis A virus precursor protein P3 in vivo and in vivo:polyprotein processing of the 3CD cleavage site. Virology,1994,198:524-533.
    [32]Y Y Kusov and V Gauss-Muller. In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3C) to secondary structure elements within the 5'terminus of the HAV genome. RNA.1997 March; 3(3):291-302.
    [33]Ernst M. Bergmann, Steven C. Mosimann, Maia M. Chernaia, et al. The Refined Crystal Structure of the 3C Gene Product from Hepatitis A Virus:Specific Proteinase Activity and RNA Recognition. Journal of Virology, Mar.1997, p. 2436-2448.
    [34]Tina Schultheiss, Wolfgang Sommergruber, Yuri kusov, et all. Cleavage Specificity of Purified Recombinant Hepatitis A Virus 3C Proteinase on Natural Substrates. Journal of Virology, Mar.1995, p.1727-1733.
    [35]Jia XY, Ehrenfeld E, Summers DF. Proteolysis activity of hepatitis A virus 3C protein. J Virol,1991,65:2595-600.
    [36]Malcolm BA, Chin SM, Jewell DA, et al. Expression and characterization of recombinant hepatitis A virus 3C proteinase. Biochemistry,1992,31:3358-63.
    [1]Jennifer A. Cuthbert. Hepatitis A:Old and New. Clinical Microbiology Reviews, Jan.2001, p.38-58.
    [2]Cederna, J. B., and J. T. Stapleton. Hepatitis A virus. Manual of clinical Microbiology,6th ed. ASM Press, Washington, D.C,1995, p.1025-1032.
    [3]Miller, M. J. Summary of current nomenclature, taxonomy, and classification of various microbial agents. Clin. Infect. Dis,1993,16:597-615.
    [4]Locarnini SA, Ferris AA, Stott AC, et al. The relationship between a 27-nm virus-like particle and hepatitis A as demonstrated by immune electron microscopy. Intervirology,1974; 4:110-118.
    [5]Jeffrey I. Cohen, John R. Ticehurst, et all. Hepatitis A Virus cDNA and Its RNA Transcripts Are Infectious in Cell Culture. Journal of Virology, OCt.1987, p. 3035-3039.
    [6]Jeffrey I. Cohen, John R.et al. Complete Nucleotide Sequence of Wild-Type Hepatitis A Virus:Comparison with Different Strains of Hepatitis A Virus and Other Picornaviruses. Journal of Virology Jan.1987, p.50-59.
    [7]Robertson BH, Jansen RW, Khanna B, et al. Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. J Gen Virol,1992,73: 1365-77.
    [8]LI-Hua Ping, Stanley M. Lemon. Antigenic Structure of Human Hepatitis A Virus Defined by Analysis of Escape Mutants Selected against Murine Monoclonal Antibodies. Journal of Virology, Apr.1992, p.2208-2216.
    [9]Hadler, S. C., H. M. Webster, J. J. Erben,et al. Hepatitis A in day-care centers:a community-wide assessment.N. Engl. J. Med.1980.302:1222-1227.
    [10]Smith, P. F., J. C. Grabau, A. Werzberger, et al. The role of young children in a Community-wide outbreak of hepatitisA.EpidemiolInfect,1997,118:243-252.
    [11]Anderson DA, Locarnini SA, Ross BC, et al. Single-cycle growth kinetics of hepatitis A virus in BSC-1 cells. In:Brinton MA, Rueckert RR, eds. Positive Strand RNA Viruses. New York:Alan R. Liss,1987. pp:497-507.
    [12]Hollinger, F. B., J. Ticehurst. Hepatitis A virus, B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology,3rd ed.Lippincott-Raven Publishers, Philadelphia, Pa.1996, p.735-782.
    [13]Provost, P. J., and M. R. Hilleman. Propagation of human hepatitis A virus in cell culture in vitro. Proc. Soc. Exp. Biol. Med.,1979,160:213-221.
    [14]Ambrosch F, Wiedermann G, Andre FE, et al. Comparison of HAV antibodies induced by vaccination, passive immunization, and natural infection. In: Hollinger FB, Lemon SM, Margolis HS, eds. Viral Hepatitis and Liver Disease. Baltimore:Williams & Wilkins; 1991,98-100.
    [15]Robertson, B. H., X. Y. Jia, H. Tian, H. S. Margolis,et al. Antibody response to nonstructural proteins of hepatitis A virus following infection. J. Med. Virol, 1993,40:76-82.
    [16]Omana V. Nainan, Guoliang Xia, et al. Diagnosis of Hepatitis A Virus Infection: a Molecular Approach. Clinical Microbiology Reviews, Jan.2006, p.63-79.
    [17]Robertson BH, Jia XY, Tian H, Margolis HS, Summers DF, Ehrenfeld E. Antibody response to nonstructural proteins of hepatitis A virus following infection. J Med Virol, May.1993,40(1):76-82.
    [18]Andre FE, D'Hondt E, Delem A, et al. Clinical assessment of the safety and efficacy of an inactivated hepatitis A vaccine:Rationale and summary of findings. Vaccine,1992,10:S160-S168.
    [19]Allen S. Craig and William Schaffner. Prevention of Hepatitis A with the Hepatitis A Vaccine. N Engl J Med,2004,350:476-81.
    [20]Deneen R. Stewart, Tina S. Morris, Robert H. Purcell, et al. Detection of Antibodies to the Nonstructural 3C Proteinase of Hepatitis A Virus. The Journal of Infectious Diseases,1997,176:593-601.
    [21]Richard Najarian, Daniel Caput, Wendy Gee, et al. Primary structure and gene organization of human hepatitis A virus. Biochemistry. Vol.82:2627-2631.
    [22]Ernst M. Bergmann, Steven C. Mosimann, Maia M. Chernaia, et al. The Refined Crystal Structure of the 3C Gene Product from Hepatitis A Virus:Specific Proteinase Activity and RNA Recognition. Journal of Virology, Mar.1997, p. 2436-2448.
    [23]Andino, R., Rieckhof, G. E., Achacoso, P. L. and Baltimore, D. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5-end of viral RNA. EMBO J,1993,12:3587-3598.
    [24]Andino, R., Rieckhof, G. E. and Baltimore, D. A functional ribonucleoprotein complex forms around the 5_ end of poliovirus RNA. Cell,1990,63:369-380.
    [25]Y Y Kusov and V Gauss-Muller. In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3C) to secondary structure elements within the 5'terminus of the HAV genome. RNA.1997 March; 3(3):291-302.
    [26]Hutchinson, E. G., and J. M. Thornton. Promotif—a program to identify and analyze structural motifs in proteins. Protein Sci,1996,5:212-220.
    [27]Richardson, J. S., and D. C. Richardson. Principles and patterns of protein conformation, In G. D. Fasman (ed.), Prediction of protein structure and the principles of protein conformation. Plenum Press, New York, N.Y,1989, p. 1-98.
    [28]Hannelore Peters, Yuri Y. Kusov, Sonja Meyer, et al. Hepatitis A virus proteinase 3C binding to viral RNA:correlation with substrate binding and enzyme dimerization. Biochem. J.2005,385:363-370. (Printed in Great Britain)
    [29]Xiang, W., Cuconati, A., Hope, D., Kirkegaard, K.et al. Complete protein linkage map of poliovirus P3 proteins:interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J. Virol,1998,72:6732-6741.
    [30]Mosimann, S. C., Cherney, M. M., Sia, S., Plotch, S. and James, M. N. Refined X-ray crystallographic structure of the poliovirus 3Cpro gene product. J. Mol. Biol,1997,273:1032-1047.
    [31]Allaire M, Chernaia MM, Malcolm BA, et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature,1994.369:72-76.
    [32]Bazan, J. F., and R. J. Fletterick. Viral cysteine proteinases are homologous to the trypsin-like family of serine proteinases:structural and functional implications. Proc. Natl. Acad. Sci. USA,1988,85:7872-7876.
    [33]Joanne R. Petithory, Frank R. Masiarzt, Jack F. Kirsch, et al. A rapid method for determination of endoproteinase substrate specificity:Specificity of the 3C proteinase from hepatitis A virus. Biochemistry,1991, Vol.88, pp. 11510-11514.
    [34]Gauss-Muller V, Jurgensen D, Deutzmann R. Autoproteolytic cleavage of recombinant 3C proteinase of hepatitis A virus. Virology,1991,182:861-4.
    [35]Harmon SA, Updike W, Jia XY, Summers DF, Ehrenfeld E. Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli. J Virol,1992,66:5242-7.
    [36]Jia, X.-Y., D. F. Summers, and E. Ehrenfeld. Primary cleavage of the HAV capsid precursor in the middle of the proposed 2A coding region. Virology,1993, 193:515-519.
    [37]Martin, A., N. Escriou, S.-F. Chao, M. Girard, et.al. Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein:functional impact on the infectivity of HAV RNA transcripts. Virology,1995,213:213-222.
    [38]Schultheiss, T., Y. Y. Kusov, and V. Gauss-Muller. Proteinase 3C of Hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology,1994,198:275-281.
    [39]Allaire, M., M. M. Chernaia, B. A. Malcolm, et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature, 1994,369:72-76.
    [40]Tesar, M., I. Pak, X.-Y. Jia, O. C. Richards, et al. Expression of hepatitis A virus precursor protein P3 in vivo and in vivo:polyprotein processing of the 3CD cleavage site. Virology,1994,198:524-533.
    [41]Petithory, J. R., F. R. Masiarz, J. F. Kirsch, D. V. Santi, and B. A. Malcolm. A rapid method for determination of endoproteinase substrate specificity: specificity of the 3C proteinase from hepatitis A virus. Proc. Natl. Acad. Sci. USA,1991,88:11510-11514.
    [42]Tina Schultheiss, Wolfgang Sommergruber, Yuri kusov, et all. Cleavage Specificity of Purified Recombinant Hepatitis A Virus 3C Proteinase on Natural Substrates. Journal of Virology, Mar.1995, p.1727-1733.
    [43]C Probst, M Jecht, and V Gauss-Muller. Proteinase 3C-mediated processing of VP1-2A of two hepatitis A virus strains:in vivo evidence for cleavage at amino a cid position 273/274 of VP1. J Virol, April.1997,71(4):3288-3292.
    [44]Annette Martin, Daniele Benichou, Shih-Fong Chao, et al. Maturation of the Hepatitis A Virus Capsid Protein VP1 Is Not Dependent on Processing by the 3Cpro Proteinase. Journal of Virology, August.1999, Vol.73, No.8, p.6220-6227.
    [45]Rosa M.Pinto, Susana Guix, Juan F, et al.Hepatitis A virus polyprotein processing by Escherichia coli proteases. Journal of General Virology,2002, 83:359-368.
    [46]Harmon, S. A., W. Updike, J. Xi-Ju, et al. Polyprotein processing in cis and in trans by hepatitis A virus 3C protease cloned and expressed in E. coli. J. Virol, 1992,66:5242-5247.
    [47]Hammerle, T., A. Molla, and E. Wimmer. Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity. J. Virol,1992,66:6028-6034.
    [48]Harris, K. S., W. Xiang, L. Alexander, et al. Interaction of poliovirus polypeptide 3CD with the 59 and 39 termini of the poliovirus genome. J. Biol. Chem,1994, 269:27004-27014.
    [49]Andino, R., G. E. Rieckhof, P. L. Achacoso, et al. Poliovirus RNA synthesis utilizes an RNP complex formed around the 59-end of viral RNA. EMBO J, 1993,12:3587-3598.
    [50]Kusov YY, Morace G, Probst C, et al. Interaction of hepatitis A virus (HAV) precursor proteins 3AB and 3ABC with the 5'and3'termini of the HAV RNA. Virus Res,1997,51:151-157.
    [51]Gamarnik, A. V. and Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes,1998, Dev.12,2293-2304.
    [52]Kusov, Y. Y, Gauss-Muller, V. In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3C) to secondary structure elements within the 5'terminus of the HAV genome. RNA,1997,3:291-302.
    [53]Lee, Y. F., Nomoto, A., Detjen, B. M.& Wimmer, E. Proc. Natl. Acad. Sci. USA,1977,74:59-63.
    [54]Nomoto, A., Detjen, B., Pozzatti, R.& Wimmer, E. Nature (London),1977, 268:208-212.
    [55]Losick, V. P., Schlax, P. E., Emmons, R. A. et al. Signals in hepatitis A virus P3 region proteins recognized by the ubiquitin-mediated proteolytic system. Virology,2003,309:306-319.
    [56]Henry W. Kao, Mary Ashcavai, Allan G. Redeker.The Persistence of Hepatitis A IgM Antibody After Acute Clinical Hepatitis A.HEPATOLOGY,1984, vol.4, No.5,pp.933-936.
    [57]Stanley M. Lemon. Type A viral hepatitis:epidemiology, diagnosis, and Prevention. Clinical Chemistry,199743:8(B) 1494-1499.
    [58]Daniel W. Bradley, James E. Maynard, Stephen H. Hindman, et al. Serodiagnosis of Viral Hepatitis A:Detection of Acute-Phase Immunoglobulin M Anti-Hepatitis A Virus by Radioimmunoassay. Journal OF Clinical Microbiology, May 1977, p.521-530.
    [59]Wiedmann, M., S. Boehm, W. Schumacher, C. Swysen, and M. Zauke. Evaluation of three commercial assays for the detection of hepatitis A virus. Eur. J. Clin. Microbiol. Infect. Dis,2003,22:129-130.
    [60]Xi Yu Jia, Donald F.Summers, and Ellie Ehrenfeld. Host Antibody response to Viral structural and nonstructural Proteins after Hepatitis A Virus Infection. The Journal of Infection Disease,1992,165:273-80.
    [61]Jingyuan Cao, Yue Wang, Haiyan Song, et all. Hepatitis A outbreaks in China during 2006:application of molecular epidemiology. Hepatol Int (2009) 3:356-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700