用户名: 密码: 验证码:
长江流域住宅空调技术评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江流域地处夏热冬冷热工分区,夏季持续高温、冬季阴冷,春夏、秋冬之交潮湿,室外气候恶劣,室内有供冷、供热、除湿与通风并存的需求。随着近年来经济水平的快速提高,该地区住宅建设蓬勃发展,与之而来的是住宅空调技术的多元化应用。由于缺乏科学的评价与指导,导致该区域住宅空调能耗惊人;但能源资源状况及发展观都不支持这种自发粗放地改善居住热湿环境的方式。基于此背景,本文对长江流域住宅空调技术展开了较为全面系统的评价研究,初步建立了较为完整的住宅空调技术综合评价体系,为研究住宅主动式技术节能奠定了坚实的基础。本文是“十一五”国家科技支撑计划重大项目子课题“长江流域住宅节能理论与策略研究”(2006BAJ01A05-1)的研究内容之一。
     住宅空调技术综合评价的完整体系是指由具有内在联系指标构成的指标体系、能明确反映评价目标的评价方法及相应权重系统构成的评价系统。
     评价指标体系构建的前提是确定指导准则,即评价原则。因此,本文首先在分析住宅空调技术评价原则现状、存在问题及提出新原则必要性的基础上,提出了住宅空调技术评价应该遵循的三项原则:气候适应性原则、社会适应性原则及环境适应性原则;阐释了三项原则的内涵、定义、作用及地位。
     对若干种住宅空调冷热源技术在长江流域的气候适应性进行了评价。气候适应性是指同一空调技术在不同气候条件下应用的可靠性及不同空调技术在同一气候条件下应用的可靠性。在气候适应性原则指导下,从气候适应性评价原理出发,研究了空气源热泵、地埋管地源热泵、燃气发动机驱动热泵及燃气直燃机4种空调冷热源技术的气候影响因子、气候评价指标及指标量化方法;确定了气候适应性之地区性技术评价和技术性评价的不同评价方法;得到了4种空调冷热源技术在长江流域9个代表性城市的气候适应性评价结果。
     对若干种住宅空调技术在长江流域的社会适应性进行了评价。社会适应性是指住宅空调技术对与之有关的社会性因素的满足程度。空调技术社会性因素包括技术性、经济性及能源性因素;在社会适应性原则指导下,从社会适应性评价原理出发,建立了住宅空调技术社会适应性评价指标体系;应用模糊综合评价方法,对房间空调器、户式多联机、户式单元机、燃气发动机驱动热泵及燃气直燃机5种住宅空调技术在长江流域9个代表性城市的社会适应性进行了评价,得到了5种空调技术的社会适应性评价结果。
     对若干种住宅空调技术在长江流域的环境适应性进行了评价。环境适应性评价是从空调技术使用寿命周期角度,对其带来的环境影响进行的评价。采用生命周期评价方法,以一次能源生产、输送及空调系统最终废弃为系统边界,以输出1kW冷量为功能单位,建立了环境评价清单模型;计算了房间空调器、户式多联机、户式单元机、燃气发动机驱动热泵及燃气直燃机5种住宅空调技术的能源耗竭潜力、全球变暖潜力、大气污染物排放量及废热排放量;综合评价了5种住宅空调技术在长江流域的环境适应性:由好到差相对排序为:燃气直燃机>房间空调器>燃气发动机驱动热泵>户式多联机>户式单元机。
     在气候适应性评价、社会适应性评价及环境适应性评价的基础上,构建了结构科学、指标全面、具有可操作性的层次递进树型的住宅空调技术评价指标体系;分析了适用对象即三类应用主体——政府、技术供应商及用户的应用特点及要求,由此提出了评价指标体系的变权重系统;在提出住宅空调技术综合评价程序的基础上,对房间空调器、户式多联机、户式单元机、燃气发动机驱动热泵及燃气直燃机5种住宅空调技术在长江流域9个代表性城市的应用进行了综合评价,得出了各城市基于不同应用主体较为适宜的住宅空调技术,最后就不同应用主体给出了长江流域各城市住宅空调技术发展建议。
The Yangtze River area is located in hot summer and cold winter thermal zone, which has persistent high temperature in summer, gloom and cold weather in winter, and damp environment in transition season, the all year climate is formidable, so there needs the coexistence of heating, cooling, dehumidification and ventilation in indoor environment. Recent years, with the fast increase of economic level, the construction of residential building in this area has a vigorous development, which has been accompanied with the multiple application of residential air-conditioning technology. Due to lack of scientific evaluation and guidance, the energy consumption of air-conditioning system in this area is astonishing, but both the energy resource situation and development view are not supporting for this mode which coarsely improve the heat and moisture environment in residential buildings. Based on this background, the paper develops a more comprehensive and systematic evaluation studies on residential air-conditioning technology in Yangtze River area, initially establishes a more complete comprehensive evaluation system of residential air-conditioning and lay a solid foundation for research on active energy consumption of residential building. This paper is one of the researches of the project“study on theory and strategy of residential building energy consumption in Yangtze River area”(2006BAJ01A05-1), which is the sub-project of the major project supported by national scientific and technological in the“eleventh five-year”plan.
     The complete system of comprehensive evaluation about residential air- conditioning consists of three sections, one is index system which is comprised of inherence linked indexes; the other one is the evaluation method which can correctly reflect the evaluation target; the last one is the evaluation system which definitely reflect the composition of corresponding weight.
     The premise of constitution of evaluation index system is to determine guidance, namely the evaluation principle. So, three principles of evaluation of residential building, climate compatibility, social compatibility and environmental compatibility, are proposed firstly in this paper on the basis of analysis on the conditions and problems of the existing evaluation principles and the necessity of new principles; the meaning, definition, role and status of three principles are also represented in the paper.
     The climate compatibility of several kinds of cold and heat source technologies of residential air-conditioning in Yangtze River area is evaluated. The climate compatibility means the reliability of the same air-conditioning technology applied in different climatic conditions and different air-conditioning technologies applied in same climatic condition. Guided by the principle and theory of climate compatibility, the climate impact factor, climate evaluation index and index quantification method of air source heat pump, ground source heat pump, gas heat pump and direct fired absorption chiller are studied, and different evaluation methods of regional evaluation and technical evaluation of climate compatibility are determined; the evaluation results of climate compatibility of 9 representative cities and four kinds of cold and heat source technologies are obtained.
     The social compatibility of several kinds of air-conditioning technologies of residential building in Yangtze River area is evaluated. Social compatibility refers to the satisfaction level of the residential air-conditioning technology to its relative social factors. Guided by the principle and theory of social compatibility, the evaluation index system of social compatibility of residential air-conditioning technology has been established; in nine representative cities in Yangtze River area, the social compatibility of five residential air-conditioning technologies, which include room air conditioner, multi-connected heap pump, unitary air conditioner gas heat pump and direct fired absorption chiller, are evaluated based on fuzzy comprehensive evaluation method and the evaluation result of social compatibility of five different air-conditioning technologies are obtained.
     The environmental compatibility of several kinds of air-conditioning technologies of residential building in Yangtze River area is evaluated. Environmental compatibility refers to the evaluation on its environmental impact based on the life cycle of air-conditioning technology. The detailed list model of environmental compatibility is established by using life-cycle evaluation method which consider the production and transmission of primary energy source and the eventually abandoned air-conditioning system as the system boundary, and consider 1kW output cooling capacity as the functional unit; the energy depletion potential, global warming potential, atmospheric pollutant emissions and its thermal pollution emissions of five residential air-conditioning technologies, which include room air conditioner, multi-connected heap pump, unitary air conditioner gas heat pump and direct fired absorption chiller, are calculated; the environmental compatibility of five different air-conditioning technologies of residential building in Yangtze River area is evaluated comprehensively and the relative order of the technologies from best to worst is: direct fired absorption chiller > room air conditioner > gas heat pump > multi-connected heap pump> unitary air conditioner.
     Base on the evaluation of climate compatibility, social compatibility and environmental compatibility, the gradual-hierarchy-tree-like index system of residential air-conditioning technology is constructed, which has scientific structure, comprehensive index and operable application; the application characteristics and requirements of government, technology provider and user are analyzed, base on that analysis, the variable weight system of evaluation index system is proposed; in nine representative cities in Yangtze River area, based on the procedure of comprehensive evaluation of residential air-conditioning technology, the application of five different air-conditioning technologies, which include room air conditioner, multi-connected heap pump, unitary air conditioner gas heat pump and direct fired absorption chiller, is evaluated comprehensively, and the appropriate air-conditioning technologies for different cities in Yangtze River area is obtained, finally, according to applications in different main bodies, the development proposal of residential air-conditioning technology for cities in Yangtze River area is represented in this paper.
引文
[1]中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社, 2005.
    [2]付祥钊,孙婵娟.长江流域居住建筑节能思路及技术体系研究[J].暖通空调, 2009, 39(10): 69-73.
    [3]朱颖心,王刚,江亿.区域供冷系统能耗分析[J].暖通空调, 2008, 38(1): 36-40.
    [4]廖含文,康健.英国绿色建筑发展研究.城市建筑, 2008, 4
    [5] W. L. Lee, J. Burnett. Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED[J]. Building and Environment, Volume 43, Issue 11, 2008, 11: 1882-1891.
    [6] Guy R. Newsham, Sandra Mancini, Benjamin J. Birt. Do LEED-certified buildings save energy? Yes, but…[J]. Energy and Buildings, 2009, 41(8): 897-905.
    [7]蒋小易. LEED绿色建筑评价体系中有关暖通系统设计的考虑.暖通空调, 2008, 38(6): 126-130.
    [8] U. S. GREEN BUILDING COUNCIL. Green Building Rating System For New Construction & Major Renovations Version 2. 2. Unite States of America, 2005
    [9] Kuei-Feng Chang, Che-Ming Chiang, Po-Cheng Chou. Adapting aspects of GBTool 2005—searching for suitability in Taiwan[J]. Building and Environment, 2007, 42(1): 310-316.
    [10] W. L. Lee, J. Burnett. Customization of GBTool in Hong Kong[J]. Building and Environment, 2006, 41(12): 1831-1846.
    [11]黄一翔,栗德祥.关于国内生态住宅评价标准的指导性分析.华中建筑, 2006, 24(10): 107-109.
    [12]秦佑国,林波荣,朱颖心.中国绿色建筑评估体系研究.建筑学报, 2007, 3
    [13] Jinlong Ouyang, Jian Ge, Kazunori Hokao. Economic analysis of energy-saving renovation measures for urban existing residential buildings in China based on thermal simulation and site investigation. Energy Policy, In Press, Corrected Proof, Available online 23 September 2008.
    [14] Yasuto Takuma a, Hiroyuki Inoue a, Futoshi Nagano, et. Detailed research for energy consumption of residences in Northern Kyushu, Japan. Energy and Buildings 38 (2006) 1349–1355.
    [15] C. Filipp?′n, A. Beascochea. Performance assessment of low-energy buildings in central Argentina. Energy and Buildings 39 (2007) 546–557.
    [16] James M. Calm. Emissions and environmental impacts from air-conditioning and refrigerationsystems. International Journal of Refrigeration 25 (2002) 293–305.
    [17] Kari Alanne, Arto Saari. Estimating the environmental burdens of residential energy supply systems through material input and emission factors. Building and Environment, Volume 43, Issue 10, October 2008, Pages 1734-1748.
    [18]李兆坚,江亿.暖通空调设计方案美观性评价分析.暖通空调, 2006, 4
    [19] Jiang-Jiang Wang, You-Yin Jing, Chun-Fa Zhang, et. A fuzzy multi-criteria decision-making model for trigeneration system. Energy Policy, Volume 36, Issue 10, October 2008: 3823-3832.
    [20] Vasilis Fthenakis, James E. Mason, Ken Zweibel. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy, In Press, Corrected Proof, Available online 25 October 2008.
    [21]刘迎云.户式中央空调系统的经济性研究.湖南大学硕士学位论文[D], 2001.
    [22]胡欣,龙惟定,马九贤. CEC—一种有效的空调系统能耗评价方法.暖通空调, 1999, 29(3): 16-18.
    [23]林梅云,张树深,陈郁.空调冷热源环境性的生命周期评价.暖通空调, 2004, 34(7): 93-97.
    [24]喻李葵,张国强.暖通空调制冷系统环境性能评价方法研究.暖通空调, 2007, 37(5): 54-57.
    [25] Hauschild M. and Wenzel H. Environmental assessment of products. Chapman&Hall, London: United Kingdon. 1998.
    [26] Viral P. Shah, David Col Debella, Robert J. Ries. Life cycle assessment of residential heating and cooling systems in four regions in the United States. Energy and Building, 2007, 4.
    [27]曹鹏,崔靖.室内空气品质综合评价的灰色物元分析法.安徽工程科技学院学报, 2004, 19(2): 32-35.
    [28] Jiang-Jiang Wang, You-Yin Jing, Chun-Fa Zhang, et. Integrated evaluation of distributed triple-generation systems using improved grey incidence approach. Energy, Volume 33, Issue 9, September 2008, Pages 1427-1437.
    [29]蒋华.基于层次分析法的图书馆空调冷热源方案优选.河海大学学报(自然科学版), 2005, 33(1): 108-110.
    [30]胡永宏,贺思辉.综合评价方法.北京:科学出版社, 2000.
    [31]李洪欣,沈晋明,唐喜庆等.空调系统方案的评价与选择.暖通空调, 2008, 38(1): 45-48.
    [32] SharnsH, NelsonRM, MaxwelGM. Development of knowledge-based system for the seleetion of HVAC systems types for small building-partl: knowledge aequisition〔G〕//ASHRAE TranS, 1994, 100(l).
    [33] ChiouHua-Kai, Tzeng Gwo-Hshiung, ChengDing-Chou. Evaluating sustainable fishing development strategies using fuzzy MCDM approach. The International of Manegement Science, 2005, 33(3): 223-234.
    [34]王永林.空调工程设计方案的可拓学评价.暖通空调, 2005, 35(9): 47-49.
    [35] Weiwei Liu, Zhiwei Lian, Bo Zhao. A neural network evaluation model for individual thermal comfort. Energy and Buildings, Volume 39, Issue 10, October 2007, Pages 1115-1122.
    [36]刘慧卿,张先起.基于RAGA的PPE模型在空调冷热源方案综合评价中的应用.建筑科学, 2007, 23(6): 16-19.
    [37] Robert E. Ulanowicz. The balance between adaptability and adaptation [J]. Biosystems, 2002, 64(13): 13-22.
    [38]方一平,秦大河,丁永建.气候变化适应性研究综述[J].干旱区研究, 2009, 26(3): 299-305.
    [39] Smit B, Wandel J. Adaptive, adaptive capacity and vulnerability [J]. Global Environmental Change, 2006, 16(3): 282-292.
    [40] Kasperson JX, Kasperson RE, Tumer BL, et al. Vulnerability to global environmental change [C]. Social Contours of Risk (volⅡ). London Earth scan, 2005: 245-285.
    [41] Parry M. Scenarios for climate impact and adaptation assessment [J] Global Environmental Change, 2002, 12(3): 149-153.
    [42] Mendelsohn R, Morrison W, Schlesinger M E, et al. Country-specific market impacts of climate change[J]. Climate Change, 2000, 45: 553-569.
    [43] Fankhauser S. The Costs of Adapting to Climate Change[M]. Washington: The Global Environmental Facility, 1998.
    [44]余丽霞,付祥钊,肖益民.空气源热泵在长江流域的气候适宜性研究[J].暖通空调, 2011, 41(6): 97-100.
    [45]路锋辉.大学生社会适应能力评价指标研究[D].济南:山东大学硕士学位论文, 2008.
    [46] Siperstein, G. N. Social competence: An important construct in mental retardation[J]. American Journal on Mental Retardation, 1992, 96(4): 3-4.
    [47]陈立旭.社会学概论[M].北京:中共中央党校出版社, 2005.
    [48]吴沿友,阙小峰.北固山湿地优势植物氧化酶及环境适应性的研究[J].农业环境科学学报, 2006, 25(2): 427-431.
    [49]祝耀昌,王丹.武器装备环境适应性要求探讨[J].航天器环境工程, 2008, 25(5): 416-423.
    [50]付祥钊,肖益民.建筑节能原理与技术[M].北京:中国建筑工业出版社, 2008.
    [51]付祥钊.可再生能源在建筑中的应用[M].北京:中国建筑工业出版社, 2009.
    [52]朱顺应,王红.公路网规划技术评价指标相关性分析[J].系统工程理论与实践, 2002, 12: 131-135.
    [53]胡永宏.综合评价中指标相关性的处理方法[J].统计研究, 2002, 3: 39-40.
    [54]张大陆,杨哲,姚进.分布式电子商务中服务评价指标相关性消除方法[J].同济大学学报(自然科学版), 2006, 34(3): 401-404.
    [55]王剑峰,陈光明.空气热源热泵冬季结霜特性研究[J].制冷: 1997, vol58(1): 8-11.
    [56]郭宪民,陈轶光,汪伟华等.室外环境参数对空气源热泵翅片管蒸发器动态结霜特性的影响[J].制冷学报, 2006, vol27(6): 29-33.
    [57]刘国威.空气源热泵结霜工况下动态性能的实验研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [58]王皆腾,刘中良,勾昱君等.冷表面上水滴冻结过程的研究[J].工程热物理学报, 2007, vol(28)6: 989-991.
    [59]许旺发.冷面结霜机理及其抑制对策的实验研究[D].北京:清华大学, 2004: 36-38.
    [60]王成生.热泵空调器结霜工况下动态特性的理论与实验研究[D].天津:天津商学院, 2002.
    [61]潘存华.房间空调器非设计工况下性能的实验研究[D].合肥:合肥工业大学, 2008.
    [62]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社, 2006. 82-83.
    [63]王华军,齐承英.地下热响应实验中土壤初始温度的探讨[J].暖通空调, 2010, 40(1): 95-98.
    [64]牟灵泉.地道风降温计算与应用[M].北京:中国建筑工业出版社, 1982. 1.
    [65]付祥钊,王勇,朱照华,等.两种地质气候条件对岩土换热器的影响[J].暖通空调, 2002, 32(3): 106-109.
    [66]韩梅.成都市区地基土的建筑条件综述[J].电力勘测, 1996(1): 25-33.
    [67]程宗科,柯军,刘秋新,等.地源热泵地埋管换热设计计算[J].制冷与空调, 2008, 22(2): 58-62.
    [68]高林渊,张喜文.长沙现代大厦复合土钉墙基坑支护方案设计[J].探矿工程(岩土钻掘工程), 2004(8): 15-22.
    [69]刘根杨.南昌某工程深层搅拌桩基础设计的岩土力学基础[J].矿产与地质, 2001, 15(增刊): 582-587.
    [70]郭二宝,宣玲娟,李岚.土壤源热泵在合肥某工程中的应用[J].低温与超导, 2009, 37(11): 70-74.
    [71]苏天明,刘彤,李晓昭,等.南京地区土体热物理性质测试与分析[J].岩石力学与工程学报, 2006, 25(6): 1278-1283.
    [72]金兴平,杨迎晓,李辉煌.杭州地铁1#线岩土工程问题探讨[J].岩石力学与工程学报,2005, 24(Supp. 2): 5680-5685.
    [73]张波,吴展豪.上海“浦江智谷”办公楼地源热泵空调系统设计[J].中国建设信息供热制冷, 2009(1): 52-55.
    [74]陈启高.建筑热物理基础[M].西安:西安交通大学出版社, 1991. 14-15.
    [75]张慧玲.建筑节能气候适应性的时域划分研究[D].重庆:重庆大学, 2009.
    [76]王剑峰,陈光明.空气热源热泵冬季结霜特性研究[J].制冷, 1997, 58(1): 8-11.
    [77]王伟,张富荣,郭庆慈,等.空气源热泵在我国应用结霜区域研究[J].湖南大学学报, 2009, 36(12): 9-13.
    [78]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社, 2007: 72-74.
    [79]狄育慧,刘加平,黄翔.蒸发冷却空调应用的气候适应性区域划分[J].暖通空调, 2010, 40(2): 108-111.
    [80] Wolf-Gero Lange, Ger Keijsers, Eni S. Becker, Mike Rinck. Social anxiety and evaluation of social crowds: Explicit and implicit measures[J]. Behaviour Research and Therapy, 2008, 46(8): 932-943.
    [81]张理海.社会评价论[M].武汉:武汉大学出版社, 1999.
    [82] Mostafa Ahmadvand, Ezatollah Karami. A social impact assessment of the floodwater spreading project on the Gareh-Bygone plain in Iran: A causal comparative approach [J]. Environmental Impact Assessment Review, 2009, 29(2): 126-136.
    [83] Henk A. Becker. Social impact assessment[J]. European Journal of Operational Research, 2001, 128(2): 311-321.
    [84]国家计委投资研究所.建设部标准定额研究所社会评价课题组[M].北京:经济管理出版社, 1997.
    [85] ASHRAE Standard 55-1992 [M]. Atlanta: GA30329 .
    [86]朱宏光.卧式风机盘管机组舒适性能的评价[J].暖通空调, 1996, 2: 36-39.
    [87]陈诒春,韩蔚,敖宁等.房间空调器能量调节特性研究[J].制冷学报, 2000, 2: 41-44.
    [88]石磊.数码涡旋与变频技术的对比分析[J].制冷技术, 2006, 2: 25-31.
    [89]俞东伟,张定才.发动机驱动空调系统的特性研究[J].中原工学院学报, 2002, 13(4): 58-60.
    [90]秦朝葵,刘毅,沈勇等.天然气发动机驱动制冷机组能量调节实验研究[J].同济大学学报(自然科学版), 2005, 33(8): 1092-1113.
    [91]彦启森,石文星,田长青.空气调节用制冷技术[M].北京:中国建筑工业出版社, 2004.
    [92]江亿,林波荣,曾剑龙等.住宅节能[M].北京:中国建筑工业出版社, 2006.
    [93]肖益民,付祥钊.户式空气源热泵地板供暖系统实测分析[J].湖南大学学报(自然科学版), 2008, 36(12): 14-18.
    [94]王荣光,宗杰.低温地板辐射采暖的调节[J].煤气与热力, 2003, 23(11): 698-700.
    [95]黄逊青.日本燃气化住宅技术发展[J].电器, 2010, 6: 57-59.
    [96]黄逊青.日本全电气化住宅技术的发展[J].电器, 2011, 1: 59-61.
    [97]郑宏飞,吴裕远.火用分析方法论[J].西安交通大学学报(社会科学版), 2001, 21(2): 75-80.
    [98]何斯征,黄东风.浙江省可持续发展能源指标的研究[J].能源工程, 2007, 2: 1-6.
    [99]张鹤丹,王惺,付峰等.中国城市能源指标体系初探[J].中国能源, 2006, 28(5): 42-45.
    [100]赵立影,南晓红,杨彦宾.变频空调与散热器采暖房间温度场对比研究[J].制冷学报, 2009, 30(5): 8-13.
    [101]张智,涂旺荣,金培耕等.空调制冷/制热时室内气流及温度分布数值研究[J].工程热物理学报, 2002, 23(4): 457-460.
    [102]端木琳,李伟涛,王宗山.风机盘管送风角度对室内热环境的影响[J].建筑热能通风空调, 2005, 24(5): 8-12.
    [103]吴丹尼,陈伟,梁建中等.空调机制冷运行时室内温度场及温降速率的实验研究[J].建筑科学, 2006, 22(5A): 53-58.
    [104]张继刚.壁挂式空调房间内流畅温度场特性与人体热舒适的研究[D].济南:山东大学硕士学位论文, 2007.
    [105]夏学鹰,张旭,蔡宁等.地板辐射供冷/独立新风系统的技术分析与实验研究[J].制冷学报, 2008, 29(4): 18-23.
    [106]卢军,陈金花,高殿策等.住宅用地板辐射供冷系统的实验分析[J].暖通空调, 2007, 37(12): 20-24.
    [107]周慧鑫,杨洁,周翔等.地板辐射+新风混合系统夏季供冷运行特性的实验研究[J].建筑科学, 2010, 26(6): 36-39.
    [108]傅俊萍,朱先锋.墙面式辐射供冷和供暖时的室内热过程实验研究[J].铁道科学与工程学报, 2007, 4(2): 88-91.
    [109]王子介.低温辐射供暖与辐射供冷[M].北京:机械工业出版社, 2004.
    [110]林旭文,王钰,胡庆峰等.分体式局部空调器的外观修饰[J].建筑科学, 2008, 24(3): 185-189.
    [111]蔚昭仪,姚伟红.关于设备的折旧及几种动态折旧法的论述[J].山西交通科技, 1997, 6: 38-40.
    [112]王岸林.空调器长效节能研究[J].家电科技, 2007, 4: 38-41.
    [113]王建国.燃气锅炉热效率分析[J].区域供热, 2005, 5: 25-29.
    [114]中国价格信息网. http: //www. cpic. gov. cn/fgw/chinaprice/free/index. htm.
    [115] 3158致富信息网. http: //www. 3158. cn/news/20110108/18/88-411040862_1. shtml.
    [116]张朝辉.区域供冷供热方案的LCC评价及关键参数分析[D].大连:大连理工大学硕士学位论文, 2007.
    [117]王志文.诠释CPI与通货膨胀[J].消费导刊, 2010, 2: 37-40.
    [118]中国网. http: //www. china. com. cn/news/2011-01/20/content_21779909. htm.
    [119]李兆坚,江亿,周凤广.我国城镇住宅节能空调器寿命周期费用评价研究[J].建筑经济, 2007, 4: 31-35.
    [120]杨青.技术经济学[M].武汉:武汉理工大学出版社, 2007.
    [121]信泽寅男(日),朱明善等译.能源工程中火用的浅释[M].北京:化学工业出版社, 1987.
    [122]魏凯丰,张作群,牛滨.天然气混合气体发热量的计算[J].哈尔滨理工大学学报, 2005, 10(6): 109-113.
    [123]杨昭,张士刚,刘斌等.燃气热泵及其它供热空调系统的能源利用分析评价[J].太阳能学报, 2001, 22(2): 171-175.
    [124]李兆坚,江亿.住宅空调方案寿命周期能耗和资源消耗研究[J].暖通空调, 2008, 38(10): 62-69.
    [125] S. Hassid, M. Santamouris, N. Papanikolaou. The effect of the Athens heat island on air conditioning load[J]. Energy and Buildings, 2000, 32(2): 131-141.
    [126]李先庭,李莹,陈玖玖.城市化对住宅建筑空调负荷的影响[J].暖通空调, 2002, 32(2): 79-81.
    [127]朱岳梅,刘京,姚杨等.建筑物排热对城市区域热气候影响的长期动态模拟及分析[J].暖通空调, 2010, 40(1): 85-89.
    [128]田喆.城市热岛效应分析及其对建筑空调采暖能耗影响的研究[D].天津:天津大学博士学位论文, 2005.
    [129]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社, 2002, 6.
    [130]高峰.生命周期评价研究及其在中国镁工业中的应用[D].北京:北京工业大学博士学位论文, 2008.
    [131]狄向华.资源与材料生命周期分析中若干基础问题的研究[D].北京:北京工业大学博士学位论文, 2005.
    [132]黄志甲,张旭.空调冷源的环境性能比较[J].制冷学报, 2004, 3: 51-55.
    [133]中国网. http: //www. china. com. cn/policy/txt/2010-01/22/content_19290290_2. htm.
    [134]袁宝荣,聂祚仁,狄向华等.中国化石能源生产的生命周期清单(Ⅱ)——生命周期清单的编制结果[J].现代化工, 2006, 26(4): 59-61.
    [135]黄志甲.建筑物能量系统生命周期评价模型与案例研究[D].上海:同济大学博士学位论文, 2003.
    [136]王曙光,徐言生.自补充制冷剂双高效家用空调器的研究[J].流体机械, 2008, 36(6): 68-71.
    [137] James M. Calm著,汪训昌译.空调与制冷系统的泄漏及其环境影响[J].制冷与空调, 2001, 1(5): 49-59.
    [138]马一太,王伟.制冷剂的替代与延续技术[J].制冷学报, 2010, 31(5): 11-19.
    [139]吴泽球.制冷剂回收及研究的现状和建议[J].环境与可持续发展, 2008, 5: 37-39.
    [140]王康迪,王怀信.系统仿真确定制冷剂充灌量[J].制冷学报, 2001, 4: 35-40.
    [141]赫贝特?尤特曼著,耿惠彬译.热泵第三卷燃气机和柴油机热泵在建筑业中的应用[M].北京:机械工业出版社, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700