用户名: 密码: 验证码:
核苷酸切除修复基因多态性与焦炉工DNA损伤及肺癌易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化作业过程中产生的焦炉逸散物(coke oven emission,COE)中含有大量致癌性多环芳烃(polycyclic aromatic hydrocarbons,PAHs),是引起焦炉工肺癌高发的主要原因。焦炉工肺癌是我国的法定职业性肿瘤之一,目前已进入。一个稳定的高发期,也是我国职业肿瘤防治工作的重点。烟草已公认为肺癌的危险因素,与COE相似,其中也含有大量致癌性的PAHs。但不同的个体,在相似的外暴露环境中DNA损伤程度不同,且只有少部分接触致癌性PAHs者会最终发生肺癌,而且发病的潜伏期存在很大差异,这提示个体易感性的作用不容忽视。核苷酸切除修复(nucleotideexcision repair,NER)是体内识别DNA损伤形式最多、最灵活也最复杂的修复途径,在PAHs引起的DNA损伤修复中发挥重要作用。因此研究NER基因多态性与DNA损伤及肺癌易感性的关联,不仅有利于我们加深对PAHs致癌机制的认识,而且有利于筛检易感人群。对NER基因多态性和DNA损伤及肿癌易感性的关系已有部分研究,但可能由于缺少对整个基因或整个通路“综合变异性”的考虑,忽视了其它有功能的位点,从而影响关联研究中结果的产生。
     本研究首先以接触高浓度焦炉逸散物的焦炉作业者为研究对象,探讨了NER基因多态性与PAHs引起DNA损伤的关系,然后对启动区SNPs的功能进行了初步探讨,结合上述的结果,又进行了有意义SNPs与肺癌易感性的关联研究,从焦化作业所造成的DNA损伤和肺癌发生这两个层面出发,期望为职业人群的个体防护和肺癌遗传易感性的研究提供科学依据。本研究共分以下三部分:
     第一部分核苷酸切除修复基因多态性与焦炉工DNA损伤的关联研究
     PAHs是焦炉逸散物最重要的致癌组份之一,可引起机体DNA损伤,而后者是肿瘤发生的早期生物学事件,NER是体内修复损伤DNA的主要途径,在PAHs所致损伤的修复中发挥着重要作用,因此,研究NER基因多态性对焦炉工DNA损伤的影响对了解职业人群的遗传易感性具有重要意义。本部分采用TaqMan-MGB探针分型技术,根据HapMap数据库信息挑选了NER修复通路中8个基因共32个多态性位点,对475名焦炉作业工人进行了分型。共有4个基因的6个位点多态性与彗星尾矩(Olive tail moment,OTM)有关,1个位于中暴露组,5个在高暴露组。在中暴露组,XPA基因rs1800975位点GG和GA基因型携带者OTM分别为0.30(0.12-0.82)和0.39(0.17-1.86),均显著性低于AA基因型携带者0.53(0.16-2.62)(P<0.05)。在高暴露组,与DDB2 rs3781619AA基因型携带者相比,GG基因型携带者OTM明显增高,OTM分别为0.39(0.13-1.67)和0.53(0.17-2.57),P=0.036。携带有XPC rs2228001位点GG基因型的个体OTM为0.42(0.17-2.54),明显高于TT基因型携带者0.33(0.13-1.38),且随G等位基因数目的增多,OTM逐渐增高,P<0.05。XPC基因rs3731055位点GA和AA基因型携带者OTM分别为0.35(0.13-1.24)和0.25(0.14-1.98),低于GG基因型携带者0.45(0.17-1.73),差别有显著性,趋势检验也有意义(P<0.05)。XPD rs50871GG纯合子携带者DNA损伤水平为0.23(0.13-1.00),显著低于野生型纯合子TT携带者0.40(0.15-1.22),P<0.05;携带有rs50872 TC杂合子的个体OTM为0.33(0.13-1.02),显著性低于CC纯合子0.46(0.15-1.32),P<0.05。在三个暴露组中,我们未发现ERCC1,XPB和XPG基因的多态性对工人OTM有显著性影响。
     单体型对分析结果显示,低暴露组中,DDB2基因TACGA/TACGA单倍型对OTM值最高,为0.75(0.22-2.21),与人群中分布最广泛的CTGAG/CTGAG单倍型对相比(0.29(0.08-4.13)),差别有统计学意义,P<0.05。低暴露中,XPC基因TAA/TAA单体型携带者OTM为0.65(0.19-2.21)高于TGA/TAA单体型对携带者(0.24(0.11-2.06)),P<0.05。中暴露组中,与XPA基因GTA/GAG单体型对携带者相比,GTA/GTG单体型对携带者OTM明显增高,OTM分别为0.82(0.19-4.28)和0.36(0.17-3.16);高暴露组中ATA/ATA单体型对携带者OTM为0.62(0.20-2.57),明显高于GTA/GAG单体型对携带者(0.35(0.13-1.24)),P<0.05。同时,高暴露组中,XPD基因TCCTC/TCTTC单体型对携带者DNA损伤(0.25(0.13-0.61))明显低于TGCTG/TCCTC单体型对携带者(0.53(0.13-1.77)),P<0.05;XPF基因AC/AC单倍型携带者的OTM明显高于TC/TC单倍型携带者,OTM分别为0.77(0.20-1.42)和0.35(0.13-2.57),P=0.010。其它基因的单体型对在三个暴露组中均无统计学差别。
     进一步分析基因型的联合作用对DNA损伤风险的影响,结果表明在高暴露组中,与有1个或没有危险等位基因的个体相比,有2个、3个或多于4个危险等位基因的个体OTM增高的风险分别为1.74(0.74-4.10)、1.50(0.59-3.84)和2.15(0.61-7.66),趋势检验有意义,P=0.04。在中暴露组,与只有1个或没有相对保护的等位基因的个体相比,有2个、3个或多于4个相对具有保护作用的等位基因的个体OTM降低的风险是分别是0.62(0.24-1.68)(P=0.35)、0.25(0.10-0.67)(P=0.006)和0.31(0.12-0.83)(P=0.020),降低的趋势为0.01;在高暴露组中,相对于只有1个或没有保护性等位基因的个体,有2个、3个或多于4个保护性等位基因的个体OTM降低的风险是分别是0.45(0.14-1.41)(P=0.17)、0.20(0.06-0.66)(P=0.008)和0.15(0.04-0.57)(P=0.005),并且降低的趋势有意义,P trend=0.0007。
     本部分中我们探讨了NER基因多态性与焦炉逸散物引起的外周血淋巴细胞DNA损伤的关系,发现XPA rs1800975位点GG基因型与中暴露组DNA损伤降低相关联;高暴露组XPD rs50871 GG纯合子携带者、rs50872位点TC杂合子携带者及XPC rs3731055位点GA和AA基因型携带者DNA损伤水平降低;高暴露组DDB2rs3781619 GG基因型及XPC rs2228001 GG基因型与DNA高损伤相关联,NER基因间的联合作用与DNA损伤有明显关联。
     第二部分XPA及XPC基因启动子区SNPs功能研究
     启动子区多态的存在引起了序列结构的差异,使特定基因有可能结合不同的转录因子,从而引起转录和翻译效率的不同。我们采用双荧光素酶活性分析系统检测了XPA rs1800975和XPC rs3731055位点对荧光素酶活性的影响,用SYBR Green实时荧光定量的方法检测上述位点在荧光素酶mRNA表达中的作用。结果发现在三种细胞株中,XPA基因5’UTR区含有rs1800975-G的质粒荧光素酶的活性均强于含有rs1800975-A的质粒(P<0.001)。含有XPC基因rs3731055-A的质粒,其荧光素酶活性在16HBE细胞中强于rs3731055-G的质粒,差别有临界显著性(P=0.08);在A549和HePG2细胞株中,含XPC基因rs3731055-A的质粒,荧光素酶活性均强于含有rs3731055-G的质粒(P=0.013和P<0.01)。
     相对于含有XPA rs1800975-A的质粒,三种细胞株中含XPA rs1800975-G的质粒荧光素酶表达均显著性增高,在16HBE细胞中增高了1.66倍(P=0.020),A549细胞增高了9.08倍(P<0.01),HePG2细胞增高了8.73倍(P<0.01)。与含有XPCrs3731055-G的质粒相比,含XPC rs3731055-A的质粒在16HBE、A549和HePG2细胞中的荧光素酶表达分别增高了3.11倍(P<0.01)、2.93倍(P=0.025)和4.08倍(P<0.01)。
     本部分的结果提示XPA rs1800975-G及XPC rs3731055-A可以增强荧光素酶的活性及表达。
     第三部分NER基因多态性与肺癌易感性的关联研究
     肺癌是多因素参与多阶段发展的复杂过程,是由环境因素和个体遗传因素综合作用的结果。在前面研究的基础上,我们深入分析了可影响焦炉工DNA损伤的SNP与肺癌发病危险性的关联。结果表明,经校正年龄、性别、吸烟、饮酒及肿瘤家族史等影响因素后,DDB2 rs3781619 GA杂合子携带者发生肺癌的危险性是TT纯合子携带者的119倍(OR=119,95%CI=0.99-1.42),差异有临界显著性,P=0.067,GG纯合子携带者发生肺癌的危险性是TT纯合子携带者的1.31倍(OR=1.31,95%CI=1.04-1.68),P=0.040。DDB2 rs3781619基因型与吸烟及肿瘤家族史之间有联合作用,同时具有rs3781619 GA+GG基因型、吸烟及有肿瘤家族史者肺癌发病的风险为8.04(4.72-13.72)倍,P<0.01。四个SNPs(XPA rs1800975、XPD rs50871、XPDrs50872和DDB2 rs3781619)与肺癌预后均无明显关联。
     综上所述,本研究以NER基因多态性为主线,探讨了它们与焦炉作业工人DNA损伤的关系,对SNP功能的进行了初步研究,探讨了有意义SNPs与肺癌易感性的关联。本研究的创新之处在于:(1)在校正了内暴露的情况下,利用HapMap数据,结合生物信息学,选取能代表NER通路基因的遗传变异,探讨其与DNA损伤的关系;(2)首次以体外细胞实验初步验证了与DNA损伤有关联的启动区SNPs的功能;(3)在不同人群中验证了关联研究的结果。
     本研究的不足之处及有待深入研究的地方:(1)DNA损伤到肺癌的发生是一个复杂的过程,本研究中的肺癌样本并不能代表焦炉工肺癌,因此需进一步研究基因多态性与焦炉工肺癌易感性的关联;(2)需在人群样本中检测相关蛋白表达,并结合新技术新方法研究多通路蛋白质间的交互作用;(3)将SNPs与其它分子标记如拷贝数变异或微小RNA等结合起来研究它们与职业人群易感性的关联,为职业人群筛检提供依据。
The abundant polycyclic aromatic hydrocarbons (PAHs) in cigarettes and coke ovenemission (COE) have been confirmed to be the main cause of lung cancer. Lung cancerof coke oven workers is one of the eight occupational tumors legislated in our country.However, recent researches demonstrated that DNA damage level may be different evenunder similar environments. Moreover, only a small portion of smokers and workerseventually develop cancer, which indicated the importance of individual susceptibility.The nucleotide excision repair (NER) is one of the most volatile repair pathways, whicheliminates a wide spectrum of DNA lesions including bulky base adducts induced bynumerous chemical compounds like PAHs. Therefore, to investigate the relationshipbetween NER genetic variations and DNA damage level as well as the associationbetween NER gene variations and lung cancer risk would be of great importance forunderstanding the underlying mechanism of PAHs carcinogenesis, screening ofsusceptible population and improving risk assessment among the exposed subjects. Somestudies have investigated the relationship between NER SNPs and DNA damage leveland lung cancer risk, but the results are still inconsistent. It may be attributed to theirsmall studying population or the fact that all reported SNPs in the candidate genes in a whole pathway were not taken into account.
     In the present study, we firstly used the HapMap data to select Tagging SNPs in theNER pathway and detected the association between these SNPs and DNA damage levelin the coke oven workers; secondly we investigated the potential functions of SNPslocated in the promoter region. Finally we detected the genotypes of the SNPs that canmodify DNA damage level in lung cancer patients.
     PartⅠThe associations of genetic variations in the NER geneswith PAHs-induced DNA damage in coke oven workers
     PAHs are the main carcinogenic components of COE and can cause DNA damage,which is considered as the early event in lung cancer development. NER plays animportant role in the repair of PAHs induced DNA damage. Therefore, to investigate therelationship between NER genetic variations and DNA damage level would be importantfor understanding the underlying mechanism of PAHs carcinogenesis and screening ofsusceptible population. In this section, with the HapMap Han Chinese data, wegenotyped 32 SNPs in 8 core genes involved in NER in 475 coke oven workers. SixSNPs in 4 genes were associated with DNA damage level, five in the high exposuregroup and the other one in the intermediate. In the intermediate exposure group, theOlive tail moment (OTM) in carriers of XPA rs1800975 GG and GA genotype (median0.30 and 0.39) was significantly lower than that of the AA genotype carriers (median0.53), P<0.05. In the high-exposure group, two SNPs were associated with elevatedlevels of DNA damage while three with decreased levels of DNA damage. DNA-damagelevels elevated in subjects with the XPC rs2228001 GG genotype (median 0.42)compared with those with the TT genotype (median 0.33, P<0.05); meanwhile, carriersof the DDB2 rs3781619 GG genotype had higher DNA-damage levels than those of the AA genotype (median 0.39 and 0.53, respectively, P=0.036). The OTM decreased incarriers of the XPC rs3731055 AA genotype (median 0.25) compared with those of theGG genotype (median 0.45) (P<0.05). The OTM in carriers of XPD rs50871 GGgenotype was lower than those of the TT genotype (median 0.23 and 0.40, respectively,P trend=0.048), and a similar trend was found in the rs50872 TC and TT genotypecompared with the CC genotype (P trend=0.012). No significance was found in theassociation between polymorphisms in ERCC1, XPB and XPG genes and DNA damagelevel.
     The diplotype analysis revealed that, in the low exposure group, the DDB2TACGA/TACGA diplotype carriers had the highest OTM (median 0.75) compared withthat of the most widely distributed CTGAG/CTGAG diplotype (median 0.29), P<0.05. TheOTM elevated in carriers of XPC TAA/TAA diplotype (median 0.65) compared withthose of the TGA/TAA diplotype (median 0.24), P<0.05. In the intermediate exposuregroup, the OTM in carriers of XPA GTA/GTG diplotype were significantly higher thanthat in carriers with the GTA/GAG diplotype (median 0.82 vs. 0.36), and carriers of theATA/ATA diplotype also had higher OTM (median 0.62) than those of the GTA/GAGdiplotype (median 0.35) in the high exposure group, P<0.05. In the high exposure group,the DNA damage in subjects with XPD TCCTC/TCTTC diplotype was significantlylower than that in subjects with TGCTG/TCCTC diplotype (median 0.25 vs. 0.53).Meanwhile, carriers of the XPF AC/AC diplotype had higher DNA damage level (median0.77) than carriers of TC/TC diplotype (median 0.35), P=0.010. No other diplotypes inNER genes were found to have significant association with DNA damage level.
     Further analysis of combinations of genetic variants was assessed by logisticregression models. For the at-risk genotypes, the ORs for individuals with four and more risk alleles tended to be high, though not statistically significant, in all three groupsdivided by 1-hydroxypyrene levels compared with individuals having one or no riskgenotypes. For the relatively protective genotypes, the ORs in individuals with three andmore variant alleles decreased significantly compared with those with one or no variantalleles in the intermediate (OR=0.25 (0.10-0.67) and 0.31 (0.12-0.83) for 3 and≥4 variantalleles, respectively) and high (OR=0.20 (0.06-0.66) and 0.15 (0.04-0.57) for 3 and≥4variant alleles, respectively) exposure groups, compared with the individuals with 0-1alleles in the same group; the trend for increased number of protective variant allele withdecreased OR was statistically significant (P=0.01 for the intermediate and P=0.0007 forthe high exposure groups).
     These results demonstrated that workers with variant alleles of XPC rs2228001 andDDB2 rs3781619 had higher DNA damage level, while the OTM decreased in subjectswith XPA rs1800975 GA and GG, XPC rs3731055 AA, XPD rs50871 GG and rs50872 TCgenotypes.
     PartⅡFunctional investigation of SNPs located in the promoter ofXPA and XPC
     Differences in the sequence structure due to the variations in the promoter regionmay give rise to the variety of binding affinity of specific transcriptional factor, and thencause the disparity in efficiency of transcription and translation. To explore the possiblefunctional impact of the SNPs on the XPA and XPC gene that had shown their effects onDNA damage level in the multivariate analysis of covariance, plasmids were constructedwith luciferase as reporter gene and transfected in cultured cells. Relative luciferaseactivity (RLA) and luciferase expression were detected. The RLA containing XPArs1800975-G promoter was remarkably higher than that of the rs1800975-A containing promoter in the three types of cell lines (all P<0.001). Similarly, greater RLA wasobtained in the construct with XPC rs3731055-A allele compared to that with XPCrs3731055-G allele in 16HBE (P=0.08), A549 (P=0.013) and HepG2 (P<0.01) cell lines.
     The luciferase expression was significantly up-regulated in the XPA rs1800975-Gcontaining promoter in all three cell lines, with the rs1800975-G allele resulting in 1.66,9.08 and 8.73 times higher in luciferase expression compared to the rs1800975A allele in16HBE (P=0.020), A549 and HepG2 cell lines (P<0.01). Compared with constructcontaining the XPC rs3731055-G allele, the XPC rs3731055-A allele containingfragment had 3.11, 2.93 and 4.08 fold higher luciferase expression in 16HBE (P=0.08),A549 (P=0.025) and HepG2 cell lines (P<0.01). These data suggested that the XPArs1800975-G and XPC rs3731055-A allele may enhance promoter activity and mRNAexpression level.
     PartⅢAssociations between NER SNPs and lung cancersusceptibility
     Lung cancer is a complex multifactor process, while one of the early events ofwhich is DNA damage. In order to determine whether the SNPs that can modify DNAdamage level were associated with susceptibility of lung cancer, we conducted acase-control study of 1152 patients and 1152 matched cancer free controls in south China.After adjustments of age, gender, smoking status, drink and family history of cancer, wefound that the DDB2 rs3781619 GA and GG genotypes were associated with increasedrisk of lung cancer (OR=1.19, 95%CI=0.99-1.42, P=0.067 and OR=1.31,95%CI=1.04-1.68, P=0.040, respectively). Joint effect was found in the rs3781619genotypes with smoking and family history of lung cancer. Subjects carryingrs3781619GA+GG genotypes, smoking and having family history of lung cancer had significantly higher risk of lung cancer (OR=8.04, 95%CI=4.72-13.72, P<0.01).However, XPA rs1800975, XPD rs50871 and rs50872 were not significantly associatedwith lung cancer risk. Additionally, there were no significant associations between thefour SNPs (XPA rs1800975, XPD rs50871, XPD rs50872 and DDB2 rs3781619) andprognosis of lung cancer.
     In summary, we selected Tagging SNPs in the NER genes with the HapMap dataand detected the associations of these SNPs with DNA damage level in the coke ovenworkers and risk of lung cancer, and investigated the potential functions of SNPs in thepromoter region. Our results indicated that NER gene variations may moderate DNAdamage level and lung cancer risk, and SNPs in the promoter may have an impact on thepromoter activity and expression.
     However, lung cancer is a complex process involving a variety of factors. Thusassociations of variations in other pathways with lung cancer susceptibility in coke ovenworkers need to be detected. Secondly, protein expression and protein-proteininteractions in the related population need to be investigated in numerous pathways.Finally, further researches of the association of combining effect of SNPs and othermolecular markers such as copy number variation and microRNAs with lung cancersusceptibility are warranted in the future.
引文
1. Consortium TIH. The International HapMap Project. Nature, 2003, 426(6968): 789-796.
    2. IARC. Polycyclic aromatic hydrocarbons, part 1, chemical, environmental and experimental data. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, 1983, 32.
    3. IARC. Polynuclear Aromatic Compounds, Part 3, Industrial Exposures in Aluminium Production, Coal Gasification, Coke Production, and Iron and Steel Founding. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 1984,34:65-131.
    4. Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer, 2001, 1(1):22-33.
    5. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature, 2001,411(6835):366-374.
    6. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 2004, 73:39-85.
    7. Wood RD. Nucleotide excision repair in mammalian cells. J Biol Chem, 1997, 272 (38):23465-23468.
    8. Cheng J, Leng S, Dai Y, et al. Association between nucleotide excision repair gene polymorphisms and chromosomal damage in coke-oven workers. Biomarkers, 2007, 12(1):76-86.
    9. Leng S, Cheng J, Zhang L, et al. The association of XRCC1 haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev, 2005, 14(5): 1295-1301.
    10. Yang X, Yuan J, Sun J, et al. Association between heat-shock protein 70 gene polymorphisms and DNA damage in peripheral blood lymphocytes among coke-oven workers. Mutat Res, 2008, 649(1-2):221-229.
    11. Zienolddiny S, Campa D, Lind H, et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis, 2006, 27(3):560-567.
    12. Shen M, Berndt SI, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China. Int J Cancer, 2005, 116(5):768-773.
    13. Zheng Z, Chen T, Li X, et al. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med, 2007, 356(8):800-808.
    14. Park JY, Lee SY, Jeon HS, et al. Lys751Gln polymorphism in the DNA repair gene XPD and risk of primary lung cancer. Lung Cancer, 2002, 36(1): 15-16.
    15. Yin J, Li J, Vogel U, et al. Polymorphisms of DNA repair genes: ERCC1 G19007A and ERCC2/XPD C22541A in a northeastern Chinese population. Biochem Genet, 2005, 43(9-10):543-548.
    16. Welsh C, Day R, McGurk C, et al. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer, 2004, 110(3):352-361.
    17. Hu Z, Shao M, Yuan J, et al. Polymorphisms in DNA damage binding protein 2 (DDB2) and susceptibility of primary lung cancer in the Chinese: a case-control study. Carcinogenesis, 2006, 27(7):1475-1480.
    18. Goode EL, Ulrich CM, and Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev, 2002, 11(12): 1513-1530.
    19. Jongeneelen FJ. Methods for routine biological monitoring of carcinogenic PAH-mixtures. Sci Total Environ, 1997, 199(1-2): 141-149.
    20. van Delft JH, Steenwinkel MS, van Asten JG, et al. Biological monitoring the exposure to polycyclic aromatic hydrocarbons of coke oven workers in relation to smoking and genetic polymorphisms for GSTM1 and GSTT1. Ann Occup Hyg, 2001, 45(5): 395-408.
    21. Siwinska E, Mielzynska D, and Kapka L. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers. Occup Environ Med, 2004, 61(3): e10.
    22. Koppen G, Verheyen G, Maes A, et al. A battery of DNA effect biomarkers to evaluate environmental exposure of Flemish adolescents. J Appl Toxicol, 2007, 27(3): 238-246.
    23. Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2): 263-265.
    24. Livak KJ. Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet Anal, 1999, 14(5-6): 143-149.
    25.李晓华,冷曙光,郭君,等.改良的高效液相色谱法测定尿中1-羟基芘.卫生研究,2003,32(6):616-617.
    26. Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 1988, 175(1): 184-191.
    27. McKelvey-Martin VJ, Green MH, Schmezer P, et al. The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res, 1993, 288(1): 47-63.
    28.朱志良,庄志雄,黄钰,等.单细胞凝胶电泳图像分析系统的研制及应用.中华劳动卫生职业病杂志,200119(4):298-300.
    29. Olive PL, Banath JP, and Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res, 1990, 122(1): 86-94.
    30.何越峰.硕士学位论文.华中科技大学图书馆.2008.
    31. Chen Y, Bai Y, Yuan J, et al. Association of polymorphisms in AhR, CYPIA1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers. Cancer Epidemiol Biomarkers Prev, 2006, 15(9): 1703-1707.
    32. Koberle B, Roginskaya V, and Wood RD. XPA protein as a limiting factor for nucleotide excision repair and UV sensitivity in human cells. DNA Repair (Amst), 2006, 5(5): 641-648.
    33. Mu D, Wakasugi M, Hsu DS, et al. Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem, 1997, 272(46): 28971-28979.
    34. Evans E, Moggs JG, Hwang JR, et al. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J, 1997, 16(21): 6559-6573.
    35. Ide F, Iida N, Nakatsuru Y, et al. Mice deficient in the nucleotide excision repair gene XPA have elevated sensitivity to benzo[a]pyrene induction of lung tumors. Carcinogenesis, 2000, 21(6): 1263-1265.
    36.朱锦富,陈亦江,周建农,等.DNA修复基因XPA单核苷酸多态性与肺癌遗传易感性的研究.肿瘤,2005,25(3):246-249.
    37. Park JY, Park SH, Choi JE, et al. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev, 2002, 11(10 Pt 1): 993-997.
    38. Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis, 2003, 24(3): 505-509.
    39. Pavanello S, Pulliero A, Siwinska E, et al. Reduced nucleotide excision repair and GSTMI-null genotypes influence anti-B[a]PDE-DNA adduct levels in mononuclear white blood cells of highly PAH-exposed coke oven workers. Carcinogenesis, 2005, 26(1): 169-175.
    40. Dusinska M, Dzupinkova Z, Wsolova L, et al. Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study. Mutagenesis, 2006, 21(3): 205-211.
    41. Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell, 1998, 2(2): 223-232.
    42. Zhu Y, Yang H, Chen Q, et al. Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair (Amst), 2008, 7(2): 141-148.
    43.胡志斌,王永岗,马红霞,等.DNA修复基因XPC Ala499Val、Lys939Gln多态与肺癌易感性.中华医学遗传学杂志,2005,22(4):415-418.
    44. Francisco G, Menezes PR, Eluf-Neto J, et al. XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis. Eur J Hum Genet, 2008, 16(6): 724-734.
    45.白云.博士学位论文.华中科技大学图书馆.2007.
    46.胡劲松,黄辰,宋土生,等.着色性干皮病与DNA损伤修复.国外医学遗传学分 册, 2002, 25(6):365-370.
    47. Wolfe KJ, Wickliffe JK, Hill CE, et al. Single nucleotide polymorphisms of the DNA repair gene XPD/ERCC2 alter mRNA expression. Pharmacogenet Genomics, 2007, 17(11):897-905.
    48. Nott A, Meislin SH, and Moore MJ. A quantitative analysis of intron effects on mammalian gene expression. Rna, 2003, 9(5):607-617.
    49. El-Mahdy MA, Zhu Q, Wang QE, et al. Cullin 4A-mediated proteolysis of DDB2 protein at DNA damage sites regulates in vivo lesion recognition by XPC. J Biol Chem, 2006, 281(19): 13404-13411.
    50. Stoyanova T, Yoon T, Kopanja D, et al. The xeroderma pigmentosum group E gene product DDB2 activates nucleotide excision repair by regulating the level of p21Wafl/Cipl. Mol Cell Biol, 2008, 28(1):177-187.
    51. Melquist S, Craig DW, Huentelman MJ, et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am J Hum Genet, 2007, 80(4):769-778.
    52. Sabeti PC, Schaffner SF, Fry B, et al. Positive natural selection in the human lineage. Science, 2006, 312(5780): 1614-1620.
    53. Yang J, Liu X, Niu P, et al. Dynamic changes of XPA, XPC, XPF, XPG and ERCC1 protein expression and their correlations with levels of DNA damage in human bronchial epithelia cells exposed to benzo[a]pyrene. Toxicol Lett, 2007, 174(1-3): 10-17.
    54. Tsodikov OV, Ivanov D, Orelli B, et al. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. Embo J, 2007, 26(22):4768-4776.
    55. Popanda O, Schattenberg T, Phong CT, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer. Carcinogenesis, 2004, 25(12): 2433-2441.
    56. Matullo G, Peluso M, Polidoro S, et al. Combination of DNA repair gene single nucleotide polymorphisms and increased levels of DNA adducts in a population-based study. Cancer Epidemiol Biomarkers Prev, 2003, 12(7): 674-677.
    57. Mohrenweiser HW, Wilson DM, 3rd, and Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res, 2003, 526(1-2): 93-125.
    58. Applebaum KM, Karagas MR, Hunter D J, et al. Polymorphisms in nucleotide excision repair genes, arsenic exposure, and non-melanoma skin cancer in New Hampshire. Environ Health Perspect, 2007, 115(8): 1231-1236.
    59. Laine JP, Mocquet V, Bonfanti M, et al. Common XPD (ERCC2) polymorphisms have no measurable effect on nucleotide excision repair and basal transcription. DNA Repair (Amst), 2007, 6(9): 1264-1270.
    60.王红.博士学位论文.华中科技大学图书馆.2006.
    61.杨晓波,郑金平,白云,等.ERCC4基因遗传变异对焦炉工外周血淋巴细胞DNA损伤的影响.中华劳动卫生职业病杂志,2007,25(8):449-452.
    62. Leng S, Dai Y, Niu Y, et al. Effects of genetic polymorphisms of metabolic enzymes on cytokinesis-block micronucleus in peripheral blood lymphocyte among coke-oven workers. Cancer Epidemiol Biomarkers Prev, 2004, 13 (10): 1631-1639.
    63. Armelin-Correa LM, Lin CJ, Barbosa A, et al. Characterization of human collagen XVIII promoter 2: interaction of Sp1, Sp3 and YY1 with the regulatory region and a SNP that increases transcription in hepatocytes. Matrix Biol, 2005, 24(8):550-559.
    64. Chanock S. Candidate genes and single nucleotide polymorphisms (SNPs) in the study of human disease. Dis Markers, 2001, 17(2):89-98.
    65. Higasa K and Hayashi K. Periodicity of SNP distribution around transcription start sites. BMC Genomics, 2006, 7:66.
    66. Larsen LK, Amri EZ, Mandrup S, et al. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency. Biochem J, 2002, 366(Pt 3):767-775.
    67. van der Velden AW and Thomas AA. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol, 1999, 31(1):87-106.
    68. Wu X, Fan W, Xu S, et al. Sensitization to the cytotoxicity of cisplatin by transfection with nucleotide excision repair gene xeroderma pigmentosun group A antisense RNA in human lung adenocarcinoma cells. Clin Cancer Res, 2003, 9(16 Pt 1):5874-5879.
    69. Khan SG, Oh KS, Shahlavi T, et al. Reduced XPC DNA repair gene mRNA levels in clinically normal parents of xeroderma pigmentosum patients. Carcinogenesis, 2006, 27(1):84-94.
    70. Wu YH, Cheng YW, Chang JT, et al. Reduced XPC messenger RNA level may predict a poor outcome of patients with nonsmall cell lung cancer. Cancer, 2007, 110(1):215-223.
    71. Mattson ME, Pollack ES, and Cullen JW. What are the odds that smoking will kill you? Am J Public Health, 1987, 77(4):425-431.
    72. Hwang BJ, Toering S, Francke U, et al. p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol, 1998, 18(7): 4391-4399.
    73. Tang JY, Hwang BJ, Ford JM, et al. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell, 2000, 5(4): 737-744.
    74. Wakasugi M, Kawashima A, Morioka H, et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem, 2002, 277(3): 1637-1640.
    75. Itoh T, Linn S, Ono T, et al. Reinvestigation of the classification of five cell strains of xeroderma pigmentosum group E with reclassification of three of them. J Invest Dermatol, 2000, 114(5): 1022-1029.
    76. Yoon T, Chakrabortty A, Franks R, et al. Tumor-prone phenotype of the DDB2-deficient mice. Oncogene, 2005, 24(3): 469-478.
    77.吕美霞,杨晓波,白云,等.DNA损伤结合蛋白(DDB2)基因单核苷酸多态性与肺癌易感性研究.疾病控制杂志,2007,11(5):444-447.
    78. Butkiewicz D, Popanda O, Risch A, et al. Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene. Cancer Epidemiol Biomarkers Prev, 2004, 13(12): 2242-2246.
    79. De Ruyck K, Szaumkessel M, De Rudder I, et al. Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res, 2007, 631(2): 101-110.
    80. Vogel U, Overvad K, Wallin H, et al. Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer. Cancer Lett, 2005, 222(1): 67-74.
    81. Wu X, Shell SM, Yang Z, et al. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res, 2006, 66(6):2997-3005.
    82. Hung RJ, Christiani DC, Risch A, et al. International Lung Cancer Consortium: pooled analysis of sequence variants in DNA repair and cell cycle pathways. Cancer Epidemiol Biomarkers Prev, 2008, 17(11):3081-3089.
    83. Monzo M, Moreno I, Navarro A, et al. Single nucleotide polymorphisms in nucleotide excision repair genes XPA, XPD, XPG and ERCC1 in advanced colorectal cancer patients treated with first-line oxaliplatin/fluoropyrimidine. Oncology, 2007, 72(5-6):364-370.
    84. Stoehlmacher J, Park DJ, Zhang W, et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer, 2004, 91(2):344-354.
    85. Honecker F, Mayer F, Stoop H, et al. Xeroderma pigmentosum group a protein and chemotherapy resistance in human germ cell tumors. Lab Invest, 2003, 83(10):1489-1495.
    86. Goldberg Z, Evans J, Birrell G, et al. An investigation of the molecular basis for the synergistic interaction of tirapazamine and cisplatin. Int J Radiat Oncol Biol Phys, 2001,49(1):175-182.
    87. Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science, 2009, 324(5925):387-389.
    1. Wood RD, Mitchell M, Sgouros J, et al. Human DNA repair genes. Science, 2001, 291(5507):1284-1289.
    2. Wood RD. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie, 1999, 81(1-2):39-44.
    3. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 2004,73:39-85.
    4. Wood RD. Nucleotide excision repair in mammalian cells. J Biol Chem, 1997, 272(38):23465-23468.
    5. Lindahl T and Wood RD. Quality control by DNA repair. Science, 1999, 286(5446):1897-1905.
    6. Sugasawa K, Ng JM, Masutani C, et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell, 1998, 2(2):223-232.
    7. Ng JM, Vermeulen W, van der Horst GT, et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev, 2003, 17(13):1630-1645.
    8. Wakasugi M and Sancar A. Order of assembly of human DNA repair excision nuclease. J Biol Chem, 1999, 274(26): 18759-18768.
    9. Nishi R, Okuda Y, Watanabe E, et al. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol, 2005, 25(13):5664-5674.
    10. Maillard O, Solyom S, and Naegeli H. An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol, 2007, 5(4):e79.
    11. Asahina H, Kuraoka I, Shirakawa M, et al. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res, 1994, 315(3):229-237.
    12. Tanaka K, Miura N, Satokata I, et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature, 1990, 348(6296):73-76.
    13. Evans E, Moggs JG, Hwang JR, et al. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J, 1997, 16(21):6559-6573.
    14. Mu D, Wakasugi M, Hsu DS, et al. Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem, 1997, 272(46):28971-28979.
    15. Rademakers S, Volker M, Hoogstraten D, et al. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol, 2003, 23(16):5755-5767.
    16. Batty D, Rapic'-Otrin V, Levine AS, et al. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol, 2000, 300(2):275-290.
    17. Sugasawa K, Okuda Y, Saijo M, et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell, 2005, 121(3):387-400.
    18. Hwang BJ, Ford JM, Hanawalt PC, et al. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA, 1999, 96(2):424-428.
    19. Tang JY, Hwang BJ, Ford JM, et al. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell, 2000, 5(4):737-744.
    20. Nakagawa A, Kobayashi N, Muramatsu T, et al. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. J Invest Dermatol, 1998, 110(2): 143-148.
    21. Groisman R, Polanowska J, Kuraoka I, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell, 2003, 113(3):357-367.
    22. Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase Ⅱ TFIIH. Cell, 1995, 82(4):555-564.
    23. Kamiuchi S, Saijo M, Citterio E, et al. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci U S A, 2002, 99(1):201-206.
    24. Troelstra C, Odijk H, de Wit J, et al. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol, 1990, 10(11):5806-5813.
    25. Tantin D, Kansal A, and Carey M. Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase Ⅱ elongation complexes. Mol Cell Biol, 1997, 17(12):6803-6814.
    26. Iyer N, Reagan MS, Wu KJ, et al. Interactions involving the human RNA polymerase Ⅱ transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry, 1996, 35(7):2157-2167.
    27. Giglia-Mari G, Coin F, Ranish JA, et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet, 2004, 36(7):714-719.
    28. Volker M, Mone MJ, Karmakar P, et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell, 2001, 8(1):213-224.
    29. Araujo SJ, Nigg EA, and Wood RD. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol, 2001,21 (7):2281 -2291.
    30. Riedl T, Hanaoka F, and Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. Embo J, 2003, 22(19):5293-5303.
    31. Gillet LC and Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev, 2006, 106(2):253-276.
    32. Dip R, Camenisch U, and Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair (Amst), 2004, 3(11):1409-1423.
    33. Ito S, Kuraoka I, Chymkowitch P, et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell, 2007, 26(2):231-243.
    34. de Laat WL, Sijbers AM, Odijk H, et al. Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Res, 1998, 26(18):4146-4152.
    35. de Laat WL, Appeldoorn E, Sugasawa K, et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev, 1998, 12(16):2598-2609.
    36. Li L, Elledge SJ, Peterson CA, et al. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci U S A, 1994, 91(11):5012-5016.
    37. Park CH and Sancar A. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci U S A, 1994, 91(11):5017-5021.
    38. Saijo M, Kuraoka I, Masutani C, et al. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res, 1996, 24(23):4719-4724.
    39. Coin F, Auriol J, Tapias A, et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. Embo J, 2004, 23(24):4835-4846.
    40. de Laat WL, Jaspers NG, and Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev, 1999, 13(7):768-785.
    41. Wakasugi M, Reardon JT, and Sancar A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem, 1997, 272(25):16030-16034.
    42. Matsunaga T, Park CH, Bessho T, et al. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem, 1996, 271(19): 11047-11050.
    43. Sijbers AM, de Laat WL, Ariza RR, et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell, 1996, 86(5):811-822.
    44. Shivji KK, Kenny MK, and Wood RD. Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 1992, 69(2):367-374.
    45. Wood RD and Shivji MK. Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis, 1997, 18(4):605-610.
    46. Gomes XV and Burgers PM. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem, 2001, 276(37):34768-34775.
    47. Yuzhakov A, Kelman Z, Hurwitz J, et al. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. Embo J, 1999, 18(21):6189-6199.
    48. Gary R, Ludwig DL, Cornelius HL, et al. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem, 1997, 272(39):24522-24529.
    49. Miura M, Nakamura S, Sasaki T, et al. Roles of XPG and XPF/ERCC1 endonucleases in UV-induced immunostaining of PCNA in fibroblasts. Exp Cell Res, 1996, 226(1):126-132.
    50. Spivak G and Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst), 2006, 5(1): 13-22.
    51. Pastoriza-Gallego M, Armier J, and Sarasin A. Transcription through 8-oxoguanine in DNA repair-proficient and Csb(-)/Ogg1(-) DNA repair-deficient mouse embryonic fibroblasts is dependent upon promoter strength and sequence context. Mutagenesis, 2007, 22(5):343-351.
    52. Klungland A, Hoss M, Gunz D, et al. Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell, 1999, 3(1):33-42.
    53. Aspinwall R, Rothwell DG, Roldan-Arjona T, et al. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease Ⅲ. Proc Natl Acad Sci USA, 1997, 94(1): 109-114.
    54. Hilbert TP, Chaung W, Boorstein RJ, et al. Cloning and expression of the cDNA encoding the human homologue of the DNA repair enzyme, Escherichia coli endonuclease Ⅲ. J Biol Chem, 1997, 272(10):6733-6740.
    55. Shimizu Y, Iwai S, Hanaoka F, et al. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. Embo J, 2003, 22(1):164-173.
    56. Waters TR, Gallinari P, Jiricny J, et al. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J Biol Chem, 1999, 274(1):67-74.
    57. D'Errico M, Parlanti E, Teson M, et al. New functions of XPC in the protection of human skin cells from oxidative damage. Embo J, 2006, 25(18):4305-4315.
    58. Despras E, Pfeiffer P, Salles B, et al. Long-term XPC silencing reduces DNA double-strand break repair. Cancer Res, 2007, 67(6):2526-2534.
    59. Kuraoka I, Kobertz WR, Ariza RR, et al. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem, 2000, 275(34):26632-26636.
    60. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol, 1993, 21(6):731-733.
    61. Sargent RG, Meservy JL, Perkins BD, et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res, 2000, 28(19):3771-3778.
    62. Niedernhofer LJ, Essers J, Weeda G, et al. The structure-specific endonuclease Erccl-Xpf is required for targeted gene replacement in embryonic stem cells. Embo J, 2001,20(22):6540-6549.
    63. Holstege FC, van der Vliet PC, and Timmers HT. Opening of an RNA polymerase Ⅱ promoter occurs in two distinct steps and requires the basal transcription factors HE and IIH. Embo J, 1996, 15(7): 1666-1677.
    64. Tirode F, Busso D, Coin F, et al. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell, 1999, 3(1):87-95.
    65. Winkler GS, Araujo SJ, Fiedler U, et al. TFIIH with inactive XPD helicase functions in transcription initiation but is defective in DNA repair. J Biol Chem, 2000, 275(6):4258-4266.
    66. Bastien J, Adam-Stitah S, Riedl T, et al. TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem, 2000, 275(29):21896-21904.
    67. Chen D, Riedl T, Washbrook E, et al. Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell, 2000, 6(1): 127-137.
    68. Compe E, Drane P, Laurent C, et al. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol Cell Biol, 2005, 25(14):6065-6076.
    69. Drane P, Compe E, Catez P, et al. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol Cell, 2004, 16(2): 187-197.
    70. Keriel A, Stary A, Sarasin A, et al. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell, 2002, 109(1):125-135.
    71. Vermeulen W, Bergmann E, Auriol J, et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nat Genet, 2000, 26(3):307-313.
    72. Rockx DA, Mason R, van Hoffen A, et al. UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase Ⅱ. Proc Natl Acad Sci U S A, 2000, 97(19): 10503-10508.
    73. Bomgarden RD, Lupardus PJ, Soni DV, et al. Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. Embo J, 2006, 25(11):2605-2614.
    74. Auclair Y, Rouget R, Affar el B, et al. ATR kinase is required for global genomic nucleotide excision repair exclusively during S phase in human cells. Proc Natl Acad Sci U S A, 2008, 105(46):17896-17901.
    75. Adimoolam S and Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci USA, 2002, 99(20):12985-12990.
    76. Amundson SA, Patterson A, Do KT, et al. A nucleotide excision repair master-switch: p53 regulated coordinate induction of global genomic repair genes. Cancer Biol Ther, 2002, 1(2):145-149.
    77. Itoh T, Cado D, Kamide R, et al. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc Natl Acad Sci U S A, 2004, 101(7):2052-2057.
    78. Itoh T, O'Shea C, and Linn S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol, 2003, 23(21):7540-7553.
    79. Wang XW, Vermeulen W, Coursen JD, et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev, 1996, 10(10):1219-1232.
    80. Boyle J, Kill IR, and Parris CN. Heterogeneity of dimer excision in young and senescent human dermal fibroblasts. Aging Cell, 2005, 4(5):247-255.
    81. Christiansen M, Stevnsner T, Bohr VA, et al. Gene-specific DNA repair of pyrimidine dimers does not decline during cellular aging in vitro. Exp Cell Res, 2000, 256(1):308-314.
    82. Grossman L and Wei Q. DNA repair and epidemiology of basal cell carcinoma. Clin Chem, 1995, 41(12 Pt 2):1854-1863.
    83. Wei Q, Matanoski GM, Farmer ER, et al. DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci USA, 1993, 90(4):1614-1618.
    84. Goukassian D, Gad F, Yaar M, et al. Mechanisms and implications of the age-associated decrease in DNA repair capacity. Faseb J, 2000, 14(10): 1325-1334.
    85. de Boer J, Andressoo JO, de Wit J, et al. Premature aging in mice deficient in DNA repair and transcription. Science, 2002, 296(5571): 1276-1279.
    86. Murai M, Enokido Y, Inamura N, et al. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes. Proc Natl Acad Sci U S A, 2001, 98(23):13379-13384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700