用户名: 密码: 验证码:
苯并[a]蒽、CS_2在TiO_2表面的多相光化学反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶是多种组分的混合物,TiO_2在对流层大气气溶胶颗粒中含量中等,而且在对流层太阳辐射下即表现一定活性,参与大气化学变化,是大气多相反应最活跃的气溶胶粒子之一。苯并[a]蒽是美国环保局制定的129种优先控制污染物中的PAHs中的一种,具有较强的致癌、致突变及致畸性,对人体健康具有较大影响;CS_2是大气中主要的含硫气体污染物,对酸沉降和硫酸盐气溶胶的形成有重要贡献,同时它也是大气中COS的重要来源,而平流层COS对太阳辐射及平流层臭氧损耗具有重要影响。因此,研究苯并[a]蒽及CS_2与矿尘气溶胶粒子中的典型氧化物TiO_2的多相光化学反应对揭示这些物种的多相光化学反应的转化过程,评估多相光化学在大气化学转化中的贡献有着重要的意义。
     本文以傅立叶红外光谱和漫反射附件为测定基础的原位观测反应体系,并利用GC-MS,GC以及XPS、IC等分析手段研究了在模拟太阳光照射下苯并[a]蒽和CS_2在TiO_2表面的多相光化学反应过程,主要结论如下:
     1.苯并[a]蒽可在TiO_2半导体颗粒表面发生光催化氧化反应的主要产物为苯并蒽-7,12-二醌。反应过程中,表面羟基和表面氧起了关键作用。在模拟太阳光照射下,苯并[a]蒽在TiO_2颗粒表面的光降解过程符合指数衰减方程,半衰期为6.8min。利用GC-MS分析方法,检测到比较多的邻苯二甲酸酯类以及直链烷烃和酸类中间产物,它们都可能是通过复杂的R·自由基反应而生成的。
     2.在氙灯照射下,CS_2在TiO_2表面发生多相光化学反。CS_2首先和光照下生成的·OH反应,生成活性物种(SCS-OH)~*,进而在表面活性氧物种的作用下,生成气态产物COS,SO_2,H_2S,在TiO_2表面生成硫酸盐。增大氧气浓度可提高多相光化学反应速率。在模拟自然条件下,CS_2在TiO_2表面的多相光化学反应符合表观一级动力学反应,表观反应速率常数K=0.0037 min~(-1),BET吸附系数为5.36×10~(-8)。
Aerosol is a mixture of various components.Semiconductor oxide TiO_2,which are present in troposphere aerosols in comparatively middle amounts,can absorb solar radiation excited into activity status in the troposphere,then participate in the atmospheric photochemical reaction.It is one of the most active components of aerosols.Benz[a]anthracene,one of the sixteen PAHs classified by US EPA as priority pollutants,possessing of mutagenic,carcinogenic,and teratogenic properties,have greater impact on human health.Carbon disulfide(CS_2) is the the major sulfur-containing gaseous pollutants in the atmosphere,playing an significant role in acid deposition and the formation of sulfate aerosols.At the same time Carbon disulfide is also an important source of carbonyl sulfide(COS) in the atmosphere,and the stratospheric carbonyl sulfide has an important influence on solar radiation and stratospheric ozone depletion.Thus it is of significant importance to have a detail study on the heterogeneous photochemical reaction of benz[a]anthracene,CS_2 on the surfaces of TiO_2 particles.It is an effective way to investigate the conversion process of these pollutants,and to assess the contribution of heterogeneous photochemical reaction on atmospheric chemical composition.
     In situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS), Gas Chromatography-Mass Spectrometry(GC-MS) and Gas Chromatography(GC) were used to characterize surface-bound species and gas-phase product during heterogeneous photochemical reaction of benz[a]anthracene,CS_2 on TiO_2 particles. Combined X-ray Photoelectron Spectroscopy(XPS) and Ion Chromatogram(IC) were used to detect the products and provide evidence for the proposed mechanism.
     Firstly,it was confirmed that the main photoproduct of photocatalytic oxidation benz[a]anthracene on the surface of TiO_2 particles was benz[a]anthracene-7,12-dione. The surface hydroxyl and oxygen played a key role.Under the simulated sun light irradiation,the process of benz[a]anthracene photodegradation on TiO_2 particles matches the exponential decay equation,and the half-life time is 6.8 min.It is detected much intermediate products by GC-MS such as phthalate esters,straight alkanes and acid,and these products may through complex R·radical reactions.
     Secondly,the heterogeneous photochemical reaction of CS_2 on TiO_2 particles was studied.CS_2 first reacted with light generated·OH,generating activity species (SCS-OH)~*,then oxidized into COS,SO_2,H_2S,and SO_4~(2-) by active adsorbed O atoms.The experimental indicated that the high concentration oxygen greatly enhanced the photochemical reaction rate.In a simulated natural conditions,the process of CS_2 photodegradation on TiO_2 particles matches apparent first-order reaction,and the BET absorption coefficient is 5.36×10~(-8).
引文
[1]Storozhev V B.Estimation of the contribution of heterogeneous reactions on the surface of aerosol particles to the chemistry of the atmosphere[J].Journal of Aerosol Science,1995,26:1179-1187.
    [2]Daniel J J.Heterogeneous chemistry and tropospheric ozone[J].Atmospheric Environment,2000,34:2131-2159.
    [3]Saylor R D.An estimate of the potential significance of heterogeneous loss to aerosols as an additional sink for hydroperoxy radicals in the troposphere[J].Atmospheric Environment,1997,31:3653-3658.
    [4]Eric E G;Michael J K,Deborah S G,et al.Direct observation of heterogeneous chemistry in the atmosphere[J].Science,1998,279:1184-1187.
    [5]Andreae M O,Crutzen P J.Atmospheric Aerosols:Biogeochemical Sources and Role in Atmospheric Chemistry[J].Science,1997,276:1052-1058.
    [6]唐孝炎,李金龙,栗欣等.大气环境化学[M],北京:高等教育出版社,1990:164-165.
    [7]Whitby K T.The physical characteristics of sulfur aerosols[J].Atmospheric Environment,1978,12:135-159.
    [8]Bizjak M,Grgic I,Hudnik V.The Role of Aerosol Composition in the Chemical Processes in the Atmosphere[J].Chemosphere,1999,38:1233-1240.
    [9]刘强,王明星,李晶,等.大气气溶胶研究现状和发展趋势[J].中国粉体技术,1999,5(3):17-23.
    [10]王明星,张仁键.大气气溶胶研究的前沿问题[J].气候与环境研究,2001,6(1):119-124.
    [11]Bufalini M.Oxidation of Sulfur Dioxide in Polluted Atmospheres-A Review[J].Environmental Science & Technology,1971,5:685-700.
    [12]Halstead J A,Armstrong R,Pohlman B,et al.Nonaqueous Heterogeneous Oxidation of Sulfur Dioxide[J].Journal of Physical Chemistry,1990,94:3261-3265.
    [13]Xuan J,Sokolik I N.Characterization of Sources and Emission Rates of Mineral Dust in Northern China[J].Atmospheric Environment,2002,36:4863-4876.
    [14]Kubilay N,Nickovic S,Moulin C,et al.An Illustration of the Transport and Deposition of Mineral Dust onto the Eastern Mediterranean[J].Atmospheric Environment, 2000, 34: 1293-1303.
    [15] Xuan J, Sokolik I N, Hao J F, et al. Identification and Characterization of Sources of Atmospheric Mineral Dust in East Asia[J]. Atmosphere Environment, 2004, 38: 6239-6252.
    [16] Ratmeyer V, Balzer W, Bergametti G, et al. Seasonal Impact of Mineral Dust on Deep-ocean Particle Flux in the Eastern Subtropical Atlantic Ocean[J]. Marine Geology, 1999,159:241-252.
    [17] Zhang D Z, Iwasaka Y. Nitrate and Sulfate in Individual Asian Dust-storm Particles in Beijing, China in Spring of 1995 and 1996[J]. Atmospheric Environment, 1999, 33: 3213-3223.
    [18] Maria S F, Russell L M, Turpin B J, et al. FTIR Measurements of Functional Groups and Organic Mass in Aerosol Samples Over the Caribbean[J]. Atmospheric Environment, 2002, 36: 5185-5196.
    [19] Warneck P. Heterogeneous and Liquid-Phase Processes; Laboratory studies related to aerosols and clouds[M]. Springer-Verlag, 1996.
    [20] Xuan J, Sokolik I N. Characterization of sources and emission rates of mineral dust in Northern china[J]. Atmospheric Environment, 2002, 36: 4863-4876.
    [21] Kubilay N, Nickovic S, Moulin C, et al. An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean[J]. Atmospheric Environment, 2000, 34: 1293-1303.
    [22] Ratmeyer V, Balzer W, Bergametti G, et al. Seasonal impact of mineral dust on deep-ocean particle flux in the eastern subtropical Atlantic Ocean[J]. Marine Geology, 1999, 159:241-252.
    [23] Usher C R, Michel A E, Grassian V H. Reactions on Mineral Dust[J]. Chemical Review, 2003, 103(12): 4883-4940.
    [24] Kirilll I Z, Michail I K, Valentin N P. Possible Impact of Heterogeneous Photocatalysis on the Global Chemistry of the Earth's Atmosphere[J]. Catalysis Review, 1994, 36(4): 617-644.
    [25] Callahan M A, Slimak M W, Gabelc N W, May I P, Fowler C F, Freed J R, Jenni ngs P, Durfee R L, Whitmore F C, Maestri B, Mabey W R, Holt B R, Gould C, Water-Related Environmental Fate of 129 Priority Pollutants.US Environmental P rotection Agency, Washington D C.1979.EPA-440/4-79-029.
    [26] Menzie C A, Potoki B B, Santodonato J. Exposure to Carcinogenic PAHs in the Envi ronment[J]. Environmental Science & Technology, 1992, 26(7):1278-1284.
    [27]Calder J A,Lader J H.Microbial Metabolism of Polycyclic Aromatic hydrocar bons[J].Apply Environmental Microbiology,1976,32(1):95-101.
    [28]Huang X D,Loreleif Z D.Photoinduced to Xicity of PAHs to the folarreg ions of Brassica Napus and Cucumbis Sativus in Simulated Solar Radiation[J].Ecotoxic ology and Environmental Safy,1996,35(2):108-112.
    [29]Halsall C J,Coleman P J,Davis B J,Burner V,Waterhouse K S,Harding-Jones P,Jones K C.Polyciclic Aromatics Hydrocarbons in U.K.Urban Air[J].Environmental Science & Technology,1994(28):2380-238.
    [30]高春梅.大气中多环芳烃的分布规律[J].环境科学,1993,5:79-81.
    [31]马西林,丁中华,刘瑞莲,等.大同市空气中多环芳烃与人尿中 1-羟基芘的分析[J].环境化学,1994,14(6):536-5420.
    [32]成玉,盛国英,傅家谟,等.大气气溶胶中多环芳烃的定量分析[J].环境化学,1996,15(4):360-365.
    [33]杨文敏,吴炳耀,马西萍,等.不同粒径颗粒物中多环芳烃含量与致突变性关系的研究[J].环境与健康杂志,1994,11(1):11-130.
    [34]孙成均,小谷野道子,等.室内外空气悬浮颗粒物中8种多环芳烃化合物粒径分布的研究[J].华西医科大学学报,1994,25(4):442-446.
    [35]Korfmacher W A,Wehry E L,Mamantov G..Resistance to Photochemical Decomposition of Polycyclic Aromatic Hydrocarbons Vapor-adsorbed on Coal Fly Ash[J].Environmental Science & Technology,1980,14(9):1094-1097.
    [36]Robert A Y,Arlene A G;Wehry E L.Photochemical Transformation of Pyrene and Benzo[a]pryene Vapor-deposited on Eight Coal Stack Ashes[J].Environmental Science & Technology,1986,20(1):86-90.
    [37]Reza D,Keith J E,Michael E S.Photodecomposition of Anthracene on Dry Surface:Products and Mechanism[J].Journal of Photochemistry and Photobiology A:Chemistry,1995,86(123):231-239.
    [38]黄国兰,庄源益,戴树桂.颗粒物上多环芳烃的光转化作用[J].南开大学学报(自然科学版),1997,30(1):98-101.
    [39]潘相敏,陈立敏,成玉.气溶胶中多环芳烃的光降解研究[J].复旦大学学报(自然科学版),1999,38(1):119-122.
    [40]王文兴,束勇辉,李金花.煤烟粒子PAHs光化学降解的动力学[J].中国环境科学,1997,17(2):97-102.
    [41]Watts S F.The Mass Budgets of Carbonyl Sulfide,Dimethyl Sulfide,Carbon Disulfide and Hydrogen Sulfide[J].Atmospheric Environment 2000,34:761-779.
    [42]DeBruyn W J,Swartz E,Hu J H,Shorter J A,Davidovits R Henry's Law Solubilities and Setchenow Coefficients for Biogenic Reduced Sulfur Species Obtained from Gas-liquid Uptake Measurements[J].Journal of Geophysical Research,1995,100D:7245-7251.
    [43]Wang L,Zhang F,Chen J M.Carbonyl Sulfide Derived from Catalytic Oxidation of Carbon Disulfide over Atmospheric Particles[J].Environmental Science &Technology,2001,35:2534-2547.
    [44]Wang L,Zhang F,Chen J M.,Studies on Catalytic Oxidation of CS_2 over Atmospheric Particles and Oxide Catalysts[J].Science in China B,2001,44:587-595.
    [45]Xie H,Moore R M,Miller W L,et al.A Study of the Ocean Source of CS_2.Abstracts of the Papers of the American Geophysical Union,1997,214.
    [46]Chin M,Davis D D.Global Sources and Sinks of OCS and CS_2 and Their Distribution[J].Global Biogeochemical Cycles,1993,7:321-337.
    [47]Johnson J E,Harrison H.Carbonyl Sulfide Concentrations in the Surface Waters and above the Pacific Ocean[J].Journal of Geophysical Research,1986,91:7883-7888.
    [48]Bingemer H G,Burgermeister S,Zimmerman R L,et al.Atmospheric OCS Evidence for a Contribution of Anthropogenic Sources[J].Journal of Geophysical Research,1990,95:20617-20622.
    [49]Chin M.A Study of Atmospheric OCS and CS_2 and Their Relationship to Stratospheric Background Sulfur Aerosol[D].Atlanta,1992.
    [50]孙斌,潘循皙,侯键,等.火花放电条件下CS_2转化为OCS的反应[J].环境科学,2002,23:2.
    [51]William P,Julian W H.Photooxidation of Carbon Disulfide[J].Journal of Physical Chemistry,1971,75(7):854-860.
    [52]王晓,吴洪波,陈建民.常压和真空下CS_2的光氧化反应[J].环境科学,2005,26(2):45-49.
    [53]王琳,张峰,陈建民.大气颗粒物及氧化物对CS_2的催化氧化作用研究[J].中国科学(B辑),2001,31(4):370-376.
    [54]王琳,宋国新,张峰,等.大气颗粒物对CS_2催化氧化反应动力学研究[J].高等学校化学学报,2002,35(12):1738-1742.
    [55]王琳,张峰,陈建民.CS_2和大气颗粒物的多相催化反应研究[J].高等学校校化学学报,2002,23(5):866-870.
    [56]Reyes C A,Medina M,Crespo-Hernandez C,Cedeno M Z,Arce R,Rosario O,Steffenson D M,Ivanov I N,Sigrnan M E,Dabestani R.Photochemistry of Pyrene on Unactivated and Activated Silica Surfaces[J].Environmental Science & Technology,2000,34:415-421.
    [57]Vogt R,Elliott C H,Allen C,Laux J M,Hemminger J C,Finlayson-Pitts B J.Some New Laboratory Approaches to Studying Tropospheric Heterogeneous Reactions[J].Atmospheric Environment.1996,30(10-11):1729-1737.
    [58]马健,柳意.固相微萃取技术应用进展[J].辽宁师专学报,2006,8(3):17-18.
    [59]王连生.有机污染化学.北京:高等教育出版社,2004,591
    [60]Fioressi S,Arce R.Photochemical Transformations of Benzo[e]pyrene in Solution and Adsorbed on Silica Gel and Alumina Surfaces[J].Environmental Science & Technology,2005,39(10):3646-3655.
    [61]Behymer T D,Hltes R A.Photolysis of Polycyclic Aromatic Hydrocarbons Adsorbed on Simulated Atmospheric Particulates[J].Environmental Science &Technology,1985(10),19:1004-1006.
    [62]Jang M,Mcdow S R.Benz[a]anthracene Photodegradation in the Presence of Known Organic Constituents of Atmospheric Aerosols[J].Environmental Science & Technology,1995,29(10):2654-2660.
    [63]Zakharenko V.Photoinduced Heterogeneous Processes on Chemical Phase Components of Solid Tropospheric Aerosols[J].Topics in Catalysis,2005,35(3-4):231-236.
    [64]Naziruddin K M,Al-DWayyan A S,Zaidi Z H.Infrared Spectroscopic Analysis of Chrysene and 1.2-Benzanthracence in Wax films[J].Chinese Physics Letters,2006,23(9):2407-2410.
    [65]Hudgins D M,Sandford S A.Infrared Spectroscopy of Matrix Isolated Polycyclic Aromatic Hydrocarbons.1.PAHs Containing Two to Four Rings[J].The Journal of Physical Chemistry A,1998,102:329-343.
    [66]荆煦瑛,陈式棣,么恩云.红外光谱实用指南.天津:科学技术出版社,1992,158.
    [67]Jang M,Mcdow S R.Products of Benz[a]anthracene Photodegradation in the Presence of Known Organic Constituents of Atmospheric Aerosols[J].Environmental Science & Technology,1997,31(4):1046-1053.
    [68] Bezrodna T, Puchkovska G., Shymanovska V, Baran J, Ratajczak H. IR-analysis of H-bonded H_2O on the Pure TiO_2 Surface [J]. Journal of Molecular Structure, 2004,700:175-181.
    [69] Henderson M A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited [J]. Surface Science Reports, 2002, 46:1-308.
    [70] Panayotov D V, Paul D k, Yates J T. Photocatalytic Oxidation of 2-Chloroethyl Ethyl Sulfide on TiO_2-SiO_2 Powders[J]. The Journal of Physical Chemistry B, 2003,107:10571.
    [71] Bonamali P, Maheshwar S. Photodegradation of Polyaromatic Hydrocarbons over Thin Film of TiO_2 Nanoparticles a Study of Intermediate Photoproducts[J]. Journal of Molecular Catalysis, 2000,160:453-460.
    [72] Lee B D, Hosomi M, Masaaki H. Prediction of Fenton Oxidation Positions in Ploycyclic Aromatic Hydrocarbons by Frontier Electron Density [J]. Chemosphere, 2001,42:431-435.
    [73] Kohtani S, Tomohiro M, Tokumura K, Nakagaki R. Photodegradation of Ethylene using Visible Light Responsive Surfaces Prepared from Titania Nanoparticle Slurries [J]. Applied Catalysis B: Environmental, 2005, 58: 265-272.
    
    [74] Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental Application of Semiconductor Photocatalysis[J]. Chemical Review, 1995, 95: 69-73.
    [75] Wen S, Zhao J C, Sheng G Y, Fu J M, Peng P A. Photocatalytic Reactions of Phenanthrene at TiO_2/water Interfaces [J]. Chemosphere, 2002,46:871-877.
    [76] Wen S, Zhao J C, Sheng G Y, Fu J M, Peng P A. Photocatalytic reactions of pyrene at TiO_2/water interfaces[J]. Chemosphere, 2003, 50:111-119.
    [77] Yu Z, P.K.ANDREW H, DAVID A W. Integrated Chemical-Biological Treatment of Benzo[a]pyrene[J]. Environmental Science & Technology, 2000, 34(5):854-862.
    [78] Zeng Y, HongA, P.K Wavrek D A. Integrated Chemical-biological Treatment of Pyrene[J]. Water Research, 2000.34:1157-1172.
    [79] Zeng Y, HongA, P.K Wavrek D A. Integrated Chemical-biological Treatment of Benzo[a]pyrene[J]. Environmental Science & Technology, 2000,34:854-862.
    [80] Zakharenko V S. Photoadsorption and Photocatalytic Oxidation on the Metal Oxides Components of Tropospheric Solid Aerosols under the Earth's Atmosphere Conditions[J].Catalysis Today 1997,39:243-249.
    [80]Simon F W.The Mass Budgets of Carbonyl Sulfide,Dimethyl Sulfide,Carbon Disulfide and Hydrogen Sulfide[J].Atmospheric Environment,2000,34:761-779.
    [81]Prashant V K.Photochemistry on Nonreactive and Reactive(Semiconductor)Surfaces[J].Chemical Review,1993,93:267-300.
    [82]张建良,潘循皙,张仁熙,侯惠奇.对流层中CS_2光氧化研究[J].环境化学,2003.22(1):26-31.
    [83]Goodman A L,Li P,Usher C R,et al.Heterogeneous Uptake of Sulfur Dioxide on Aluminum and Magnesium Oxide Particles[J].Journal of Physical Chemistry,2001,105:6109-6120.
    [84]井立强,孙晓君,徐自力,蔡伟民,杜尧国.ZnO超微粒子光催化氧化SO_2的研究[J].催化学报,2002,23(1):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700