用户名: 密码: 验证码:
体外磷灰石晶体矿化模型构建及应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物矿化是生物体内矿物形成过程的统称,是一个受到众多因素精密调控的生理过程。其研究涉及生物学、化学、结晶学、材料学、矿物学和医学等学科,是一门多学科共同推进的交叉前沿学科。生物体内矿化过程调控机制的研究在很大程度上依赖于体外矿化模型的构建和应用。目前应用较多的单分子膜模型和凝胶矿化模型由于自身的缺陷难以对生物体内硬组织矿化过程进行有效模拟。本研究拟利用具有离子选择透过性的阳离子膜和透析膜构建双膜体外矿化系统,并应用此模型对牙体硬组织生物矿化相关的无机因素、有机因素及无机/有机因素的协同作用进行研究,以期构建一个有效的生物矿化模型,对牙体组织中生物磷灰石晶体的矿化调控机制进行探讨。所取得的研究结果如下:
     1体外矿化双膜系统的构建及检测
     利用阳离子膜和透析膜构建双膜系统,对系统的稳定性、可靠性进行了检测。结果表明,双膜系统在溶液环境中反应3日即可获得有效的矿化物晶体沉积,随着反应时间的延长,系统的失败率增加,但晶体成份及形态无显著变化。在系统内加入1ppm氟离子后,在阳离子膜表面形成了大量杆状氟磷灰石晶体;而加入含10%胎牛血清的培养基后,阳离子膜表面则形成了大量片层状晶体,晶体成份为磷酸八钙。通过对双膜系统矿化模型的改建,初步构建了稳定的矿化反应系统,并通过氟离子和含10%胎牛血清的培养基初步证实了双膜体外矿化模型的可靠性及有效性,为进一步的研究打下了基础。
     2无机因素在体外对磷灰石晶体矿化作用的研究
     利用先前实验构建的双膜体外矿化模型对氟离子、镁离子及碳酸氢根离子在体外对磷灰石晶体矿化的作用进行研究。实验结果显示,不同浓度氟离子的加入对晶体的成份及形态均产生了影响。低浓度的氟即可对晶体形态产生显著作用,晶体由不规则的蠕虫状转变为具有一定排列方向的杆状晶体,成份也由磷酸八钙转化为磷酸八钙和氟磷灰石的混合物。氟离子浓度达到或超过5ppm后,大量杆状的氟磷灰石晶体优先在磷酸盐溶液中形成,而阳离子膜表面无明显晶体沉积。加入镁离子后,阳离子膜表面晶体沉积受到抑制,晶体结晶度降低,但晶体成份仍为磷酸八钙;碳酸氢根离子的加入则促进了磷酸八钙晶体的矿化,并且直接参与了晶体的构成。
     以上结果表明,低浓度的氟离子即可在磷酸八钙向羟基磷灰石的转化过程中发挥作用,并导致晶体形态的变化。镁离子则可能通过和钙离子的竞争作用抑制磷酸八钙晶体的生长,碳酸氢根离子促进磷酸八钙晶体的矿化,取代磷酸氢根离子,参与晶体的构成。其对局部矿化微环境pH值的影响作用也是其促进磷酸八钙晶体矿化的可能因素之一。无机因素在磷灰石晶体的成核、生长过程中发挥了重要的调控作用。
     3有机因素在体外对磷灰石晶体矿化作用的研究
     利用双膜系统对单一组份有机大分子物质(牛血清白蛋白,提取的猪釉原蛋白片段及重组小鼠细胞外基质磷酸化糖蛋白),多组份有机混合物(大鼠牙髓细胞矿化诱导培养上清)在体外对磷灰石晶体矿化的影响进行研究。实验结果显示,在有机物的参与下,阳离子膜表面沉积的晶体主要成份均为磷酸八钙。在矿化相关蛋白组(釉原蛋白和细胞外基质磷酸化糖蛋白)中,形成了呈球状聚集的晶体团,而牛血清白蛋白组中则未发现这种现象。有机大分子的加入对晶体生长均产生了抑制作用。大鼠牙髓细胞矿化诱导后培养上清对磷酸八钙晶体形态作用明显,相对于对照组,形成了形态和排列更规则的片层状晶体。
     上述结果说明,相对于晶体的成份,有机大分子对晶体形态的影响作用更强。矿化相关蛋白可能直接参与生物磷灰石晶体的成核,并通过与晶体特定晶面的相互作用调控生物晶体的取向性生长。
     4无机/有机因素共同作用对磷灰石晶体体外矿化的影响
     利用双膜系统对无机/有机因素共同作用对磷灰石晶体体外矿化作用的影响进行研究。分别检测了牛血清白蛋白和氟离子,及釉原蛋白和氟离子的共同作用对晶体矿化的影响。实验结果显示,无机/有机因素的协同作用对磷灰石晶体的形态及成份均产生了作用,当牛血清白蛋白与氟离子共同作用时,磷酸八钙晶体向另一种羟基磷灰石的前体物质磷酸氢钙转化,而当釉原蛋白和氟离子共同作用时,晶体则向磷灰石转化。这说明矿化相关的釉原蛋白可能通过参与成核及与特定晶面的相互作用,对特定晶体的生长有特异性的作用。
     综上所述,无机离子和有机大分子在磷灰石晶体的生物矿化过程中发挥着不同的调控作用。无机离子通过取代羟基磷灰石前体物质中的羟基(氟离子)、与钙离子竞争磷灰石晶体表面生长点(镁离子)等作用,改变晶体的热力学稳定性,从而影响矿化物的成份。而有机大分子则通过参与成核及其功能基团与生长中晶体特定晶面的结合,调控晶体的形态。此外,釉原蛋白和细胞外基质磷酸化糖蛋白有可能直接参与了晶体的成核。有机/无机因素的协同作用则是生物矿化物成份和形态的决定因素。
Biomineralization is a mineral forming process in organism, it is a physiological process that regulated precisely by numerous factors. Its research involves disciplines like biology, chemistry, crystallography, material science, mineralogy medicine and so on, is a multi-disciplines field overlapping several front disciplines. Mechanisms researches of the regaulation process are largely depend on the establishment and application of the mineralization system in vitro. Monolayer system and gel system are the most widely used models in this field, but for their own flaw, they are not the best choice for the mechanism research of dental tissue. In this paper, we use Cation-selective membrane(CMV) and dialysis membrane to construct a dual-membrane mineralization system, by using this model, the inorganic and organic factors involved in biomineralization process of dental tissue were investigated to reveal the regaluation mechanism of the mineralization process.
     Part 1 Establishment and test of the dual-membrane mineralization system
     The model was constructed by using the cation-selective membrane and dialysis membrane. The reliability and stability of the system was tested. Results showed that, after 3 days’reaction, OCP crystal can deposite effectively on the CMV, extended reaction time caused an increased failure rate of the in vitro system without any significent changes of crystal components. When 1ppm fluoride was added into the reaction space, large number of short, rod-like crystal deposited on the CMV, the product was a mixture of OCP and apatite; When cell culture medium supplemented with 10%FBS was added, plate-like OCP was the main component deposited on the CMV. After some improvements, the in vitro mineralization model was established.
     Part 2 Effects of inorganic factors on apatite mineralization in vitro
     Using the dual-membrane system, effects of F-, Mg2+ and HCO3- on apatite mineralization were investigated. Results showed that, flouride can change the crystal shape and component effectively, even at very low concentration(1ppm). Compared with the worm-like crystal derived from DDW(double-distilled water) group, when flouride was added, oriented rod-like crystal was the main component of the product on CMV. When flouride concentration rised to or exceeded 5ppm, large amount of rod-like flouroapatite crystal deposited in the phosphate solution beside the CMV surface. When Mg2+ was added to the system, deposition of OCP on CMV was inhibited accompany with the decreased crystallinity. HCO3- ions can accelerate the mineralizaton process of OCP, and take part in the crystal lattice directly.
     These results revealed that, floride can accelerate the transform process of OCP to apatite and cause the change of the crystal shape. Mg’s inhibit effects of OCP mineralization can be attributed to the competition of Mg with Ca, for their similar ion diameter. HCO3- can replace the phosphate in the OCP lattice and modify the local pH value of the mineralization environment, that promoted the mineralizaton process of OCP. The inorganic factors play important rule during the nucleation and growth process of the apatite crystal.
     Part 3 Effects of organic factors on apatite mineralization in vitro
     The effects of single-component organic molecule(BSA, P-Amel and MEPE), multi-component (the culture medium of rat DPC after mineralization induction), were inverstigated using the dual-membrane system. When mineralization related proteins(Amel and MEPE) were applied, OCP crystals aggregated to form crystal sphere, which could not be found in BSA group. All the organic molecules tested can inhibit the growth of OCP crystal, Amel and BSA had stronger effect. The induced culture medium of DPC showed impressive effects on OCP crystal’s shape when compared with control group, large amount of well oriented, plate-like crystals were deposited on CMV surface.
     All the evidences indicated that, organic molecules’effects on crystal mainly focus on the crystal morphology. They may concentrate Ca ions and act as the crystal nuclui directly. Also, the interaction of their functional groups and specific crystal surface may play critical rules of the oriented growth of the apatite crystal.
     Part 4 Co-effects of organic/inorganic factors on apatite crystal mineralization in vitro
     The co-effects of BSA and fluoride, Amel and fluoride on apatite crystal mineralization were tested. when BSA was applied accompany with fluoride, morphology of the deposites changed, interestingly, at the same time, XRD results revealed that, the crystal component changed from OCP to another HAP precursor, DCPD. While in the Amel and fluoride group, the crystal component changed from OCP to HAP. That means the Amel may regulated the HAP nuclearation and growth through some specific effects that BSA doesn’t have.
     In summary, both organic and inorganic factors play critical rules when regulating the biomineralization process. The inorganic ions mainly affect the component of the apatite through chemistry reactions, while the organic molecules affect the crystal nuclearation and morphology processes through their functional groups. The co-regulation of the organic and inorganic factors is the key element of biomineralization.
引文
[1] Mann.S Biomineralization, Oxford University Press, 2002.
    [2]生物矿化崔福斋清华大学出版社2007第一版.
    [3]口腔组织病理学于世风主编人民卫生出版社,第四版.
    [4] Ge J, Cui FZ, Feng HL, et al. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials, 2005, 26:3333-3339.
    [5] Cui FZ, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J Tissue Eng Regen Med. 2007;1(3):185-91.
    [6]赵玮,汪说之,洪汉烈等.中华口腔医学杂志, 2002, 37(3):219- 221.
    [7]程磊,周学东.釉质生物矿化的结晶学研究进展。国际口腔医学杂志, 2008;35(3):246-248.
    [8] Simmer JP, Hu JC. Dental enamel formation and its impact on clinical dentistry J Dent Educ, 2001, 65(9):896-905.
    [9] Robinson C, Kirkham J, Shore R. Dental enamel : Formation to destruction. Boca Raton, FL:CRC Press, 1995:1- 243.
    [10] Zavgorodniy AV, Rohanizadeh R, Swain MV. Ultrastructure of dentine carious lesions。Arch Oral Biol. 2008;53(2):124-32
    [11] Jones SJ, Boyde A. Ultrastructure of dentin and dentinogenesis. In: Linde A, editor. Dentin and dentinogenesis. Boca Raton: CRC Press; 1984. p. 81–134.
    [12] Robinson C, Kirkham J, Briggs HD, et al . Enamel proteins: fromsecretion to maturation. J Dent Res , 1982,61 (2) :1490
    [13] Fincham AG, Simmtr J P. Amelogenin proteins of developing dental enamel. Ciba Found Symp. 1997;205:118-30
    [14] Toyosawa S, O'hUigin C, Klein J, et al. Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc Natl Acad Sci USA. 1998, 95(22): 13056-61.
    [15] Fincham AG, Moradian-Oldak J. Comparative mass spectrometric analyses of enamel matrix proteins from five species suggest a common pathway of post-secretory proteolytic processing. Connect Tissue Res. 1996;35 (1-4):151-6
    [16] Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 2001;20(5-6):293-305
    [17] Moradian-Oldak J, Simmer JP, Fincham AG, et al. Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers. 1994, 34(10): 1339-47
    [18] Fincham AG, Moradian-Oldak J, Slavkin HC, et al. Evidence for amelogenin‘nanospheres’as functional components of secretory-stage enamel matrix. J Struct Biol. 1995;115(1):50-9
    [19] Fincham AG, Moradian-Oldak J, Simmer JP. The structural Biology of the developing dental enamel. J Struct Biol. 1999,30;126(3):270-99
    [20] Du C, Falini G, Moradian-Oldak J, et al. Supramolecular Assembly of Amelogenin Nanospheres into Birefringent Microribbons. Science. 2005;307(5714):1450-4
    [21] Iijima M, Moriwaki Y, Moradian-Oldak J. Elongated Growth of Octacalcium Phosphate Crystals in Recombinant Amelogenin Gels underControlled Ionic Flow. J Dent Res. 2002;81(1):69-73
    [22] D'Souza RN, Bronckers AL, Butler WT. Developmental expression of a 53 KD dentin sialoprotein in rat tooth organs. J Histochem Cytochem. 1992;40(3):359-66
    [23] Boskey AL. Osteopontin and related phosphorylated sialoproteins :effects on mineralization. Ann N Y Acad Sci , 1995 ,760 :249
    [24] Nakamura O, Gohda E, Ozawa M, et al . Immunohistochemical studies with a monoclonal antibody on the distribution of phosphophoryn in predentin and dentin . Calcif Tissue Int ,1985 ,37 (5) :491-500
    [25] Hohling HJ, Arnold S, Barckhaus RH, et al . Structural relationship between the primary crystal formations and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Res, 1995;33 (1 - 3) :171-178
    [26] Boskey AL. The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med, 1991 ,2 :369-87
    [27] Bultler WT. Dentin matrix proteins and dentinogenesis. Connect Tissue Res , 1995,33 (1 - 3) :59-65
    [28] Petersen DN, Tkalcevic GT, Brown TA, et al. Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J Biol Chem. 2000;275(46):36172-80
    [29] Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004;15(3):126-36
    [30] Siggelkow H, Schmidt E, Hüfner M, et al. Evidence of downregulation ofmatrix extracellular phosphoglycoprotein during terminal differentiation in human osteoblasts. Bone. 2004; 35(2):570-6.
    [31] Liu H, Li W, Denbesten P, et al. MEPE is downregulated as dental pulp stem cells differentiate. Arch Oral Biol. 2005; 50(11):923-8.
    [32] Igarashi M, Kamiya N, Takagi M, et al. In situ localization and in vitro expression of osteoblast/osteocyte factor 45 mRNA during bone cell differentiation. Histochem J. 2002; 34(5): 255-63.
    [33] Nampei A, Hashimoto J, Yoshikawa H, et al. Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab. 2004; 22(3):176-84.
    [34] Liu S, Guo R, Quarles LD, et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2006; 278(39): 37419-26.
    [35] Jain A, Fedarko NS, Fisher LW, et al. Serum levels of matrix extracellular phosphoglycoprotein (MEPE) in normal humans correlate with serum phosphorus, parathyroid hormone and bone mineral density. J Clin Endocrinol Metab. 2004; 89(8): 4158-61.
    [36] Ruch JV, Lesot H, Bègue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995; 39(1): 51-68.
    [37] MacDougall M, Simmons D, Gu TT, Dong J. MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21. Connect Tissue Res. 2002; 43(2-3): 320-30.
    [38] Beattie ML, Kim JW, Hu JC, et al. Phenotypic variation in dentinogenesis imperfecta/ dentin dysplasia linked to 4q21. J Dent Res. 2006; 85(4):329-33.
    [39] Liu H, Li W, DenBesten PK, et al. Dentonin, a fragment of MEPE, enhanced dental pulp stem cell proliferation. J Dent Res. 2004;83(6):496-9
    [40] Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004; 15(1): 13-27.
    [41]艾林人细胞外基质磷酸化糖蛋白的重组表达及在牙本质形成中的作用和机理研究博士研究生论文2008
    [42] George A, Sabasy B, Simonian PAL, et al . Characterization of a novel dentin matrix phosphoprotein. J Biol Chem , 1993 , 268 :12624-30
    [43] George A, Gui J, Jenkins NA, et al . In situ localization and chromosomal mapping of the AG1 (Dmp1) gene . J Histochem Cytochem ,1994 ,42 (12) :1527-31
    [44] Septier D, Torres - Quintana MA, Menashi S, et al . Inositol hexasulphate , a casein kinase inhibitor , alters the distribution of dentin matrix protein 1 in cultured embryonic mouse tooth germs. Eur J Oral Sci ,2001 ,109 (3) :198-203
    [45] He G, George A. Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem. 2004;279(12): 11649-56
    [46] He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater. 2003;2(8):552-8
    [47] Gajjeraman S, Narayanan K, George A, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly ofhydroxyapatite. J Biol Chem. 2007;282(2):1193-204
    [48] Robinson C, Connell S, Smith AM, et al. The effect of fluoride on the developing tooth.Caries Res. 2004, 38(3):268-76.
    [49]生命科学中的微量元素王夔主编第二版北京中国计量出版社1996: 70-72
    [50] Bronckers AL, Lyaruu DM, Bervoets TJ. Fluoride enhances intracellular degradation of amelogenins during secretory phase of amelogenesis of hamster teeth in organ culture. Connect Tissue Res. 2002;43(2-3):456-65
    [51] Drinkard CR, Crenshaw MA, Bawden JW. The effect of fluoride on the electrophoretic patterns of developing rat molar enamel.Arch Oral Biol. 1983,12:1131-1134.
    [52] Maciejewska I, Spodnik JH, Domaradzka-Pytel B. Fluoride alters type I collagen expression in the early stages of odontogenesisFolia Morphol (Warsz). 2006, 65(4):359-66.
    [53] Gerlach RF, de Souza AP, Line SR. Fluoride effect on the activity of enamel matrix proteinases in vitro. Eur J Oral Sci. 2000, 108:48–53.
    [54] Nordlund AL, Simmelink JW, Hammarstr?m L. Ultrastructure of fluoride-induced cysts in the rat molar enamel organ.Scand J Dent Res, 1986,94(4):327-37.
    [55] Kubota K, Lee DH, Tsuchiya M, et al. Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. J Biol Chem. 2005, 280:23194- 23202.
    [56] Yan Q, Zhang Y, Li WJ, et al. Micromolar fluoride alters ameloblast lineage cells in vitro. J Dent Res. 2007, 86(4):336-40.
    [57] Li Y, Decker S, Yuan ZA, et al. Effects of sodium fluoride on the actincytoskeleton of murine ameloblasts. Arch Oral Biol. 2005, 50:681-688.
    [58] Malsuo S, Kiyotriya K, Kurebe M, et al. Mechanism of toxic action of fluoride in dental fluorosis: whether trimeric G proteins participate in the disturbance of intracellular transport of secretory ameloblast exposed to fluoride.Arch Toxicol. 1998, 72(12): 798-806.
    [59] Lyaruu DM, Bervoets TJ, Bronckers AL. Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization. Eur J Oral Sci. 2006, 114 Suppl 1:111-5; discussion 127-9, 380.
    [60] Ribeiro DA, Hirota L, Cestari TM. Ultrastructural morphometric analysis of ameloblasts exposed to fluoride during tooth development. J Mol Histol. 2006, 37(8-9):361-7.
    [61] Milan AM, Waddington RJ, Embery G. Altered phosphorylation of rat dentine phosphoproteins by fluoride in vivo. Calcif Tissue Int. 1999, 64:234-8.
    [62] Milan AM, Waddington RJ, Embery G. Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol. 2001, 46:343-51.
    [63] Maciejewska I, Spodnik JH. The dentin sialoprotein (DSP) expression in rat tooth germs following fluoride treatment: an immunohistochemical study. Arch Oral Biol. 2006, 51:252-61.
    [64] Iozzo RV, Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996, 10(5):598-614.
    [65] Waddington RJ, Moseley R, Smith AJ. Fluoride-induced changes toproteoglycan structure synthesised within the dentine-pulp complex in vitro. Biochimica et Biophysica Acta. 2004, 1689:142–51.
    [66] Milana AM, Waddington RJ, Smith PM. Odontoblast transport of sulphate--the in vitro influence of fluoride. Arch Oral Biol. 2003,48: 377-87.
    [67] Raz S, Weiner S, Addadi L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Func Mater. 2003,13:480-486
    [68] Meldrum FC, Morphological influence of magnesium and organic additives on the precipitation of calcite. J Crystal Growth. 2001, 231:544-558
    [69]焦云峰.胶原蛋白-镁离子体系中碳酸钙矿化过程研究.清华大学硕士论文,2005.
    [70] Qi G, Zhang S, Khor K, et al. An interfacial study of sol–gel derived magnesium apatite coatings on ti6al4v substrates. Thin solid films, 2007, 153:133-39.
    [71] Qi G, Zhang S, Khor K, et al. In vitro effect of magnesium inclusion in sol-gel derived apatite. Thin solid films, 2007, 315:455-50.
    [72]黄苏萍,黄伯云,周科朝,李志友有机功能团及矿化液离子对羟基磷灰石晶体生长的影响.中国有色金属学报,2004,14(9):1604-1608
    [73]欧阳健明.单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配.化学进展,2005, 17(5):931-937.
    [74] Peter JM, Giulio Ai. Synthesis of hydroxyapatite on titanium coated with organic self-assembled monolayers. Mater Sci Engineering A 2006,420:13-20.
    [75] Blodgett KB, Langmuir I. Built-up films of barium stearate and the iroptical properties. Physical Reviews 1937,(51):964
    [76]朱杰,孙润广. LB膜技术在生命科学中的应用研究.生命科学仪器2005, 3(1):5-8
    [77] Kimiyasu S, Toshihiro K, Yuri K. Crystal Orientation of Hydroxyapatite Induced by Ordered Carboxyl Groups. J Colloid Interf Sci 2001,240: 133-138
    [78] Cui FZ, Zhou LF, Cui H, et al. Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers. J Cryst Growth 1996,169:557-562
    [79] Zhang LJ, Liu HG, Feng XS, et al. Study on growth of hydroxyapatite induced by dipalmitoylphosphatidylcholine Langmuir monolayer. Thin Solid Films 2004,458:287–291
    [80] Ulman A. An Introduce to Ultrathin Organic Films: From Langmuir- Blodgett to Self-Assembly. Boston: Academic press 1991: 237-303
    [81]欧阳健明,陈德志.自组装膜调控下生物矿物晶体的生长.化学进展2005,17(3):563-572
    [82]黄苏萍,周科朝,刘咏.羟基磷灰石晶体在有机膜上的受控生长.材料研究学报2004,18(1):66-70
    [83]郝娟玲,杜竹玮,李浩然等.利用自组装膜在模拟体液中诱导结晶的研究.科学技术与工程2004,4(11):913-915
    [84] Li H, Huang WY, Zhang YM, et al. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers. Mater Sci Eng C. 2007,27: 756-761
    [85] Boanini E, Bigi A. Biomimetic synthesis of carbonated hydroxyapatite thin films. Thin Solid Films. 2006,497:53-57
    [86] Peter JM, Giulio A. Synthesis of hydroxyapatite on titanium coated with organic self-assembled monolayers. Mater Sci Eng A 2006,420:13-20
    [87]陈村元,郑辉,欧阳健明.凝胶体系中生物矿物生长的研究进展.人工晶体学报,2005,34(5):926-930
    [88] Petrova RI, Swift JA. Habit Changes of Sodium Bromate Crystals Grown from GelMedia. Cryst Growth & Des. 2002, 2 (6) : 573-578
    [89] Graeme KH, Peter VH, Harvey AG, et al. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996, 317, 59-64
    [90] Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci,1993, 90:8562
    [91]王磊,白薇,冯海兰,贾欣茹.自组装寡肽在体外模拟牙釉柱晶体形成.北京大学学报(医学版). 2007,39(1):46-49.
    [92] Li ZM, Yu JW, Neretnieks I. Electroremediation: Removal of Heavy Metals from Soils by Using Cation Selective Membrane. Environ Sci Technol. 1998, 32, 394-397
    [93] Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005; 26: 1595–1603
    [94] Iijima M, Du C, Moradian-Oldak J, et al. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride. Eur J Oral Sci. 2006;114 Suppl 1:304-7
    [95] Iijima M, Moradian-Oldak J. Interactions of amelogenins withoctacalcium phosphate crystal faces are dose dependent。Calcif Tissue Int. 2004;74 (6):522-31
    [96]薛中会张兴堂杜祖亮等,牛血清蛋白单层膜诱导形成网状结构的羟基磷灰石。无机化学学报,2004,20(12)1426-1428
    [97] Brown WE, Smith JP, Frazier AW. Octacalcium phosphate and hydroxyapatite. Nature 1962;196:1048–55.
    [98] Brown WE. A mechanism for growth of apatite crystals. In: Stack MV, FearnheadRW, editors. Tooth enamel, Vol. II. Bristol: John Wright Ltd; 1965. 11–4.
    [99] Brown WE, Eidelman N, Tomazic B. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res 1987;1:306–13
    [100] Combes C, Rey C, Freche M. In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin. J Mater Sci Mater Med. 1999;10(3):153-60
    [101] Mann S. Molecular tectonics in biomineralization and biomimetic materials. Nature 1993,365:499-505
    [102] Fincham AG, Moradian-Oldak J, Diekwisch TGH, et al. Evidence for amelogenin“nanospheres”as functional components of secretory-stage enamel matrix. J Struct Biol 1995,115:50-59
    [103] Bouropoulos N, Moradian-Oldak.J. Analysis of Hydroxyapatite Surface Coverage by Amelogenin Nanospheres Following the Langmuir Model for Protein Adsorption. Calcif Tissue Int 2003,72:599-603
    [104] Fisher LW, Fedarko NS. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res. 2003; 44 (Suppl 1):33-40.
    [105] Tartaix PH, Doulaverakis M, Boskey AL. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem. 2004, 30;279(18):18115-20
    [106] Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630
    [107] Park SH, Hsiao GY, Huang GT Role of substance P and calcitonin gene-related peptide in the regulation of interleukin-8 and monocyte chemotactic protein-1 expression in human dental pulp. Int Endod J. 2004,37: 185– 92
    [108]包柳郁,金岩,史俊南,牛忠英,汪平,王捍国.人牙源性间充质细胞构建牙本质-牙髓复合体样结构的实验研究.中华口腔医学杂志, 2005, 40(5): 408-411.
    [109]郭红延,吴补领,郭希民,杨成,徐蓬,王常勇.重建牙本质-牙髓复合体样结构的实验研究.中华口腔医学杂志, 2005, 40(6): 511-514.
    [110] Yu JH, Deng ZH, Shi JN, et al. Differentiation of Dental Pulp Stem Cells into Regular-Shaped Dentin-Pulp Complex Induced by Tooth Germ Cell Conditioned Medium. Tissue Engineering. 2006(11):3097-105.
    [111] Yu JH, Wang YJ, Shi JN, et al Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell, 2007, 99, 465–474
    [112] Vidic B, Chen R, Taylor JJ. Functional behavior and structural modification of pulpal fibroblasts cultured in vitro. Archs Arch Anat Histol Embryol. 1972,55:51–73
    [113] About I, Bottero, Mitsiadis TA, et al. Human dentin production in vitro.Exp Cell Res. 2000, 258: 33–41
    [114] Serro AP, Bastos M, Saramago B, et al. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization. J Biomed Mater Res. 2004, 70A: 420–427,
    [115] Nayar S, Sinha MK, Sinha A et al. Synthesis and sintering of biomimetic hydroxyapatite nanoparticles for biomedical applications. J Mater Sci: Mater Med. 2006, 17:1063–1068
    [116] Iijima M, Moriwakia Y, Moradian-Oldak J, et al. Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formation. J Crystal Growth. 2001,222 (3): 615-626
    [117] Suzuki O, Kamakura S, Katagiri T. Surface chemistry and biological responses to synthetic octacalcium phosphate. J Biomed Mater Res B Appl Biomater. 2006 Apr;77(1):201-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700