用户名: 密码: 验证码:
规模化猪场猪瘟疫苗群体免疫程序的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究以规模化种猪场为依托,以猪瘟阻断ELISA抗体检测为主要手段,研究猪瘟疫苗免疫中的困境,以期找到一个可广泛采用的猪瘟免疫程序。并通过与猪场的实际生产管理相结合,提出规模化猪场猪瘟群体免疫的建议。
     方法:1)选择4个厂家猪瘟疫苗免疫试验猪群,分离血清进行抗体检测;以105TCID5o和106TCID50两个不同剂量的疫苗免疫仔猪并攻毒,通过临床症状观察、病理剖检和组织病理学观察、抗体检测、特异性淋巴细胞增殖试验及病原检测等方法评价疫苗免疫保护效果。2)按季度对怀孕母猪、后备母猪、公猪及哺乳母猪群体进行采血监测,评估种猪群现有免疫的状况;选择抗体水平不同的6头产房母猪,跟踪其仔猪母源抗体消长;随机选25窝同批次哺乳仔猪及其母猪为对象,分析母猪及其仔猪5周龄母源抗体的相互关系;3)通过选择疫苗按照既定技术路线免疫并进行抗体检测,综合评定10套仔猪免疫程序;25窝仔猪执行35-70日龄免疫程序,分别于免疫后34d、55d、62d、69d、98d、105d采血进行抗体检测,分析母猪抗体水平不同对其仔猪执行相同程序的影响;选取34日龄阻断值在9个不同区段的断奶仔猪,不同时间点进行抗体检测:4)选择抗体水平不同的母猪分为四组,跟踪免疫后猪瘟抗体的持续时间;选择4个不同猪场对阻断值低于70%的母猪加强免疫,分析免疫前后抗体消长情况。
     结果:1)不同厂家的疫苗在临床使用中,抗体应答及抗体水平存在差异,从中筛选了广东某厂的猪瘟ST细胞苗。该疫苗两个不同剂量一次免疫后第9d即能100%抵抗致死剂量强毒(1×104TCID50)攻击。2)4个不同群体采样1902份,抗体阳性率以怀孕母猪最高(91.71%);平均阻断率以怀孕母猪最高(74.67%±22.22),后备猪次之;阻断率在70%以上的个体数比例以后备母猪比例最高(66.96%),各群体免疫状况良好。抗体水平阻断值高于85%的哺乳母猪其所产仔猪在乳后1天的抗体水平略高于母猪本身,且到乳后28天抗体最低值仍高于66.25%。低于75%的哺乳母猪其所产仔猪在乳后1天的抗体平均水平明显高于其母猪本身,于7日龄后开始下降,但至28日龄时抗体水平仍有40.1%-53.07%。通过25头母猪与其5周龄仔猪抗体分析,母猪抗体阻断率在70%以上时,其对应仔猪抗体阻断率在40%以上;在40%~70%区间,其对应仔猪阻断率在30%以下;窝间存在抗体水平差异性,且窝内仔猪个体间也存在差异。3)10套免疫程序以35日龄首免、70日龄二免的效果最好。首免后35d检测,34日龄母源抗体低于30%的组都为阳性,在30%-39%之间的组抗体值为疑似阳性,在40%以上的组首免后35d抗体为阴性;二免后4-6周,除母源抗体高于80%的分组外,其他组都为阳性,而且其抗体滴度与母源抗体的滴度呈负相关。4)高于80%阻断值的两组母猪跟踪至免疫后300天,抗体下降不明显。70%区间组抗体水平下降明显,跟踪至240天时抗体水平接近阳性临界值,差异性显著;母猪抗体阻断值低于50%,加强免疫后增幅大,而高于70%的则增幅不明显。
     结论:1)即便使用相同免疫程序,不同厂家的猪瘟疫苗在临床使用中抗体应答及抗体水平也存在明显差异;猪瘟ST细胞苗对仔猪安全有效。2)虽然在基础群抗体水平调查中表明群体有较好的免疫效果,但抗体高低仍存在差异,会进一步造成仔猪免疫前后的差异性增大,给猪群带来潜在的风险:哺乳母猪抗体水平与仔猪母源抗体持续时间呈明显的正相关;3)35-70免疫程序具有较好的推广价值:高母源抗体对仔猪一免产生影响,推迟一免的时间可以减轻其影响;母源抗体水平整齐有助于设计仔猪免疫程序,34日龄母源抗体在40%-60%对首免的效果有明显影响,但仍有免疫应答,低于40%对首免效果影响不大。4)抗体水平高于80%阻断值的母猪一年可以只进行一次免疫;加强免疫试验中,低于50%阻断值的母猪抗体上升幅度较大,大于70%阻断值的分组提升幅度有限,据此推断,根据不同情况对猪群进行普查和抽查,低于70%阻断值的母猪加强免疫,淘汰不理想母猪,可提高母猪群体抗体水平的整齐度。
The purpose of this study is to get a reasonable, scientific immunity procedure of CSF which is suitable for the large-scaled pig farm. A commercial blocking antibody ELIS A Kits was employed to detect the titer of antibody against classical swine fever virus (CSFV), by which the influence of the quantity of vaccine on the level of antibody, the relation between the level of piglets'maternal derived antibody(MDA) and pregnant sows, the dynamic change of piglets'MDA, the affect of MDA on antibody of piglets trigered by vaccine and the the dynamic change of antibody level in sow were investigated.
     Several commercial cell original CSF vaccines were chosen to immunize pre-tests herds for analyses of the antiboy titer in sera and effect of protection agaist CSFV infection, and the results revealed that the antibody (MDA) response and level of antibody titer for each vaccine which from various companies are different obviously. Finally, a vaccine from a Guangdong producer was set as a reference vaccine in this study for its best protection against CSFV infection. As the results showed, single vaccination with this vaccine in two different dose (106TCID50and105TCIDso) can provide the piglets a complete protection against challenge with strong virulent CSFV strain in a lethal dose (1x104TCID50)
     The antibody titers of different herds were obsevered to analysis the differences among pregnant sows, lactating sows, boars and replacement breeding pigs, and results indicated that pregnant sows got the highest score with91.71%in antibody positive rate and74.67%±22.22in blocking rate. The titer and duration of piglets' MDA were directly related to the antiboy titer of sows, as results showed the higher level of antibody in sows, the higher antibody titer, the slower declease rate, and longer duration in piglets; otherwise contrast completely.
     Ten serials of immunity procedure were conducted to estimate the merits of the immunity procedure, and it was demonstrated that piglets vaccinated twice on35d and70d was the best procedure. Piglets with various level of MDA titer were divided into different groups and vaccinated to observe the influence of MDA on vaccination in piglets. It was found that the effect of inmmunity was seriously disturbed by MDA after the fisrt vaccination both in antibody titer and positive rate, resulting a contrary effect, same in the second vaccination.
     In order to evaluate the duration of antibody in sows, the change dynamic of antibody titer was obersevered among sows with different level antibody. It was found that the antibody titer was not decreased any more in sows with high level antibody (above80%in blocking rate), comparely it was obviousely in sows with70-80%. Inaddtionally, sows, which antiboy level under70%, were conducted a second inmmunity to investigate its effect to improve antiboy level. Intersetingly, the positive was obviously in sows which antibody level was under50%, while less in those above this level.
     According to the results above, we can get a conclusion:the quantity of CSFV vaccine is critial to the antibody level and effective protection; the level of MDA in piglets is depended on the antibody titer of sows, however it presented a negative infact on the effect of vaccine on piglets inmmunity; there is a direct relation between antibody duration and level in sows, and secondary vaccination can improve antibody titer of sows which present a low level. Thus, it is very important to investigate the antibody titer of sows in modern, large-scaled pig farm, which is dispensible for producing a reasonable, scientific immunity procedure to provent CSF.
引文
[1]Moennig V. Introduction to classical swine fever:virus, disease and control policy [J]. Vet Microbiol,2000,73 (2-3):93-102.
    [2]Paton D. J., McGoldrick A., Greiser-Wilke I., et al. Genetic typing of classical swine fever virus [J]. Vet Microbiol,2000,73 (2-3):137-157.
    [3]Parchariyanon S., Inui K., Damrongwatanapokin S., et al. Sequence analysis of E2 glycoprotein genes of classical swine fever viruses:identification of a novel genogroup in Thailand [J]. Dtsch Tierarztl Wochenschr,2000,107 (6):236-238.
    [4]Parchariyanon S., Damrongwatanapokin S., Pinyochon W. Status of classical swine fever disease [J]. NIAH Newslett,1999,8:1-3.
    [5]Damrongwatanapokin S., Patchimasiri T., Pinyochon W., et al. Efficacy of classical swine fever DLD vaccine against classical swine fever virus Chiangmai/98 isolate [J]. J Thai Vet Med Assoc,2002,53 (5-14).
    [6]van Oirschot J. T. Vaccinology of classical swine fever:from lab to field [J]. Vet Microbiol, 2003,96 (4):367-384.
    [7]Suradhat S., Damrongwatanapokin S. The influence of maternal immunity on the efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection [J]. Vet Microbiol,2003,92 (1-2):187-194.
    [8]Suradhat S., Intrakamhaeng M., Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection [J]. Vet Immunol Immunopathol,2001,83 (3-4):177-189.
    [9]Suradhat S., Kesdangsakonwut S., Sada W., et al. Negative impact of porcine reproductive and respiratory syndrome virus infection on the efficacy of classical swine fever vaccine [J]. Vaccine,2006,24 (14):2634-2642.
    [10]Kaden V., Lange E., Fischer U., et al. Oral immunisation of wild boar against classical swine fever:evaluation of the first field study in Germany [J]. Vet Microbiol,2000,73 (2-3):239-252.
    [11]Coggins L. Study of Hog Cholera Colostral Antibody and Its Effect on Active Hog Cholera Immunization [J]. Am J Vet Res,1964,25:613-617.
    [12]Parchariyanon S., Tantaswasdi U., Pinyochon W., et al. Immunity against swine fever vaccine. Ⅱ. Immunity against swine fever vaccine in piglets and protection level of maternal immunity in piglets before vaccination. [J]. J Thai Vet Med Assoc,1994,45:37-45
    [13]Meng X. J. Heterogeneity of porcine reproductive and respiratory.syndrome virus: implications for current vaccine efficacy and future vaccine development [J]. Vet Microbiol,2000, 74 (4):309-329.
    [14]Thanawongnuwech R., Amonsin A., Tatsanakit A., et al. Genetics and geographical variation of porcine reproductive and respiratory syndrome virus (PRRSV) in Thailand [J]. Vet Microbiol, 2004,101 (1):9-21.
    [15]Suradhat S., Thanawongnuwech R., Poovorawan Y. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus [J]. J Gen Virol,2003,84 (Pt 2):453-459.
    [16]Li H., Yang H. Infection of porcine reproductive and respiratory syndrome virus suppresses the antibody response to classical swine fever virus vaccination [J]. Vet Microbiol,2003,95 (4): 295-301.
    [17]De Bruin M. G., Samsom J. N., Voermans J. J., et al. Effects of a porcine reproductive and respiratory syndrome virus infection on the development of the immune response against pseudorabies virus [J]. Vet Immunol Immunopathol,2000,76 (1-2):125-135.
    [18]Chiou M. T., Jeng C. R., Chueh L. L., et al. Effects of porcine reproductive and respiratory syndrome virus (isolate tw91) on porcine alveolar macrophages in vitro [J]. Vet Microbiol,2000, 71 (1-2):9-25.
    [19]Precausta P., Kato F., Brun A. Swine fever. Immunisation of piglets [J].Comp Immunol Microbiol Infect Dis,1983,6 (4):281-289.
    [20]Rumenapf T., Stark R., Meyers G., et al. Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity [J]. J Virol,1991,65 (2):589-597.
    [21]Remond M., Plateau E., Cruciere C. In vitro study of the cellular response of pigs vaccinated against classical swine fever [J]. Zbl Vet Med B,1981,28:743-748.
    [22]Piriou L., Chevallier S., Hutet E., et al. Humoral and cell-mediated immune responses of d/d histocompatible pigs against classical swine fever (CSF) virus [J]. Vet Res,2003,34 (4):389-404.
    [23]Zuckermann F. A., Husmann R. J., Schwartz R., et al. Interleukin-12 enhances the virus-specific interferon gamma response of pigs to an inactivated pseudorabies virus vaccine [J]. Vet Immunol Immunopathol,1998,63 (1-2):57-67.
    [24]Mateu de Antonio E., Husmann R. J., Hansen R., et al. Quantitative detection of porcine interferon-gamma in response to mitogen, superantigen and recall viral antigen [J]. Vet Immunol Immunopathol,1998,61 (2-4):265-277.
    [25]Rau H., Revets H., Cornelis P., et al. Efficacy and functionality of lipoprotein OprI from Pseudomonas aeruginosa as adjuvant for a subunit vaccine against classical swine fever [J]. Vaccine,2006,24 (22):4757-4768.
    [26]Summerfield A., Knotig S. M., McCullough K. C. Lymphocyte apoptosis during classical swine fever:implication of activation-induced cell death [J]. J Virol,1998,72 (3):1853-1861.
    [27]Suradhat S., Sada W., Buranapraditkun S., et al. The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV) [J]. Vet Immunol Immunopathol,2005,106 (3-4):197-208.
    [28]Rodriguez-Carreno M. P., Lopez-Fuertes L., Revilla C, et al. Phenotypic characterization of porcine IFN-gamma-producing lymphocytes by flow cytometry [J]. J Immunol Methods,2002, 259 (1-2):171-179.
    [29]Terpstra C., Wensvoort G. The protective value of vaccine-induced neutralising antibody titres in swine fever [J]. Vet Microbiol,1988,16 (2):123-128.
    [30]Dewulf J., Laevens H., Koenen F., et al. An E2 sub-unit marker vaccine does not prevent horizontal or vertical transmission of classical swine fever virus [J]. Vaccine,2001,20 (1-2): 86-91.
    [31]Dewulf J., Laevens H., Koenen F., et al. Efficacy of E2-sub-unit marker and C-strain vaccines in reducing horizontal transmission of classical swine fever virus in weaner pigs [J]. Prev Vet Med,2004,65 (3-4):121-133.
    [32]Ganges L., Barrera M., Nunez J. I., et al. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge [J]. Vaccine,2005,23 (28):3741-3752.
    [33]Hoffmann B., Beer M., Schelp C., et al. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever [J]. J Virol Methods,2005,130 (1-2):36-44.
    [34]Risatti G, Holinka L., Lu Z., et al. Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus [J]. J Clin Microbiol,2005,43 (1):468-471.
    [35]Bouma A., Stegeman J. A., Engel B., et al. Evaluation of diagnostic tests for the detection of classical swine fever in the field without a gold standard [J]. J Vet Diagn Invest,2001,13 (5): 383-388.
    [36]Floegel-Niesmann G, Moennig V. Quality management in reference tests for the diagnosis of classical swine fever [J]. Rev Sci Tech,2004,23 (3):895-903.
    [37]Kern B., Depner K. R., Letz W., et al. Incidence of classical swine fever (CSF) in wild boar in a densely populated area indicating CSF virus persistence as a mechanism for virus perpetuation [J]. Zentralbl Veterinarmed B,1999,46 (1):63-67.
    [38]Kaden V., H.Heyne, H.Kiupel, et al. Oral immunisation of wild boar against classical swine fever:concluding analysis of the recent field trials in Germany [J]. Berl Munch Tierarztl Wochenschr,2002,115:179-185.
    [39]Kaden V., Renner C., Rothe A., et al. Evaluation of the oral immunisation of wild boar against classical swine fever in Baden-Wurttemberg [J]. Berl Munch Tierarztl Wochenschr,2003, 116,:362-367.
    [40]Dong X. N., Chen Y. H. Marker vaccine strategies and candidate CSFV marker vaccines [J]. Vaccine,2007,25 (2):205-230.
    [41]Greiser-Wilke I., Moennig V. Vaccination against classical swine fever virus:limitations and new strategies [J]. Anim Health Res Rev,2004,5 (2):223-226.
    [42]Leunen J., Strobbe R. Capacity of attenuated swine fever vaccines to prevent virus carriers in the vaccinated pigs, after contact with field virus [J]. Arch expVeterin " rmed,1977,31:533-536.
    [43]Biront P., Leunen J., Vandeputte J. Inhibition of virus replication in the tonsils of pigs previously vaccinated with a Chinese strain vaccine and challenged oronasally with a virulent strain of classical swine fever virus [J]. Vet Microbiol,1987,14 (2):105-113.
    [44]Terpstra C., Woortmeyer R., Barteling S. J. Development and properties of a cell culture produced vaccine for hog cholera based on the Chinese strain [J]. Dtsch Tierarztl Wochenschr, 1990,97 (2):77-79.
    [45]de Smit A. J., Bouma A., van Gennip H. G., et al. Chimeric (marker) C-strain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs [J]. Vaccine,2001,19 (11-12):1467-1476.
    [46]Tesmer S., Urbaneck D., Kaden V, et al. [Effect of attenuated hog cholera virus vaccine from the inoculation virus strain "C" on pregnant sows and their progeny] [J]. Monatsh Veterinarmed, 1973,28 (7):251-254.
    [47]Sasahara J., Kumagai T., Shimizu Y., et al. Field experiments of hog cholera live vaccine prepared in guinea-pig kidney cell culture [J]. Natl Inst Anim Health Q (Tokyo),1969,9 (2): 83-91.
    [48]Hennecken M., Stegeman J. A., Elbers A. R., et al. Transmission of classical swine fever virus by artificial insemination during the 1997-1998 epidemic in The Netherlands:a descriptive epidemiological study [J]. Vet Q,2000,22 (4):228-233.
    [49]Hulst M. M., Westra D. F., Wensvoort G, et al. Glycoprotein El of hog cholera virus expressed in insect cells protects swine from hog cholera [J]. J Virol,1993,67 (9):5435-5442.
    [50]Moormann R. J., Bouma A., Kramps J. A., et al. Development of a classical swine fever subunit marker vaccine and companion diagnostic test [J]. Vet Microbiol,2000,73 (2-3):209-219.
    [51]Konig M., Lengsfeld T., Pauly T., et al. Classical swine fever virus:independent induction of protective immunity by two structural glycoproteins [J]. J Virol,1995,69 (10):6479-6486.
    [52]Bouma A., de Smit A. J., de Kluijver E. P., et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus [J]. Vet Microbiol,1999,66 (2):101-114.
    [53]Bouma A., De Smit A. J., De Jong M. C., et al. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus [J]. Vaccine, 2000,18(14):1374-1381.
    [54]Dewulf J., Laevens H., Koenen F., et al. An experimental infection with classical swine fever in E2 sub-unit marker-vaccine vaccinated and in non-vaccinated pigs [J]. Vaccine,2000,19 (4-5): 475-482.
    [55]Uttenthal A., Le Potier M. F., Romero L., et al. Classical swine fever (CSF) marker vaccine. Trial I. Challenge studies in weaner pigs [J]. Vet Microbiol,2001,83 (2):85-106.
    [56]de Smit A. J., Bouma A., de Kluijver E. P., et al. Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine [J]. Vet Q,2000,22 (3):150-153.
    [57]Depner K. R., Bouma A., Koenen F., et al. Classical swine fever (CSF) marker vaccine. Trial II. Challenge study in pregnant sows [J]. Vet Microbiol,2001,83 (2):107-120.
    [58]Lipowski A., Drexler C., Pejsak Z. Safety and efficacy of a classical swine fever subunit vaccine in pregnant sows and their offspring [J]. Vet Microbiol,2000,77 (1-2):99-108.
    [59]Armengol E., Wiesmuller K. H., Wienhold D., et al. Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus [J]. J Gen Virol,2002,83 (Pt 3): 551-560.
    [60]Summerfield A., Guzylack-Piriou L., Schaub A., et al. Porcine peripheral blood dendritic cells and natural interferon-producing cells [J]. Immunology,2003,110 (4):440-449,
    [61]Wienhold D., Armengol E., Marquardt A., et al. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination [J]. Vet Res,2005,36 (4):571-587.
    [62]查云峰,任裕其,田云,et al.4个厂家不同批次猪瘟疫苗免疫效果比较试验[J].广东畜牧兽医科技,2013,01:38-40.
    [63]张平,孙惠玲,孙继国.5种商品化猪瘟疫苗免疫猪后的抗体水平监测比较[J].动物医学进展,2010,10:113-115.
    [64]曹世祯,孟晓琴,孙晓军,et al.不同厂家生产的猪瘟疫苗免疫效果跟踪对比试验报告[J].当代畜牧,2012,08:55-57.
    [65]李海辉,刘增再,颜丹凤,et al.不同厂家猪瘟疫苗对仔猪首免抗体水平的影响[J].养猪,2013,(04):102-104.
    [66]牛建强,蓝天,陈峰,et al.猪瘟的防控措施[J].动物医学进展,2006,07:108-110.
    [67]孙元,刘大飞,王宇飞,et al.表达猪瘟病毒E2蛋白的重组腺病毒对猪的免疫效力评[J].中国动物传染病学报,2009,01:15-21.
    [68]吴楚泓.猪瘟疫苗免疫程序探讨[J].中国兽医科技,2000,30(4):35-36.
    [69]朱建国,原泉水.集约化养猪场猪瘟免疫程序的研究[J].中国预防兽医学报,1999,21(1):40-43.
    [70]王在时.猪瘟防治研究的回顾和展望.畜禽重大疫病免疫预防研究进展[M].北京:中国农业出版社,1996.
    [71]Kojnok J, Palatka Z., Bognar K. Requirements of rabbit-adapted swine fever vaccine [J]. Arch Exp Veterinarmed,1980,34 (1):67-72.
    [72]Terzic S., Sver L., Valpotic 1., et al. Proportions and phenotypic expression of peripheral blood leucocytes in pigs vaccinated with an attenuated C strain and a subunit E2 vaccine against classical swine fever [J]. J Vet Med B Infect Dis Vet Public Health,2003,50 (4):166-171.
    [73]Pauly T., Elbers K., Konig M., et al. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope [J]. J Gen Virol,1995,76 (Pt 12):3039-3049.
    [74]Aynaud J. M., Corthier G., Laude H., et al. Sub-clinical swine fever:a survey of neutralizing antibodies in ther sera of pigs from herds having reproductive failures [J]. Ann Rech Vet,1976,7 (1):57-64.
    [75]曲哲会,郭晓秋,刘涛,et al.3种免疫程序对不同规模猪场仔猪猪瘟抗体水平影响的观察[J].中国兽医杂志,2012,11:32-34.
    [76]孟晓琴,曹世祯,卓春花,et al.母源抗体对猪瘟疫苗免疫效果的影响[J].中国兽医杂志,2013,01:40-41.
    [77]韩永刚,徐庆安.残数法在猪瘟母源抗体代谢动力学研究中的应用[J].中国动物检疫,2013,30(6):42-22.
    [78]李春棣,李时寅,周裕升,et al.仔猪体内猪瘟母源抗体消长规律的探讨[J].中国兽医科技,1987,03:35-36.
    [79]王波,陈静,王敏.仔猪猪瘟母源抗体消长规律[J].中国兽医学报:,2010,30(4):453-455.
    [80]马强,任巧玲,邢宝松,et al.仔猪猪瘟母源抗体消长规律研究[J].河南农业科学,2011,09:130-132.
    [81]仇华吉,童光志,沈荣显.猪瘟兔化弱毒疫苗半个世纪的回顾[J].中国农业科学,2005,38(8):1675-1685.
    [82]王长义,余功本.高母源抗体下仔猪猪瘟初免效果检测报告[J].江苏农业科学,2010,06:367-368.
    [83]张成新,李官兵,史子学.猪瘟母源抗体在仔猪体内持续时间的研究[J].养猪,2008,(1):46-48.
    [84]苗得园.Herdchek猪瘟抗体ELISA试剂盒在猪瘟控制中的应用[J].中国兽医杂志,2006,11:50-51.
    [85]SHEU Yueh-Tsang. The use of ELISA in Classical Swine Fever Virus Antibody Monitoring in Taiwan [J]. Taiwan Vet J,2006,32 (4):248-257.
    [86]Simon P. Graham, Felicity J. Haines, Helen L. Johns., et al. Characterisation of vaccine-induced, broadly cross-reactive IFN-r secreting T cell responses that correlate with rapid protection against classical swine fever virus [J].Vaccine 30 (2012) 2742-2748.
    [87]Simon P. Graham, Helen E. Everett, Helen L. Johns., et al. Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses[J]. Veterinary Microbiology 142 (2010) 34-40.
    [88]NING Yi-bao, ZHAO Yun, WANG Qin, FAN Xue-zheng., et al. Influence of PPV, PRV and PRRSV on Efficacy of the Lapinized Hog Cholera Vaccine and Pathogenicity of Classical swine fever virus [J]. Journal of Integrative Agriculture 2012,11(11):1892-1897.
    [89]P. J. Sa'nchez-Cordo'n, J. L. Romero-Trevejo, M. Pedrera., et al. The Role of B Cells in the Immune Response to Pestivirus (Classical Swine Fever Virus) [J]. Comp. Path.2006, Vol.135, 32-41.
    [90]Guang-Jan Lin, Ming-Chung Deng, Zeng-Weng Chen et al. Yeast expressed classical swine fever E2 subunit vaccine candidate providescomplete protection against lethal challenge infection and prevents horizontal virus transmission [J]. Vaccine 30 (2012) 2336-2341.
    [91]么乃全,高云航,张敏,et al.猪瘟疫苗免疫后IFN-r水平的检测[J].安徽农业科学,2009,37(34):16855-16856.
    [92]潘鑫,栗新,李雪松,汪彤,et al.不同厂家猪瘟耐热保护剂活疫苗(兔源)免疫效果对比试验[J].中国动物检疫,2013,30(2)53-54.
    [93]熊丁杰,范学政,徐璐,王琴,et al.不同剂量的猪瘟活疫苗单次免疫效果评价及疫苗存留试验[J].中国兽医杂志,2011,48(8)3-5.
    [94]陆江,伍少钦,et al.不同类型猪瘟疫苗不同剂量的免疫对比试验[J].养猪,2012,2:117-118.
    [95]何海健,张传亮,陆国林,et al.不同年龄猪群中猪瘟抗体监测及免疫效果分析[J].中国预防兽医学报,2012,34(7):573-580.
    [96]吴家强,张学武,李俊,徐绍建,et al.不同猪瘟免疫程序对仔猪母源抗体水平的影响[J].中国动物检疫,2010,27(11):46-48.
    [97]李军成,路彩霞,蒋矗,揭育敏,et al.超免仔猪猪瘟抗体的消长规律研究[J].安徽农业科学,2012,40(33):16165—16166,16335.
    [98]曹剑,张磊,李岩,et al.规模化猪场仔猪猪瘟母源抗体效价动态检测[J].新疆农垦科技,2012,2:26-28.
    [99]李润成,颜爱,葛猛,蒋大良,余兴龙,et al.规模猪场母猪群猪瘟抗体监测与补苗效果分析[J].中国动物检疫,2012,29(8)51-52.
    [100]陈明凯,姚文凤,苏伟桐,et al.四种不同剂量猪瘟活疫苗(传代细胞源)的田间免疫效果对比试验[J].广东畜牧兽医科技,2012,37(3):42-43.
    [101]修金生,吴顺意,周伦江,叶耀辉,et al.淘汰猪瘟抗体不合格种猪对母猪繁殖性能和仔猪生长性能的影响研究[J].中国农学通报,2010,26(20):1-6.
    [102]李华,杨汉春,黄芳芳,et al.猪繁殖与呼吸综合征病毒感染抑制猪瘟疫苗的免疫应[J].中国兽医学报,2001,21(5):219-221.
    [103]徐磊,林伯全,曾亮明,et al.猪群抗猪瘟病毒感染之细胞免疫[J].福建畜牧兽 医,201],33(6):14-16.
    [104]高云航,李秀云,幺乃权,et al.猪乳中抗猪瘟.IgA.IgG、gM抗体动态变化规律研究[J].中国预防兽医学报,2007,29(8):611-6141.
    [105]张秀峰,牛伟,刘玉茹,et al.猪乳中猪瘟IgG、IgM抗体与仔猪猪瘟母源抗体变化规律[J].江苏农业科学,2012,40(12):234-235.
    [106]李素,李尚波,王文成,et al.阻断ELISA与中和试验检测猪瘟疫苗免疫猪血清抗体的比较[J].动物医学进展,2007,28(10):40-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700