用户名: 密码: 验证码:
面向瓦斯突出预测的人工免疫算法与模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是制约煤矿安全生产的严重自然灾害之一。鉴于目前其影响因素众多而突出机理尚未彻底研究清楚、突出灾害却日益加剧的现实状况,本文研究了免疫算法及网络模型在瓦斯突出预测中的应用。免疫算法是抽取了生物免疫系统独有的自适应、自组织、多样性、免疫记忆等进化学习机理形成的新信息处理技术,是计算智能领域继人工神经网络和进化计算之后的又一个研究热点。
     应用关联规则挖掘技术对瓦斯监测数据进行分析,可以找出瓦斯监测数据与其影响因素之间的关联特性,从而确定影响煤与瓦斯突出的主要因素。基于瓦斯监测这类大型数据库,关联规则挖掘需要在挖掘效率、可用性、精确性等方面得到提升,提出了浓度抑制克隆选择算法CRCSA。CRCSA将浓度抑制和二次应答引入克隆选择算法,同时引用记忆机制,将抗体分为记忆单元和普通单元,对记忆单元和普通单元采用不同的变异策略,提高其向最优解的进化速度,加入随机产生和经过过度变异的抗体,以保持抗体种群的多样性。将CRCSA应用到关联规则挖掘中,设计了基于CRCSA的关联规则挖掘算法,并应用到煤与瓦斯突出预测中。
     针对aiNET网络模型对抑制阈值非常敏感的缺陷,设计了距离浓度自适应aiNET网络模型DCAaiNET,并对DCAaiNET模型的网络学习算法进行了收敛性分析。
     DCAaiNET模型采用基于距离浓度的抗体选择和抑制机制,以便在鼓励适应度高抗体的同时,限制浓度较高的抗体,增强群体的多样性,并减少参数特别是抑制阈值对模型的影响。从而使DCAaiNET模型达到降低计算成本,加快模型的收敛速度,减少人为主观因素的影响。将DCAaiNET模型用于聚类分析,算法的平均运行时间最短,平均迭代次数最少,且聚类的准确率最高。
     提出了混沌免疫优化算法CIOA。CIOA结合了免疫算法和混沌优化算法各自的空间搜索优势,通过混沌变异算子引入新的“变种”,通过免疫选择算子实现“优胜劣汰”。算法能保持较好的多样性,同时具有较高的收敛速度及避免陷入局部最优。应用CIOA算法对RBF网络进行优化,能够对非线性时间序列进行有效的预测,且预测精度较传统的预测模型有一定的提高。最后将其应用于瓦斯突出的非线性时间序列预测,并且取得满意的效果。
     开发了基于人工免疫的瓦斯突出预测原型系统。将瓦斯突出预测原型系统进行实际应用,通过对井下工作面瓦斯涌出量相关影响因素的聚类和关联规则挖掘,发现埋藏深度、构造煤厚、瓦斯含量等因素对瓦斯突出的影响;通过构造用于瓦斯涌出量时间序列预测的RBF网络,实现了对瓦斯涌出量的预测。预测结果与现场实际吻合较好。
As a massively parallel intelligent message process system, artificial immune system (AIS) has offered the new ideas for real-time project problem settlement. Immune algorithm is a new information processing technology, which collects unique evolution learning mechanism of biological immune system, such as adaptability, self-organization, diversity, immune memory, evolve, etc. And AIS has been a hot topic in computational intelligence after artificial neural network (ANN) and evolutionary computation nowadays. According to the demands of coal and gas outburst forecasting, the research in this dissertation is oriented on immune algorithm and immune network model and their application to coal and gas outburst prediction.
     Meeting gas monitoring large-scale database, some aspects of association rules mining algorithm need to be improved mining efficiency, availability, accuracy and so on. A concentration restraining clonal selection algorithm (CRCSA) is proposed. CRCSA obtains inspiration from concentration restraining principle and secondary response of immune system, which introduces immune memory to divide the antibody into the memory unit and ordinary unit and adopt different variation tactics to the memory unit and ordinary antibody. Through joining random antibody and mutation antibody, CRCSA can keep antibody diversity and ensure the quick convergence and the optimal solution. CRCSA association rules mining method is put forward and is applied to coal and gas outburst forecasting. The results show that CRCSA association rules mining method is effective in practice.
     Aimed at the sensitive restraining threshold shortcoming of artificial immune network (aiNET), distance concentration adaptive artificial immune network (DCAaiNET) is given in this dissertation, and network learning algorithm convergence of DCAaiNET is proved. DCAaiNET model adopts antibody selection and restraining mechanism based on distance concentration, which can limit the antibody of higher concentration and strengthen antibody diversity and reduce some parameters influence to DCAaiNET especially restraining threshold. Then cut down calculation cost and accelerate convergence speed and reduce subjective factors influence of DCAaiNET. DCAaiNET is applied to clustering analysis, and average running time of clustering algorithm is the shortest and iteration steps is the least and clustering accuracy is the highest. Using DCAaiNET clustering method in coal and gas emission prediction, satisfied results are achieved and the DCAaiNET clustering method is good.
     Based on analysis of the basic principle and features of immune algorithm, this dissertation integrates respectively the space search advantages of immune algorithm and chaos optimization algorithm and presents a chaotic immune optimization algorithm (CIOA). By applying chaos mutation operator to producing new antibody and applying immune selection operator to realizing“the survival of the fittest”, CIOA is able to maintain a good diversity. At the same time, CIOA has higher convergence speed and it can avoid falling into local optima effectively. CIOA is used to optimize radial basis function neural network (RBFNN) which be effective for nonlinear time series prediction and prediction accuracy than conventional forecasting models have some improvement. Finally, the CIOA RBFNN is applied to coal and gas outburst forecasting and the result is satisfied.
     At last, gas outburst forecasting prototype system based on AIS is developed. In real coal and gas outburst forecasting application, through clustering analysis and association rules mining of underground work face gas gushing, seam’s depth, coal construction thickness, gas content and other factors on the impact of gas outburst is found. By constructing RBFNN for gas emission quantity time series prediction, gas gushing prediction is realized, and the prediction result is identical with the fact.
引文
[1]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005:1-15.
    [2]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990:1-5.
    [3] Maksimova N E, Rus’yanvova N D, Mukhametzyannova E E, et al. Change in the composition and structure of coals in outbreak-hazardous zones of coal seam and in the sudden outburst of coal and gas[J]. Solid Fuel Chemistry, 1995, 29(3): 25-28.
    [4]柴兆喜.各国煤和瓦斯突出概况[J].世界煤炭技术,1984(4):12-15.
    [5]姚宝魁,孙广忠.煤与瓦斯突出的防治[M].北京:中国科学技术出版社,1993:128-136.
    [6]张豫生.基于地质构造的煤与瓦斯突出预测研究[D].阜新:辽宁工程技术大学图书馆,2006.
    [7]孙叶,谭成轩,孙炜锋,王瑞江,等.煤瓦斯突出研究现状及其研究方向探讨[J].地质力学学报,2008,14(2):117-134.
    [8]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1990:1-15.
    [9]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005:1-18.
    [10]程五一,邓全封,等.确定工作面突出预测指标临界值方法的研究[J].煤矿安全,1996(10):12-16.
    [11]熊永强,刘新喜.基于人工神经网络的工作面煤与瓦斯突出预测方法[J].安全与环境工程,2002,9(4):42-44.
    [12] Tomaz Ambrozic, Goran Turk. Prediction of subsidence due to underground mining by artificial neural networks[J]. Computers & Geosciences, 2003, 29 (5): 627-637.
    [13]王凯,俞启香,彭永周.非线性理论在煤与瓦斯突出研究中的应用[J].辽宁工程技术大学学报(自然科学版),2000,19(4):6-10.
    [14]王其文,吕景峰,等.人工神经网络与多元回归的比较[J].决策与决策支持系统,1992(3):17-20.
    [15]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993:184-205.
    [16]位爱竹,王凯,伍永生.基于GA-BP混合算法的煤与瓦斯突出强度预测研究[J].矿业安全与环保,2006,33(4):4-6.
    [17]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2000:1-7.
    [18]煤炭科学研究总院重庆分院.国外煤和瓦斯突出资料汇编第一集[C].重庆:科学技术文献出版社,1992:34-81.
    [19]聂百胜,何学秋,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,113(6):72-75.
    [20]姚宝魁,孙广忠,等.煤与瓦斯突出的区域性预测[M].北京:中国科学出版社,1993:5-21.
    [21]蒋承林.煤与瓦斯突出的预测模型及预测指标[J].中国矿业大学学报,1998,27(4):373-376.
    [22]赵耀江,王冶.基于神经网络建立煤与瓦斯突出的预测模型[J].中国安全科学学报,1997,7(1):31-35.
    [23]吴斌.预测煤与瓦斯突出的模糊数学方法探讨[J].矿业安全与环保,1991,18(5):15-17.
    [24]王运泉.瓦斯突出危险性评价中的两种统计方法[J].焦作矿业学院学报,1994,13(2):73-78.
    [25]刘建平.灰色系统理论在煤与瓦斯突出预测中的应用[J].焦作矿业学院学报,1994,13(2):85-89.
    [26]冯小平.煤与瓦斯突出预测指标灰色优选[J].工业安全与肪尘,1996(2):44-46.
    [27]冯涛,尹志光,等.模糊数学在煤与瓦斯突出预测中的应用[J].湘潭矿业学院学报,1993,8(4):13-18.
    [28]吴海清.模糊数学在预测煤与瓦斯突出中的应用[J].陕西煤炭技术,1992(4):16-18.
    [29]张宏伟,李胜.煤与瓦斯突出危险性的模式识别和概率预测[J].岩石力学与工程学报,2005,24(19):3577-3581.
    [30] D Dasgupta. Artificial immune system and their application[M]. Berlin: Spring-verlag, 1999: 1-37.
    [31]李涛.计算机免疫学[M].北京:电子工业出版社,2004:1-29.
    [32] De Castro L N, Von Zuben F J. Artificial immune systems: part I-basic theory and applications (technical report– RT DCA 01/99)[R]. Brasil: State University of Campinas, 1999.
    [33] De Castro L N, Timmis J I. Artificial immune systems: a new computational intelligence approach[M]. London: Springer-Verlag, 2002:1-61.
    [34] N K Jerne. Towards a network theory of the immune system[J]. Paris: Ann. Immunol, 1974, 125C: 373-389.
    [35] Burnet F M. A modification of Jerne’s theory of antibody production using the concept of clonal selection[J]. Australian Journal of Science, 1957 (20): 67-69.
    [36] Jerne N K. The immune system [J]. Scientific American, 1973, 229(1): 52-60.
    [37]王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):32-37.
    [38] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation and machine learning[J]. Physica D, 1986 , 22: 187-204.
    [39] Mori K, Tsukiyama M, Fukuda T. Application of an Immune Algorithm to Multi-optimization Problems[J]. Electrical Engineering In Japan, 1998, 122(2): 30-37.
    [40] Ishida R, Sato T, Sugiyama Y. Optimum design of truss structure by genetic immune recruitment mechanism[J]. Transactions of the Japan Society of Mechanical Engineers, 1995, 581(61): 205-210.
    [41] Chun J S, Lim J P, et al. Optimal design of synchronous motor with parameter correction using immune algorithm[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 610-615.
    [42] Takahashi K, Yamada T. Application of an immune feedback mechanism to control systems[J]. JSME International Journal, 1998, 41(2): 184-191.
    [43] Ootsuki J T, Sekiguchi T. Application of the immune system network concept to sequential control[A].In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 1999: 869-874.
    [44]张军,刘克胜,王熙法.一种基于免疫调节和共生进化的神经网络优化设计方法[J].计算机研究与发展,2000,37(8):924-930.
    [45] Lee D W, Sim K B. Artificial immune network-based cooperative control in collective autonomous mobile robots[A]. In: Robot and Human Communication Proceedings of the IEEE International Workshop[C]. 1997: 58-63.
    [46] Kondo T, Ishiguro A, et al. Evolutionary construction of an immune network based behavior arbitration mechanism for autonomous mobile robots[J]. Electrical Engineering In Japan, 1998, 123(3): 1-10.
    [47] Kayama M, Sugita Y, Morooka Y. Sensor diagnosis system combining immune network and learning vector quantization[J]. Electrical Engineering In Japan, 1996, 117(5): 44-56.
    [48] Bradley D W, Tyrrell A M. Hardware fault tolerance: An immunological solution[A]. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 2000: 107-112.
    [49] Forrest S, et al. Computer immunology[J]. Communications of the ACM, 1997, 40(10): 88-96.
    [50] Gu J, Lee D, et al. Immunity-based security layer against internet antigens[J]. IEICE Transactions on Communications, 2000: 2570-2575.
    [51] Gilfix M. Integrated software immune system: a framework for automated network management, system health, and security[A]. In: 24th Conference on Local Computer Networks[C]. IEEE Computer Society Press, 1999: 254-255.
    [52] Tubbs J D. A note on parametric image enhancement[J]. Pattern Recognition, 1997, 30(6): 617-621.
    [53] Gilbert C J, Routen T W. Associative Memory in an Immune based System[A]. In: Proceedings of the 12th National Conference on Artificial Intelligence[C]. Seattle, 1994: 852-857.
    [54]靳蕃.神经网络与神经计算机原理·应用[M].成都:西南交通大学出版社,1991:73-78.
    [55] D Dasgupta. Artificial neural networks and artificial immune systems: similarities and differences[A]. IEEE International Conference on Systems, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 1997: 873-878.
    [56]丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59.
    [57] Krishnakuma K, Neidhoefer. Immunized adaptive critics for level 2 intelligent control[A]. Proceedings of the IEEE International Conference System, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 1997: 856-861.
    [58] Sasaki M, Kawafuku M, Takahashi K. An immune feedback mechanism based adaptive learning of neural network controller[A]. In: ICONIP′99, 6th International Conference on Neural Information Processing[C]. IEEE Computer Society Press, 1999: 502-507.
    [59]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统[J].控制与决策,2000,15(4):443-446.
    [60]高洁.应用免疫算法进行电网规划研究[J].系统工程理论与实践,2001,21(5):l19-123.
    [61]周伟良,何鲲,曹先彬,程慧霞.基于一种免疫遗传算法的BP网络设计[J].安徽大学学报(自然科学版),1999,23(1):63-66.
    [62]曹先彬,刘克胜,王煦法.基于免疫遗传算法的装箱问题求解[J].小型微型计算机系统,2000,21(4):361-363.
    [63]刘克胜,曹先彬,郑浩然,王煦法.基于免疫算法的TSP问题求解[J].计算机工程,2000,26(1):l-2.
    [64]牛志强,刘峥嵘,吴新余.基于免疫算法的智能多用户检测技术在CDMA中的应用[J].江苏通信技术,2001,17(2):6-9.
    [65] D F McCoy, V Devarajan. Artificial immune systems and aerial image segmentation[A]. 1997 IEEE International Conference on Systems, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 1997: 867-872.
    [66]王肇捷,黄文剑.立体匹配的免疫算法[J],电脑与信息技术,2001(4):4-6.
    [67] Hunt J E, Cooke D E. Learning Using an Artificial Immune System[J]. Journal of Network and Computer Applications, 1996, 19: 189-212.
    [68] D Dasgupta. An artificial immune system as a multi-agent decision support system[A]. IEEE International Conference on Systems, Man and Cybernetics [C]. Institute of Electrical and Electronics Engineers, Incorporated, 1998: 3816-3820.
    [69] Meshref H, VanLandingham h. Artificial immune systems: application to autonomous agents[A]. IEEE International Conference on Systems, Man and Cybernetics[C]. Institute of Electrical and Electronics Engineers, Incorporated, 2000: 61-66.
    [70] R L King, S H Russ, A B Lambert, et al. An artificial immune system model for intelligent agents[J]. Future Generation Computer Systems, 2001, 17: 335-343.
    [71]刘克胜,张军,曹先彬,王煦法.一种基于免疫原理的自律机器人行为控制算法[J].计算机工程与应用,2000,37(5):30-32.
    [72] D Dasgupta, S Forrest. Artificial immune systems in industrial applications[A]. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials[C]. IEEE Press, 1999: 257-267.
    [73]杜海峰,王孙安.基于Art-人工免疫网络的多级压缩机故障诊断[J].机械工程学报,2002,38(4):88-90.
    [74]高雷阜.煤与瓦斯突出的混沌动力系统演化规律研究[D].阜新:辽宁工程技术大学图书馆, 2006.
    [75]刘允芳.在单钻孔中水压致裂法的三维地应力测量[J].岩石力学与工程学报,1999,18(2):192-196.
    [76]杨陆武,郭德勇.煤体结构在煤与瓦斯突出预测研究中的应用[J].煤炭科学技术,1996,24(7):49-52.
    [77]张化光,王智良,黄玮.混沌系统的控制理论[M].沈阳:东北大学出版社,2003:3-35.
    [78] Fayyad U M, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery: An overview[A]. Advances in knowledge Discovery and Data Mining[C], Cambridge, Massachusetts: AAAI/MIT Press, 1996: 1-13.
    [79] Jiawei H, Micheline K.数据挖掘概念与技术[M].北京:机械工业出版社,2001:1-17.
    [80] Agrawal R, Srikant R. Fast algorithms for mining association rules[A]. Proceedings of the 20th International Conference on Very Large Databases[C], San Francisco, CA: Morgan Kaufmann, 1994: 487-499.
    [81] Michalski R S, Stepp R E. Learning from observation: conceptual Clustering[A]. Machine Learning: An Artificial Intelligence Approach[C]. San Mateo, CA: Morgan Kauffmann, 1983: 331-363.
    [82]张青贵.人工神经网络导论[M].北京:中国水利水电出版社,2004:1-27.
    [83] Karayiannis N B, Venetsanopulos A N. Artificial neural networks learning algorithms, performance evaluations and Applications[M]. NewYork: Kluwer Academic Publishers, 1993: 1-39.
    [84] Sunil C. Design and implementation of a genetic-based algorithm for data mining[A]. Proceeding of the 16th VLDB Conference[C], San Francisco, CA: Morgan Kaufmann, 2000: 109-116.
    [85] S Forrest, S Hofmeyr. Immunology as Information Processing[A]. Design Principles for the Immune System and Other Distributed Autonomous Systems[C]. New York: Oxford University Press, 2000: 361-387.
    [86] Forrest S, Hofmeyr S, Somayaji A. Computer immunology[J]. Communications of the ACM, 1997, 40(10): 88-96.
    [87]莫宏伟,金鸿章.免疫算法原理与应用[J].航空计算技术,2002,32(4):49-51.
    [88] Jiao L C, Wang L. A novel genetic algorithm based on immunity[J]. IEEE Trans. Systems, Man and Cybernetics, 2000, 30(5): 552-561.
    [89]王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):12-19.
    [90] De Castro,Von Zuben. Clonal selection algorithm with engineering applications[A]. Proceedings of the Genetic and Evolutionary Computation Conference[C]. San Francisco, CA: Morgan Kaufmann, 2000: 36-37.
    [91] Chun J S, Kim M K, Jang H K. Shape optimization of electromagnetic devices using immune algorithm [J]. IEEE Trans On Magnetics, 1997, 33(2): 1876-1879.
    [92] O Nasaroui, F Gonzalez, et al. The fuzzy artificial immune system: motivations, basic concepts and application to Clustering and Web Profiling[A]. Proceedings of International Joint Conference on Fuzzy Systems[C]. Berlin Heidelberg: Springer-Verlag, 2002: 711-716.
    [93] Kim D H. Tuning of a PID controller using a artificial immune network model and local fuzzy set[A]. Joint 9th IFSA World Congress and 20th NAFIPS International Conference [C]. IEEE Press, 2001: 2698-2703.
    [94] Timmis J, Neal M. A resource limited artificial immune system for data analysis[J]. Knowledge Based Systems, 2001, 14(3-4): 121-130.
    [95] Timmis J. On parameter adjustment of immune inspired machine learning algorithm AINE[R]. Canterbury: University Kent, 2000.
    [96] De Castro, Von Zuben. AiNet: an artificial immune network for data analysis[M]. Idea Group Publishing, 2001: 9-13.
    [97] Timmis J, Neal M. Data analysis using artificial immune system, cluster analysis and Kohonen networks: some comparisons[A]. IEEE SMC’99 Conference Proceedings[C]. Institute of Electrical and Electronics Engineers, Incorporated, 1999: 922-927.
    [98]高坚.用基于免疫机制的单亲遗传算法求解数据聚类优化问题[J].计算机工程与应用,2003,39(12):89-90.
    [99]刘静,钟伟才,刘芳,等.免疫进化聚类算法[J].电子学报,2001,29(12A):1897-1901.
    [100]行小帅,潘进,焦李成.基于免疫规划的k-means聚类算法[J].计算机学报,2003,26(5):605-610.
    [101] Watkins Andrew B, Boggess Lois C. A resource limited artificial immune classifier[A]. Proc of Congress on Evolutionary Computation[C]. Piscataway: IEEE Service Center, 2002: 927-931.
    [102] De Castro, Timmis J. Artificial immune systems as a novel soft computing paradigm[J]. Soft Computing Journal, 2003, 7(8): 526-544.
    [103] Barreto Bezerra, De Castro. Bioinformatics data analysis using an artificial immune network[A]. Proceeding of Second International Conference on Artificial Immune Systems[C]. Berlin: Spring-verlag, 2003: 22-33.
    [104] R Agrawal, T Imiehnski, A Swami. Mining association rules between sets of items in large database[A]. Proceeding of 1993 ACMSIGMOD International Conference on Management of Data[C]. Washington: ACM Press, 1993: 207-216.
    [105]贾彩燕,倪现君.关联规则挖掘研究述评[J].计算机科学,2003,30(4):145-149.
    [106]韩家炜,堪博.数据挖掘概念与技术(第二版)[M].北京:机械工业出版社,2007:146-183.
    [107]刘兴涛,石冰,解英文.挖掘关联规则中Apriori算法的一种改进[J].山东大学学报(理学版),2008,43(11):67-71.
    [108]宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592.
    [109]张文修,梁怡遗.传算法的数学基础(第2版)[M].西安:西安交通大学出版社,2003:1-170.
    [110] Blake C L, Merz C J. UCI Repository of machine learning databases[DB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.
    [111] Jain A k, Murty M N, Flynn P J. Data clustering: a survey[J]. ACM Computer Survey; 1999, 31: 264-323.
    [112]姜园,张朝阳,仇佩亮,戚玉鹏.对聚类算法普遍存在问题的解决办法[J].电路与系统学报,2004,9(3):92-99.
    [113]行小帅,焦李成.数据挖掘的聚类方法[J].电路与系统学报,2003,8(1):59-67.
    [114] Perelson A S, Oster G F. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-nonself discrimination [J]. Journal of Theoretical Biology, 1979, 81(4): 645-670.
    [115]李晶皎,朱志良,王爱侠,等.模式识别(第二版)[M].北京:电子工业出版社,2004:417-444.
    [116]何书元.应用时间序列分析[M].北京:北京大学出版社,2003:1-21.
    [117]田铮.时间序列的理论与方法[M].北京:高等教育出版社,2001:1-19.
    [118] E RCarson, H J Leicester, A V Roudsari. Linear and non-linear time series analysis in non-invasive physiological measurement[A]. Proc. Of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society[C]. IEEE Press, 1996: 970-97l.
    [119]温权,张勇传,程时杰.混沌时间序列预测技术[J].水电能源科学,2001,19(3):76-78.
    [120]牛东晓,曹树华,卢建昌,赵磊.电力负荷预测技术及其应用[M].北京:中国电力出版,1998:47-96.
    [121] Wei W X. Forecasting China’s stock market volatility using non-linear GARCH models[J]. Journal of Systems Science and Systems Engineering, 2000, 19(4): 448-453.
    [122]郁俊莉.基于混沌时间序列的非线性动态系统神经网络建模与预测[J].武汉大学学报(理学版),2005,51(3):286-290.
    [123]程健,白静宜,钱建生,李世银.基于混沌时间序列的煤矿瓦斯浓度短期预测[J].中国矿业大学学报,2008,37(2):231-235.
    [124]奉国和. SVM与神经网络在时间序列预测中的比较[J].现代管理科学,2006,9:40-41.
    [125]刘隽,周涛,周佩玲. GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-265.
    [126]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003:1-47.
    [127] Choi C, Lee J. Chaotic local search algorithm [J]. Artificial Life Robotics, 1998, 2(1): 41- 47.
    [128]骆晨钟,张志强,邵惠鹤.混沌搜索方法及其在化工过程优化中的应用[J].化工学报,2000,51(12):757-760.
    [129] Seifritz W. Functional Logistic Mapping[J ] . Chaos Solitons Fractals, 1996, 7 (9): 1 417-1425.
    [130]李金屏,韩延彬,孙志胜.混沌优化算法的性能分析[J].小型微型计算机系统,2005,26(8):1340-1344.
    [131]郑肇葆.混沌映射在优化计算中的应用[J].武汉大学学报(信息科学版),2007,32(11):998-1000.
    [132]李红霞,张建雄,赵新华.基于混沌优化BP神经网络的地面沉降模型[J].中国矿业大学学报,2008,37(3):396-401.
    [133]王孙安,郭子龙.混沌免疫优化组合算法[J].控制与决策,2006,21(2):205-209.
    [134]武彦斌,黄明.混沌免疫算法在遥感影像分类中的应用研究[J].测绘工程,2007,16(1):55-58.
    [135] De Castro, Von Zuben. Learning and optimization using the clonal selection principle [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-25.
    [136] Riccardo Caponetto, et al. Chaotic sequences to improve the performance of evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 289-304.
    [137]何宏,钱锋.基于免疫网络调节机理的混沌超变异免疫算法[J].系统仿真学报,2008,20(11):2810-2813.
    [138] Liu J, Kwok J T Y. An extended genetic algorithm for concept learning[A]. Proceedings of the IEEE Conference on Evolutionary Computation[C]. IEEE Press, 2000, 1: 458-463.
    [139] Rudolph G. Convergence properties of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994, 5(1): 96-101.
    [140]方兆本,缪柏其.随机过程[M].合肥:中国科学技术大学出版社,2002:39-57.
    [141] Powell M J D. Radial basis functions for multivariable interpolation: a review[A]. Proc. of IMA Conference on Algorithms for the Approximation of Functions and Data[C]. New York: Oxford University Press,1985: 143-167.
    [142] Moody J, Darken C. Learning with localized receptive fields[A]. Proceedings of 1988 Connectionist Models Summer School[C]. San Francisco, CA: Morgan Kaufmann, 1988: 133-134.
    [143]赵温波.径向基概率神经网络研究[D].合肥:中国科技大学图书馆,2003.
    [144] Yang Ge, Lu Jianhong, Liu Zhiyuan. A new sequential learning algorithm for RBF neural networks[J].中国科学E辑(英文版),2004,47(4):64-77.
    [145]尹建川.径向基函数神经网络及其在船舶运动控制中的应用研究[D].大连:大连海事大学图书馆,2007.
    [146]姜礼平.加拿大山猫数据的几种时序模型分析[J].海军工程学院学报,1990,3:49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700