用户名: 密码: 验证码:
纳米结构Ⅳ-Ⅵ族化合物的制备、表征及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作是以基于溶液反应的自下而上的方法来制备得到具有独特形貌结构以及优异性能的Ⅳ-Ⅵ族化合物。本文利用一步水热法制备得到超薄SnO2二维纳米薄片材料,通过多种测试手段对其进行表征,发现了其取向连接的生长机理,同时将这种具备超大比表面积的产物用于锂离子电池负极材料的测试,获得了非常优异的锂离子容量性能;同时发现这种超薄SnO2二维纳米薄片材料具有奇特的室温铁磁性的性质,并通过各种测试方法揭示这种室温铁磁性很可能来源于材料表面的Sn空位;利用一步水热法制备得到超薄SnS2二维纳米薄片材料,同时将这种产物用于光催化性能测试,获得了非常优异的降解有机染料的能力;利用改进的微乳液法首先制备得到单分散的GeO2纳米方块,通过后续的在表面附着Au颗粒以及伴随着同步的GeO2的溶解,得到非常均匀尺寸和形貌的Au纳米空心立方壳层,这在生物医学上具有非常重大的意义。本论文得到的主要结果如下:
     (1)成功制备得到大量并且高纯的超薄SnO2二维纳米薄片材料,其中通过高分辨透射电镜和X射线衍射图谱精修以及原子力显微镜等测试手段可以测得我们的SnO2纳米薄片的最薄厚度约为2.1 nm。通过透射电镜和高分辨透射电镜对于不同反应时间的样品的观察可以发现我们制备得到的SnO2超薄纳米薄片材料是由初始生成的SnO2纳米颗粒通过“取向连接”的生长方式自组装而成。系统的对比实验还表明,只有在适当的反应时间、溶剂、添加剂、前驱体浓度以及冷却速率时才能生成非常完美的超薄SnO2纳米薄片。然而,即使在非常完美的超薄SnO2纳米薄片样品中,仍然不可避免地存在一定程度的非化学计量比。实际的实验参数与最佳参数值相差很大时更容易造成这种非化学计量比,从而导致生成Sn3O4或者SnO。这一发现能很好地帮助我们对锡氧化物进行更深入的研究。最后,我们还研究了这种超薄SnO2纳米薄片在作为锂离子电池负极材料时的性能,并与SnO2空心球以及纳米颗粒进行了比较。实验结果表明超薄SnO2纳米薄片的性能要远高于另外两种对比样品。这可能要归结于SnO2纳米薄片的超薄厚度以及独特的多孔状结构:纳米化的网络状结构提供了极短的离子扩散距离也即促成更快的相变反应;而内部多孔结构则可以很好的缓冲在充放电过程中由材料体积的巨大变化带来的应力应变。
     (2)在制备得到的超薄SnO2纳米薄片中发现奇特的室温铁磁性的现象。其中,饱和磁感应强度为15.1memu/g,矫顽力为20 Oe。同时,通过第一性原理的计算发现,当材料表面存在Sn空位时,最外层O原子层中O原子的s和p轨道电子存在自旋极化现象,造成了这种室温铁磁性的产生。随后,我们系统地研究了这种超薄SnO2纳米薄片样品在不同气氛和温度下退火处理后的磁学性能。实验结果表明,在所有的样品中仍然存在着室温铁磁性的现象,并且所有的磁性样品中饱和磁感应强度都不与样品中的O空位数量成线性关系;相反地,假设材料表面的Sn空位是磁性的来源则可以更好地解释所有现象。这恰好与我们之前的第一性原理计算结果相符。同时,我们还发现,这种超薄SnO2纳米薄片的居里温度约为300℃,远高于室温,这对于新型自旋电子器件来说具有非常大的潜力。
     (3)成功地制备得到了SnS2二维纳米薄片材料。产物纯度高,产量大,薄片厚度约为5 nm左右。其中我们详细地讨论了改变反应溶液中的溶剂极性对产物最终形貌的影响。此外,通过对比不同SnS2样品在光催化降解罗丹明B染料时的表现,详细探讨了不同形貌、不同结晶性的样品对最终光催化活性的影响。实验结果发现,六角片状的SnS2纳米薄片的光催化活性最好,甚至超过商用的TiO2(P25),这在未来的污水处理方面可能具有很大的意义。
     (4)通过对GeO2表面功能化以及后续的沉淀-沉积反应来合成表面覆盖Au颗粒的GeO2复合物。其中,我们详细探讨了氯金酸的浓度对Au种的尺寸分布和分散程度的影响;并且发现,当氯金酸的浓度充足时有利于同质均匀并完美分散的Au颗粒的产生。随后,通过额外添加一定量的氯金酸使得另一部分Au颗粒被还原生长在之前形成的Au/GeO2复合物表面,同时伴随着GeO2核的同步溶解,致使形成Au立方空心壳层。整个方法非常简单方便,非常适于制备这种特殊结构的Au空心壳层。同时,这种产物的吸收光谱的共振峰在900 nm以上,使得它们在生物医学应用中具有非常大的前景。
In this thesis, our work mainly focused on the solution-based "bottom-up" method to synthesize special morphological and structured IV-VI compounds with excellent properties. The ultrathin SnO2 nanosheets were synthesized by one-pot hydrothermal method, after having been investigated by various measurements, the "Oriented Attachment" mechanism was used to illustrate the morphology evolution. By applying this material in lithium ion battery, higher lithium storage was obtained compared to the other counterparts. Besides, novel room-temperature ferromagnetism was found in the products of SnO2 nanosheets, which was proposed to be the result of surface Sn vacancies. The SnS2 nanosheets were fabricated using similar protocols, and these products features splendid photocatalytic capability towards organic pigments. Finally, we synthesized Au hollow cubic shells with uniform size and morphology using an improved microemulsion method and a subsequent deposition-precipitation process. The main results are summarized as follows.
     (1) Successfully synthesized large-scale and highly pure ultrathin SnO2 nanosheets (NSs), with a minimum thickness in the regime of ca.2.1 nm as determined by HRTEM; and in good agreement with XRD refinements and AFM height profiles. Through TEM and HRTEM observations on time-dependent samples, we found that the as-prepared SnO2 NSs were assembled by "oriented attachment" of pre-formed SnO2 nanoparticles (NPs). Systematic trials showed that well-defined ultrathin SnO2 NSs could only be obtained under appropriate reaction time, solvent, additive, precursor concentration and cooling rate. A certain degree of nonstoichiometry appears inevitable in the well-defined SnO2 NSs sample. However, deviations from the optimal synthetic parameters give rise to severe nonstoichiometry in the products, resulting in the formation of Sn3O4 or SnO. This finding may open new accesses to the fundamental investigations of tin oxides as well as their inter-transition processes. Finally, we investigated the lithium-ion storage of the SnO2 NSs as compared to SnO2 hollow spheres and NPs. The results showed superior performance of SnO2 NSs sample over its two counterparts. This greatly enhanced Li-ion storage capability of SnO2 NSs is probably resulting from the ultrathin thicknesses and the unique porous structures:the nanometer-sized networks provide negligible diffusion times of ions thus faster phase transitions; while the "breathable" interior porous structure can effectively buffer the drastic volume changes during lithiation and delithiation reactions.
     (2) Room-temperature ferromagnetism of ultrathin SnO2 nanosheets has been found experimentally with saturation magnetization and coercive force of about 15.1 memu/g and 20 Oe, respectively. First-principles calculations reveal that oxygen atoms at O-terminated surface in SnO2 sheet are spin polarized, resulting in magnetic moment of 1.6μB for pure SnO2 nanosheet while Sn atoms just beneath the O-terminated surface contribute only-0.082/μB Besides, we have systematically studied the magnetic behavior of post-annealed SnO2 NSs samples by treating at different temperatures from 200℃to 400℃and under O2 or Ar atmosphere. Room-temperature ferromagnetisms have been observed in all studied samples. It is found that the saturation magnetization of all the annealed samples do not feature mono-dependence on oxygen vacancies, whereas the Sn vacancy-related origin seems more plausible to account for variations in magnetization of samples studied. This finding is quite correspondent to first-principle calculation results from our previous work. Furthermore, the Curie temperature of SnO2 nanosheets was estimated to be around 350℃rendering it a very good option for next-generation of spintronics.
     (3) Successfully synthesized SnS2 nanosheets with high purity and large production, the thicknesses of which are about 5 nm. Afterwards, we systematically studied the influences on the morphologies of final products brought by the polarity of the solvent. Furthermore, by comparing the performances of different SnS2 samples on the degradation of methylene blue, the effect of different morphologies and crystallinities were discussed in detail. The results enclosed that the hexagonal SnS2 nanosheets possessed better photocatalytic property compared to hierarchical SnS2 microspheres or even TiO2 (P25), which is meaningful in the water treatment.
     (4) Successfully synthesized gold-coated GeO2 nanocubes by applying surface functionalization and deposition-precipitation methods. The effect of gold salt concentration on the size distribution and dispersion of gold nanoparticles are examined. It was found that homogeneous and well-dispersed gold nanoparticles on GeO2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold. Eventually, additional gold was reduced onto these attached "seed" particles accompanied by synchronous dissolution of GeO2 cores, resulting in gold hollow cubic shells. This is an easy, convenient and in-situ method for preparation of gold hollow cubic shells. The absorption spectra of obtained samples have been explained according to the structures of samples. Gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which makes it very attractive in biochemical applications.
引文
1. C. Burda. X. B. Chen. R. Narayanan and M. A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews,2005,105,1025-1102.
    2. A. P. Alivisatos. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. The Journal of Physical Chemistry,1996.100,13226-13239.
    3. H. Boukari, J. S. Lin and M. T. Harris, Small-Angle X-Ray Scattering Study of the Formation of Colloidal Silica Particles from Alkoxides:Primary Particles or Not?, Journal of Colloid and Interface Science,1997, 194.311-318.
    4. V. R. Calderone, A. Testino, M. T. Buscaglia, M. Bassoli, C. Bottino, M. Viviani, V. Buscaglia and P. Nanni, Size and Shape Control of SrTiO3 Particles Grown by Epitaxial Self-Assembly, Chemistry of Materials,2006, 18.1627-1633.
    5. M. Z. C. Hu. M. T. Harris and C. H. Byers, Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis. Journal of Colloid and Interface Science.1998.198.87-99.
    6. T. Hyeon, Y. Chung. J. Park, S. S. Lee, Y.-W. Kim and B. H. Park. Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals. The Journal of Physical Chemistry B,2002,106.6831-6833.
    7. T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society. 2001,123,12798-12801.
    8. X. Peng, L. Manna. W. Yang, J. Wickham, E. Scher. A. Kadavanich and A. P. Alivisatos. Shape Control of CdSe Nanocrystals. Nature,2000.404,59-61.
    9. X. Peng, J. Wickham and A. P. Alivisatos, Kinetics of Ⅱ-VI and III-V Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions, Journal of the American Chemical Society,1998,120, 5343.5344.
    10. V. F. Puntes, K. M. Krishnan and A. P. Alivisatos. Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt Science.2001,291.2115-2117.
    11. Z. Tang. N. A. Kotov and M. Giersig, Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science.2002,297.237-240.
    12. Y. Volkov, S. Mitchell. N. Gaponik, Y. P. Rakovich. J. F. Donegan. D. Kelleher and A. L. Rogach. In-Situ Observation of Nanowire Growth from Luminescent CdTe Nanocrystals in a Phosphate Buffer Solution, ChemPhysChem,2004.5.1600-1602.
    13. Y.-w. Jun, M. F. Casula, J.-H. Sim. S. Y. Kim, J. Cheon and A. P. Alivisatos. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO:Nanocrystals. Journal of the American Chemical Society.2003.125.15981-15985.
    14. B. Cheng. J. M. Russell. Shi, L. Zhang and E. T. Samulski. Large-Scale. Solution-Phase Growth of Single-Crystalline SnO2 Nanorods. Journal of the American Chemical Society,2004.126.5972-5973.
    15. J. Polleux. N. Pinna, M. Antonietti and M. Niederberger. Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures. Advanced Materials,2004.16.436-439.
    16. Y. Xia. P. Yang. Y. Sun, Y. Wu, B. Mayers. B. Gates. Y. Yin. F. Kim and H. Yan, One-Dimensional Nanostructures:Synthesis. Characterization, and Applications, Advanced Materials.2003.15,353-389.
    17. I. I. Naumov, L. Bellaiche and H. Fu, Unusual Phase Transitions in Ferroelectric Nanodisks and Nanorods, Nature,2004.432,737-740.
    18. L. Vayssieres and M. Graetzel, Highly Ordered SnO2 Nanorod Arrays from Controlled Aqueous Growth. Angewandte Chemie International Edition,2004,43.3666-3670.
    19. R. J. Davey. Crystallization:How come you look so good?, Nature.2004,428,374-375.
    20. I. M. Lifshitz and V. V. Slyozov. The Kinetics of Precipitation from Supersaturated Solid Solutions, Journal of Physics and Chemistry of Solids,1961.19,35-50.
    21. H. Gratz. Ostwald ripening:New Relations Between Particle Growth and Particle Size Distribution, Scripta Materialia.1997,37,9-16.
    22. S. Kukushkin and A. Osipov, Kinetics of First-Order Phase Transitions in the Asymptotic Stage, Journal of Experimental and Theoretical Physics,1998,86,1201-1208.
    23. G. Oskam. Z. Hu. R. L. Penn. N. Pesika and P. C. Searson. Coarsening of metal oxide nanoparticles. Physical Review E,2002.66,011403.
    24. G. Oskam. A. Nellore, R. L. Penn and P. C. Searson, The Growth Kinetics of TiO2 Nanoparticles from Titanium(Ⅳ) Alkoxide at High Water/Titanium Ratio, The Journal of Physical Chemistry B,2003,107, 1734-1738.
    25. P. Jensen. Growth of Nanostructures by Cluster Deposition:Experiments and Simple Models, Reviews of Modern Physics,1999,71.1695-1735.
    26. R. L. Penn and J. F. Banfield, Oriented Attachment and Growth, Twinning, Polytypism, and Formation of Metastable Phases:Insights from Nanocrystalline TiO2, American Mineralogist,1998,83,1077-1082.
    27. R. L. Penn and J. F. Banfield. Imperfect Oriented Attachment:Dislocation Generation in Defect-free Nanocrystals, Science.1998.281.969-971.
    28. R. L. Penn and J. F. Banfield. Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions:Insights from Titania. Geochimica et Cosmochimica Acta,1999,63. 1549-1557.
    29. J. F. Banfield, S. A. Welch. H. Zhang. T. T. Ebert and R. L. Penn, Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products, Science.2000.289. 751-754.
    30. R. L. Penn, G. Oskam, T. J. Strathmann,P. C. Searson, A. T. Stone and D. R. Veblen. Epitaxial Assembly in Aged Colloids, The Journal of Physical Chemistry B.2001,105,2177-2182.
    31. J. K. Bailey. C. J. Brinker and M. L. Mecartney. Growth Mechanisms of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions. Journal of Colloid and Interface Science.1993,157.1-13.
    32. M. Ocana, M. P. Morales and C. J. Sema. The Growth Mechanism of α-Fe2O3 Ellipsoidal Particles in Solution. Journal of Colloid and Interface Science,1995,171,85-91.
    33. K. Onuma and A. Ito, Cluster Growth Model for Hydroxyapatite, Chemistry of Materials.1998.10. 3346-3351.
    34. A. Chemseddine and T. Moritz, Nanostructuring Titania:Control over Nanocrystal Structure, Size. Shape, and Organization, European Journal of Inorganic Chemistry,1999,1999,235-245.
    35. V. Privman, D. V. Goia, J. Park and E. Matijevic. Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors, Journal of Colloid and Interface Science.1999,213,36-45.
    36. F. Huang, H. Zhang and J. F. Banfield, Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS, Nano Letters.2003,3.373-378.
    37. E. R. Leite. T. R. Giraldi. F. M. Pontes. E. Longo. A. Beltran and J. Andres. Crystal growth in Colloidal Tin Oxide Nanocrystals Induced by Coalescence at Room Temperature, Applied Physics Letters.2003.83. 1566-1568.
    38. M. Adachi, Y. Murata. J. Takao. J. Jiu. M. Sakamoto and F. Wang. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism. Journal of the American Chemical Society.2004.126, 14943-14949.
    39. A. Navrotsky, Energetic Clues to Pathways to Biomineralization:Precursors. Clusters, and Nanoparticles. Proceedings of the National Academy of Sciences of the United States of America.2004,101.12096-12101.
    40. K.-S. Cho. D. V. Talapin, W. Gaschler and C. B. Murray. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Journal of the American Chemical Society,2005.127,7140-7147.
    41. E. J. H. Lee, C. Ribeiro, E. Longo and E. R. Leite. Oriented Attachment:An Effective Mechanism in the Formation of Anisotropic Nanocrystals. The Journal of Physical Chemistry B.2005.109.20842-20846.
    42. J. H. Yu, J. Joo, H. M. Park, S.-I. Baik, Y. W. Kim. S. C. Kim and T. Hyeon. Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. Journal of the American Chemical Society. 2005.127.5662-5670.
    43. Y. Zhu. W. Zhao. H. Chen and J. Shi. A Simple One-pot Self-Assembly Route to Nanoporous and Monodispersed Fe3O4 Particles with Oriented Attachment Structure and Magnetic Property. The Journal of Phvsical Chemistry C.2007,111.5281-5285.
    44. A. P. Alivisatos. Naturally Aligned Nanocrystals, Science.2000,289.736-737.
    45. J. A. Dirksen and T. A. Ring. Fundamentals of Crystallization:Kinetic Effects on Particle Size Distributions and Morphology. Chemical Engineering Science.1991.46.2389-2427.
    46. C. B. Murray, C. R. Kagan and M. G. Bawendi. Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies. Annual Reviews of Materials Science.2000.30.545-610.
    47. M. Yeadon. M. Ghaly, J. C. Yang. R. S. Averback and J. M. Gibson, "Contact epitaxy" Observed in Supported Klanoparticles, Applied Physics Letters,1998,73,3208-3210.
    48. T. O. Drews, M. A. Katsoulakis and M. Tsapatsis, A Mathematical Model for Crystal Growth by Aggregation of Precursor Metastable Nanoparticles. The Journal of Physical Chemistry B.2005.109,23879-23887.
    49. R. L. Penn. Kinetics of Oriented Aggregation, The Journal of Physical Chemistry B,2004.108,12707-12712.
    50. A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim and X. Peng, Formation of Nearly Monodisperse In2O3 Nanodots and Oriented-Attached Nanoflowers:Hydrolysis and Alcoholysis vs Pyrolysis, Journal of the American Chemical Society,2006,128,10310-10319.
    51. H. Xu, W. Wang, W. Zhu, L. Zhou and M. Ruan, Hierarchical-Oriented Attachment:From One-dimensional Cu(OH), Nanowires to Two-Dimensional CuO Nanoleaves, Crystal Growth& Design.2007,7.2720-2724.
    52. N. Pradhan. H. Xu and X. Peng. Colloidal CdSe Quantum Wires by Oriented Attachment. Nano Letters.2006, 6,720-724.
    53. P. D. Cozzoli, L. Manna, M. L. Curri. S. Kudera. C. Giannini, M. Striccoli and A. Agostiano. Shape and Phase Control of Colloidal ZnSe Nanocrystals, Chemistry of Materials.2005,17.1296-1306.
    54. L. Manna. E. C. Scher and A. P. Alivisatos, Synthesis of Soluble and Processable Rod-. Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society,2000,122, 12700-12706.
    55. Z. A. Peng and X. Peng, Mechanisms of the Shape Evolution of CdSe Nanocrystals, Journal of the American Chemical Society.2001,123,1389-1395.
    56. J. W. Grebinski. K. L. Hull. J. Zhang. T. H. Kosel and M. Kuno, Solution-Based Straight and Branched CdSe Nanowires, Chemistry of Materials,2004,16,5260-5272.
    57. C. Ma and Z. L. Wang, Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws桝 Step Towards Nanomanufacturing. Advanced Materials,2005.17,2635-2639.
    58. B. Liu. S.-H. Yu. L. Li, Q. Zhang, F. Zhang and K. Jiang, Morphology Control of Stolzite Microcrystals with High Hierarchy in Solution, Angewandte Chemie International Edition,2004.43,4745-4750.
    59. D. Kuang. A. Xu. Y. Fang. H. Liu. C. Frommen and D. Fenske. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process, Advanced Materials.2003.15,1747-1750.
    60. Y. Ma. L. Qi, J. Ma and H. Cheng. Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route, Crystal Growth& Design,2004,4,351-354.
    61. M. A. van Huis, L. T. Kunneman, K. Overgaag, Q. Xu, G. Pandraud, H. W. Zandbergen and D. Vanmaekelbergh, Low-Temperature Nanocrystal Unification through Rotations and Relaxations Probed by in Situ Transmission Electron Microscopy. Nano Letters.2008.8.3959-3963.
    62. J.-N. Nian and H. Teng. Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor. The Journal of Physical Chemistry B.2006.110.4193-4198.
    63. C.-C. Tsai and H. Teng. Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment,Chemistry of Materials.2004.16,4352-4358.
    64. C.-C. Tsai and H. Teng, Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments, Chemistry of Materials,2005,18.367-373.
    65. M. P. Finnegan, H. Zhang and J. F. Banfield, Anatase Coarsening Kinetics under Hydrothermal Conditions As a Function of pH and Temperature, Chemistry of Materials.2008.20.3443-3449.
    66. Y. L. Zhang. Y. Liu and M. L. Liu. Nanostructured Columnar Tin Oxide Thin Film Electrode for Lithium Ion Batteries, Chemistry of Materials,2006.18,4643-4646.
    67. D. Zitoun. N. Pinna. N. Frolet and C. Belin. Single Crystal Manganese Oxide Multipods by Oriented Attachment. Journal of the American Chemical Society,2005.127.15034-15035.
    68. Z. Tang and N. A. Kotov, One-Dimensional Assemblies of Nanoparticles:Preparation, Properties, and Promise, Advanced Materials,2005,17,951-962.
    69. X.-J. Zheng, Q. Kuang, T. Xu. Z.-Y. Jiang, S.-H. Zhang. Z.-X. Xie. R.-B. Huang and L.-S. Zheng. Growth of Prussian Blue Microcubes under a Hydrothermal Condition: Possible Nonclassical Crystallization by a Mesoscale Self-Assembly, The Journal of Physical Chemistry C,2007. 111,4499-4502.
    70. G. Wang, R. Saeterli, P. M. Rorvik, A. T. J. van Helvoort. R. Holmestad, T. Grande and M.-A. Einarsrud, Self-Assembled Growth of PbTiO3 Nanoparticles into Microspheres and Bur-like Structures, Chemistry of Materials.2007.19,2213-2221.
    71. Z. Zhuang, Q. Peng. J. Liu. X. Wang and Y. Li, Indium Hydroxides. Oxyhydroxides. and Oxides Nanocrystals Series. Inorganic Chemistry.2007.46.5179-5187.
    72. V. M. Yuwono, N. D. Burrows. J. A. Soltis and R. L. Penn, Oriented Aggregation:Formation and Transformation of Mesocrystal Intermediates Revealed. Journal of the American Chemical Society,132, 2163-2165.
    73. W.-k. Koh. A. C. Bartnik, F. W. Wise and C. B. Murray. Synthesis of Monodisperse PbSe Nanorods:A Case for Oriented Attachment. Journal of the American Chemical Society.2010.132.3909-3913.
    74. J. S. Chen, T. Zhu. C. M. Li and X. W. Lou. Building Hematite Nanostructures by Oriented Attachment. Angewandte Chemie International Edition.2011.50.650-653.
    75. X. Xu, J. Zhuang and X. Wang. SnO2 Quantum Dots and Quantum Wires:Controllable Synthesis. Self-Assembled 2D Architectures, and Gas-Sensing Properties. Journal of the American Chemical Society. 2008.130,12527-12535.
    76. Y. Liu. C. Zheng. W. Wang. C. Yin and G Wang. Synthesis and Characterization of Rutile SnO2 Nanorods. Advanced Materials.2001.13.1883-1887.
    77. Z. W. Pan. Z. R. Dai and Z. L. Wang. Nanobelts of Semiconducting oxides, Science,2001.291,1947-1949.
    78. Y. Liu. J. Dong and M. Liu. Well-Aligned "Nano-Box-Beams" of SnO2. Advanced Materials,2004,16. 353-356.
    79. J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang and Y. Du, Single Crystal SnO2 Zigzag Nanobelts, Journal ofthe American Chemical Society,2005,127,6180-6181.
    80. N. Du. H. Zhang, B. Chen, X. Ma and D. Yang, One-pot, Large-scale Synthesis of SnO:Nanotubes at Room Temperature, Chemical Communications.2008,3028-3030.
    81. Y. Wang, J. Y. Lee and H. C. Zeng, Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chemistry of Materials,2005,17,3899-3903.
    82. X. W. Lou. Y. Wang. C. L. Yuan, J. Y. Lee and L. A. Archer, Template-free Synthesis of SnO, Hollow Nanostructures with High Lithium Storage Capacity, Advanced Materials,2006,18.2325-2329.
    83. S. Ding. J. S. Chen, G Qi, X. Duan, Z. Wang, E. P. Giannelis. L. A. Archer and X. W. Lou, Formation of SnO2 Hollow Nanospheres Inside Mesoporous Silica Nanoreactors, Journal of the American Chemical Society. 2011,133,21-23.
    84. Z. Wang, D. Luan. F. Y. C. Boey and X. W. Lou, Fast Formation of SnO; Nanoboxes with Enhanced Lithium Storage Capability, Journal of the American Chemical Society.2011.133,4738-4741.
    85. M. G. Kim and J. Cho, Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries, Advanced Functional Materials.2009.19,1497-1514.
    86. P. Meduri, C. Pendyala. V. Kumar, G. U. Sumanasekera and M. K. Sunkara. Hybrid Tin Oxide Nanowires as Stable and High Capacity Anodes for Li-Ion Batteries, Nano Letters,2009,9.612-616.
    87. Y. Wang. H. C. Zeng and J. Y. Lee, Highly Reversible Lithium Storage in Porous SnO:Nanotubes with Coaxially Grown Carbon Nanotube Overlayers, Advanced Materials,2006,18,645-649.
    88. Y. Wang. X. Jiang and Y. Xia, A Solution-Phase. Precursor Route to Polycrystalline SnO2 Nanowires that Can Be Used for Gas Sensing under Ambient Conditions. Journal of the American Chemical Society,2003,125, 16176-16177.
    89. Q. Kuang, C. S. Lao. Z. L. Wang. Z. X. Xie and L. S. Zheng. High-sensitivity Humidity Sensor Based on a Single SnO2 Nanowire. Journal of the American Chemical Society.2007,129.6070-6071.
    90. X. Han, M. Jin, S. Xie, Q. Kuang. Z. Jiang, Y. Jiang. Z. Xie and L. Zheng. Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy{221) Facets and Enhanced Gas-Sensing Properties. Angewandte Chemie International Edition,2009,48.9180-9183.
    91. H. P. Wu, J. F. Liu, M. Y. Ge. L. Niu, Y. W. Zeng. Y. W. Wang, G L. Lv, L. N. Wang, G Q. Zhang and J. Z. Jiang. Preparation of Monodisperse GeO2 Nanocubes in a Reverse Micelle System, Chemistry of Materials, 2006,18,1817-1820.
    92. Y.-W. Chiu and M. H. Huang, Formation of Hexabranched GeO2 Nanoparticles via a Reverse Micelle System. The Journal of Physical Chemistry C 2009,113,6056-6060.
    93. X.-L. Wang, W.-Q. Han. H. Chen, J. Bai. T. A. Tyson. X.-Q. Yu, X.-J. Wang and X.-Q. Yang. Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with very Long Cycling Life, Journal of the American Chemical Society,2011,133,20692-20695.
    94. J.-w. Seo, J.-t. Jang, S.-w. Park, C. Kim. B. Park and J. Cheon, Two-Dimensional SnSj Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries, Advanced Materials,2008,20,4269-4273.
    95. A. Yella, E. Mugnaioli, M. Panthofer, H. A. Therese. U. Kolb and W. Tremel. Bismuth-Catalyzed Growth of SnS2 Nanotubes and Their Stability, Angewandte Chemie International Edition,2009,48,6426-6430.
    96. Y. Lei, S. Song, W. Fan. Y. Xing and H. Zhang, Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2:Hierarchical Structures and Their Enhanced Photocatalytic Property, The Journal of Physical Chemistry C.2009,113,1280-1285.
    97. K. S. Novoselov. A. K. Geim. S. V. Morozov, D. Jiang. Y. Zhang, S. V. Dubonos. I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science,2004.306,666-669.
    98. A. K. Geim and K. S. Novoselov, The Rise of Graphene, Nature Materials,2007,6.183-191.
    99. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo and 1. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Letters,2008,8.2277-2282.
    100. T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe and G. Decher, Layer-by-Layer Assembly of Titania Nanosheet/Polycation Composite Films. Chemistry of Materials,2001.13,4661-4667.
    101. Y. Omomo, T. Sasaki, Wang and M. Watanabe, Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide. Journal of the American Chemical Society'.2003,125. 3568-3575.
    102. E. Hosono, S. Fujihara, I. Honma and H. Zhou, The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells. Advanced Materials,2005.17.2091-2094.
    103. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth. V. V. Khotkevich. S. V. Morozov and A. K. Geim. Two-Dimensional Atomic Crystals, Proceedings of the National Academy of Sciences of the United States of America,2005,102,10451-10453.
    104. O. Altuntasoglu, Y. Matsuda. S. Ida and Y. Matsumoto. Syntheses of Zinc Oxide and Zinc Hydroxide Single Nanosheets, Chemistry of Materials,2010,22,3158-3164.
    105. D. Golberg, Y. Bando. Y. Huang, T. Terao. M. Mitome, C. Tang and C. Zhi. Boron Nitride Nanotubes and Nanosheets. ACS Nano.2010.4.2979-2993.
    106. D. D. Vaughn Ii, R. J. Patel. M. A. Hickner and R. E. Schaak. Single-Crystal Colloidal Nanosheets of GeS and GeSe. Journal of the American Chemical Society:2010.132.15170-15172.
    107. D. F. Zhang. L. D. Sun. C. J. Jia. Z. G. Yan. L. P. You and C. H. Yan. Hierarchical Assembly of SnO:Nanorod Arrays on Alpha-Fe2O3 Nanotubes:A Case of Interfacial Lattice Compatibility. Journal of the American Chemical Society:2005,127.13492-13493.
    108. W. W. Wang, Y. J. Zhu and L. X. Yang. ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties, Advanced Functional Materials.2007,17.59-64.
    109. J. B. Fei. Y. Cui, X. H. Yan, W. Qi. Y. Yang. K. W. Wang, Q. He and J. B. Li. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment, Advanced Materials,2008,20, 452-456.
    110. A. Yella. M. N. Tahir, S. Meuer, R. Zentel, R. Berger. M. Panthofer and W. Tremel, Synthesis, Characterization, and Hierarchical Organization of Tungsten Oxide Nanorods:Spreading Driven by Marangoni Flow, Journal of the American Chemical Society.2009.131,17566-17575.
    111. J. F. Banfield. S. A. Welch. H. Z. Zhang. T. T. Ebert and R. L. Penn. Aggregation-based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science.2000.289, 751-754.
    112. A. Narayanaswamy. H. F. Xu, N. Pradhan. M. Kim and X. G. Peng, Formation of Nearly Monodisperse In2O3 Nanodots and Oriented-attached Nanoflowers:Hydrolysis and Alcoholysis vs Pyrolysis, Journal of the American Chemical Society.2006.128.10310-10319.
    113. D. Portehault, S. Cassaignon. E. Baudrin and J. P. Jolivet, Selective Heterogeneous Oriented Attachment of Manganese Oxide Nanorods in Water:Toward 3D Nanoarchitectures. Journal of Materials Chemistry.2009. 19,7947-7954.
    114. Y. H. Kim. J. H. Lee. D. W. Shin. S. M. Park, J. S. Moon. J. G. Nam and B. Yoo. Synthesis of Shape-Controlled Beta-In2S3 Nanotubes through Oriented Attachment of Nanoparticles. Chemical Communications.2010.46.2292-2294.
    115. W. K. Koh. A. C. Bartnik, F. W. Wise and C. B. Murray. Synthesis of Monodisperse PbSe Nanorods:A Case for Oriented Attachment. Journal of the American Chemical Society,2010.132,3909-3913.
    116. V. M. Yuwono, N. D. Burrows. J. A. Soltis and R. L. Penn, Oriented Aggregation:Formation and Transformation of Mesocrystal Intermediates Revealed. Journal of the American Chemical Society.2010,132, 2163-2165.
    117. J. S. Chen. T. Zhu. C. M. Li and X. W. Lou. Building Hematite Nanostructures by Oriented Attachment, Angewandte Chemie International Edition.2011,50.650-653.
    118. H. Colfen and S. Mann. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angewandte Chemie-International Edition.2003,42,2350-2365.
    119. H. Colfen and M. Antonietti, Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie-International Edition,2005.44,5576-5591.
    120. B. Cheng. J. M. Russell, W. S. Shi. L. Zhang and E. T. Samulski, Large-scale. Solution-Phase Growth of Single-Crystalline SnO2 Nanorods, Journal of the American Chemical Society,2004,126,5972-5973.
    121. Y. Liu. H. Dong and M. L. Liu. Well-Aligned "Nano-Box-Beams" of SnO2. Advanced Materials,2004.16, 353-356.
    122. J. H. Ba, J. Polleux, M. Antonietti and M. Niederberger, Non-Aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures. Advanced Materials.2005.17.2509-2512.
    123. Y. Wang, H. C. Zeng and J. Y. Lee, Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers, Advanced Materials,2006,18.645-649.
    124. X. W. Lou, C. L. Yuan and L. A. Archer, Double-Walled SnO2 Nano-cocoons with Movable Magnetic Cores. Advanced Materials,2007,19.3328-3332.
    125. E. R. Leite.1. T. Weber, E. Longo and J. A. Varela. A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. Advanced Materials.2000.12.965-968.
    126. N. Pinna, G Neri. M. Antonietti and M. Niederberger, Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing. Angewandte Chemie International Edition.2004.43. 4345-4349.
    127. A. Kolmakov. D. O. Klenov. Y. Lilach. S. Stemmer and M. Moskovits. Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles, Nano Letters.2005.5.667-673.
    128. X. G. Han. M. S. Jin. S. F. Xie. Q. Kuang, Z. Y. Jiang. Y. Q. Jiang. Z. X. Xie and L. S. Zheng. Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy{221} Facets and Enhanced Gas-Sensing Properties, Angewandte Chemie-International Edition,2009.48.9180-9183.
    129. S. B. Ogale. R. J. Choudhary. J. P. Buban, S. E. Lofland. S. R. Shinde. S. N. Kale. V. N. Kulkarni. J. Higgins. C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma. H. D. Drew, R. L. Greene and T. Venkatesan. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO:-delta. Physical Review Letters,2003,91,077205.
    130. A. Sundaresan, R. Bhargavi. N. Rangarajan, U. Siddesh and C. N. R. Rao. Ferromagnetism as a Universal Feature of anoparticles of the Otherwise'Nonmagnetic Oxides. Physical Review B.2006.74.161306.
    131. A. L. M. Reddy and S. Ramaprabhu. Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes. Journal of Physical Chemistry C.2007.111.7727-7734.
    132. R. K. Selvan. I. Perelshtein. N. Perkas and A. Gedanken, Synthesis of Hexagonal-Shaped SnO; Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors. Journal of Physical Chemistry C. 2008.112.1825-1830.
    133. J. A. Yan. E. Khoo. A. Sumboja and P. S. Lee. Facile Coating of Manganese Oxide on Tin Oxide Nanowires with High-Performance Capacitive Behavior. ACSNano.2010.4.4247-4255.
    134. M. S. Park. G. X. Wang. Y. M. Kang. D. Wexler. S. X. Dou and H. K. Liu. Preparation and Electrochemical Properties of SnO2Nanowires for Application in Lithium-ion Batteries. Angewandte Chemie International Edition.2007.46.750-753.
    135. M. S. Park. Y. M. Kang. G. X. Wang, S. X. Dou and H. K. Liu, The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials, Advanced Functional Materials,2008,18,455-461.
    136. S. M. Paek, E. Yoo and I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure, Nano Letters.2009.9,72-75.
    137. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan. W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan. L. Qi, A. Kushima and J. Li, In Situ Observation of the Electrochemical Lithiation of a Single SnO2Nanowire Electrode. Science.2010.330.1515-1520.
    138. J. J. Ning. Q. Q. Dai, T. Jiang. K. K. Men. D. H. Liu. N. R. Xiao, C. Y. Li. D. M. Li, B. B. Liu, B. Zou, G. T. Zou and W. W. Yu, Facile Synthesis of Tin Oxide Nanoflowers:A Potential High-Capacity Lithium-Ion-Storage Material, Langmuir.2009,25.1818-1821.
    139. J. J. Ning. T. Jiang. K. K. Men, Q. Q. Dai. D. M. Li, Y. J. Wei, B. B. Liu, G Chen. B. Zou and G. T. Zou. Syntheses. Characterizations, and Applications in Lithium Ion Batteries of Hierarchical SnO Nanocrystals. Journal of Physical Chemistry C.2009.113,14140-14144.
    140. F. Gu. S. F. Wang. M. K. Lu. G. J. Zhou, D. Xu and D. R. Yuan. Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-gel Method, Journal of Physical Chemistry:B,2004,108.8119-8123.
    141.X. X. Xu. J. Zhuang and X. Wang, SnO2 Quantum Dots and Quantum Wires:Controllable Synthesis, Self-assembled 2D Architectures, and Gas-sensing Properties, Journal of the American Chemical Society, 2008.130,12527-12535.
    142. A. Kar. S. Kundu and A. Patra. Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles, Journal of Physical Chemistry C,2011.115,118-124.
    143. B. E. Warren and B. L. Averbach. The Effect of Cold-Work Distortion on X-Ray Patterns, Journal of Applied Physics,1950,21.595-599.
    144. B. E. Warren and B. L. Averbach. The Separation of Stacking Fault Broadening in Cold-Worked Metals, Journal of Applied Physics.1952.23.1059-1062.
    145. B. E. Warren and B. L. Averbach, The Separation of Cold-Work Distortion and Particle Size Broadening in X-Ray Patterns. Journal of Applied Physics.1952.23.497-500.
    146. G. K. Williamson and W. H. Hall. X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metallurgies 1953.1.22-31.
    147. R. J. Hill and C. J. Howard, In:Australian Atomic Energy Commission Report Ml 12 AAEC (now ANSTO), Lucas Heights Research Laboratories, NSW Australia,1986.
    148. M. Choi. K. Na, J. Kim, Y. Sakamoto.O. Terasaki and R. Ryoo. Stable Single-unit-cell Nanosheets of Zeolite MFI as Active and Long-lived Catalysts. Nature.2009,461,246-U120.
    149. J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi. F. Y. C. Boey. L. A. Archer and X. W. Lou. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society.2010, 132,6124-6130.
    150. C. Ribeiro, E. Longo and E. R. Leite, Tailoring of Heterostructures in a SnO2/TiO2 System by the Oriented Attachment Mechanism, Applied Physics Letters,2007.91,103105-103103.
    151. G. Tyuliev and S. Angelov, The Nature of Excess Oxygen in Co3O4 Epsilon, Applied Surface Science,1988, 32,381-391.
    152. M. Naeem, S. K. Hasanain. M. Kobayashi. Y. Ishida, A. Fujimori, S. Buzby and S. I. Shah, Effect of Reducing Atmosphere on the Magnetism of Zn,.xCoxO (0≤ x≤ 0.10) Nanoparticles. Nanotechnology,2006,17. 2675-2680.
    153. L. Zhang, S. H. Ge, Y. L. Zuo. B. M. Zhang and L. XL Influence of Oxygen Flow Rate on the Morphology and Magnetism of SnO2 Nanostructures, Journal of Physical Chemistry C.2010.114,7541-7547.
    154. D. Maestre. J. Ramirez-Castellanos, R Hidalgo, A. Cremades, J. M. Gonzalez-Calbet and J. Piqueras, Study of the Defects in Sintered SnO2 by High-Resolution Transmission Electron Microscopy and Cathodoluminescence, European Journal of Inorganic Chemistry.2007,1544-1548.
    155. A. Seko. A. Togo, F. Oba and I. Tanaka. Structure and Stability of a Homologous Series of Tin Oxides, Physical Review Letters.2008.100.045702.
    156. K. G Godinho. A. Walsh and G W. Watson. Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. Journal of Physical Chemistry C,2009.113,439-448.
    157. J. M. Themlin. M. Chtaib. L. Henrard. R Lambin, J. Darville and J. M. Gilles, Characterization of Tin Oxides by X-Ray-Photoemission Spectroscopy. Physical Review B,1992.46,2460-2466.
    158. H. J. Ahn, H. C. Choi, K. W. Park, S. B. Kim and Y. E. Sung, Investigation of the Structural and Electrochemical Properties of Size-controlled SnO2 Nanoparticles, Journal of Physical Chemistry B,2004. 108.9815-9820.
    159. N. S. Ramgir.1. S. Mulla and K. P. Vijayamohanan, Effect of RuO2 in the Shape Selectivity of Submicron-Sized SnO2 Structures. Journal of Physical Chemistry B,2005,109.12297-12303.
    160. Q. R. Zhao, Y. Xie. T. Dong and Z. G. Zhang, Oxidation-Crystallization Process of Colloids:An Effective Approach for the Mmorphology Controllable Synthesis of SnO2 Hollow Spheres and Rod Bundles. Journal of Physical Chemistn C.2007.111.11598-11603.
    161. Z. Y. Zhang. C. L. Shao. X. H. Li. L. Zhang, H. M. Xue. C. H. Wang and Y. C. Liu. Electrospun Nanofibers of ZnO-SnO2 Heterojunction with High Photocatalytic Activity. Journal of Physical Chemistry C.2010,114. 7920-7925.
    162. C. Wang. Y. Zhou, M. Ge, X. Xu, Z. Zhang and J. Z. Jiang, Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity, Journal of the American Chemical Society.2010,132,46-47.
    163. D. Chandra, N. Mukherjee, A. Mondal and A. Bhaumik. Design and Synthesis of Nanostructured Porous SnO2 with High Surface Areas and Their Optical and Dielectric Properties. The Journal of Physical Chemistry C.2008,112,8668-8674.
    164. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang and Q. Zhang, Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2 Hierarchical Architectures Assembled by Nanocones, The Journal of Physical Chemistry C.2009,113,9071-9077.
    165. A. Kar, S. Kundu and A. Patra, Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles, The Journal of Physical Chemistry C,2011,115,118-124.
    166. M. A. Butler, Photoelectrolysis and Physical-Properties of Semiconducting Electrode WO3, Journal of Applied Physics,1977,48.1914-1920.
    167. H. Lin, C. P. Huang, W. Li, C. Ni, S. I. Shah and Y. H. Tseng, Size Dependency of Manocrystalline TiO2 on its Optical Property and Photocatalytic Reactivity Exemplified by 2-chlorophenol. Applied Catalysis B-Environmental,2006.68,1-11.
    168. L. E. Brus, Electron Electron and Electron-Hole Interactions in Small Semiconductor Crystallites-the Size Dependence of the Lowest Excited Electronic State. Journal of Chemical Physics.1984.80.4403-4409.
    169. L. Brus, Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory, The Journal of Physical Chemistry.1986.90.2555-2560.
    170. C. R. A. Catlow and R. James, Non-stoichiometry and Dielectric Properties. Nature,1978,272,603-605.
    171. H. L. Zhu. D. R. Yang, G. X. Yu. H. Zhang and K. H. Yao. A Simple Hydrothermal Route for Synthesizing SnO; Quantum Dots. Nanotechnology.2006.17.2386-2389.
    172. G Xi and J. Ye, Ultrathin SnO2 Nanorods:Template-and Surfactant-Free Solution Phase Synthesis, Growth Mechanism, Optical. Gas-Sensing, and Surface Adsorption Properties. Inorganic Chemistry,2010,49, 2302-2309.
    173.X. W. Lou. C. L. Yuan and L. A. Archer. Shell-by-shell Synthesis of Tin Oxide Hollow Colloids with Nanoarchitectured Walls:Cavity Size Tuning and Functionalization. Small.2007,3.261-265.
    174. R. Demir-Cakan, Y. S. Hu, M. Antonietti. J. Maier and M. M. Titirici. Facile One-pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties, Chemistry of Materials,2008.20,1227-1229.
    175. X. Chen, X. Sun and Y. Li, Self-Assembling Vanadium Oxide Nanotubes by Organic Molecular Templates. Inorganic Chemistry,2002.41,4524-4530.
    176. A. G Dong, N. Ren. Y. Tang, Y. J. Wang, Y. H. Zhang, W. M. Hua and Z. Gao, General Synthesis of Mesoporous Spheres of Metal Oxides and Phosphates, Journal of the American Chemical Society.2003,125, 4976-4977.
    177. Q. Gu, K. Nagai. T. Norimatsu. S. Fujioka. H. Nishimura, K. Nishihara. N. Miyanaga and Y. Lzawa. Preparation of Low-Density Macrocellular Tin Dioxide Foam with Variable Window Size, Chemistry of Materials.2005,17,1115-1122.
    178. R. B. Grubbs, Nanoparticle Assembly-Solvent-Tuned Structures, Nature Materials,2007,6,553-555.
    179. H. Tong. Y. J. Zhu, L. X. Yang. L. Li. L. Zhang, J. Chang, L. Q. An and S. W. Wang, Self-assembled ZnS Nanostructured Spheres:Controllable Crystal Phase and Morphology, Journal of Physical Chemistry C,2007, 111,3893-3900.
    180. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G Liu. S. C. Smith, H. M. Cheng and G Q. Lu, Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets, Nature,2008,453.638-U634.
    181.X. Xiao and W.-D. Zhang, Facile Ssynthesis of Nanostructured BiOI Microspheres with High Visible Light-induced Photocatalytic Activity. Journal of Materials Chemistry,2010,20,5866-5870.
    182. X. B. Xu. M. Y. Ge. K. Stahl and J. Z. Jiang, Growth Mechanism of Cross-like SnO Structure Synthesized by Thermal Decomposition, Chemical Physics Letters.2009.482.287-290.
    183. G. Kresse and J. Furthmuller. Efficient Iterative Schemes for Ab initio Total-energy Calcuiations using a Plane-wave Basis Set. Physical Review B,1996,54.11169-11186.
    184. X. Q. Pan and L. Fu. Oxidation and Phase Transitions of Epitaxial Tin Oxide Thin Films on (-1012) sapphire. Journal of Applied Physics.2001,89,6048-6055.
    185. J. Ba, J. Polleux, M. Antonietti and M. Niederberger. Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures, Advanced Materials,2005.17,2509-2512.
    186. H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai and Y. L. Cao, Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermai Environment, The Journal of Physical Chemistry C 2007,111,14067-14071.
    187. M. Kruk and M. Jaroniec, Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials, Chemistry of Materials.2001,13,3169-3183.
    188.1. A. Courtney and J. R. Dahn, Electrochemical and in situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites, Journal of the Electrochemical Society,1997.144.2045-2052.
    189. T. Brousse, R. Retoux, U. Herterich and D. M. Schleich. Thin-film crystalline SnO:-lithium electrodes. Journal of the Electrochemical Society,1998.145.1-4.
    190.1. A. Courtney. W. R. McKinnon and J. R. Dahn, On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium, Journal of the Electrochemical Society,1999.146,59-68.
    191. Y. G. Guo. Y. S. Hu. W. Sigle and.1. Maier. Superior Electrode Performance of Nanostructured Mesoporous TiO:(anatase) through Efficient Hierarchical Mixed Conducting Networks. Advanced Materials.2007.19, 2087-2091.
    192. J. Hassoun, S. Panero. P. Simon. P. L. Taberna and B. Scrosati. High-rate. Long-life Ni-Sn Nanostructured Electrodes for Lithium-ion Batteries, Advanced Materials,2007,19,1632-1635.
    193. G Chen, Z. Y. Wang and D. G. Xia. One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability. Chemistry of Materials,2008,20.6951-6956.
    194. J. Y. Kim, D. E. King. P. N. Kumta and G. E. Blomgren, Chemical Synthesis of Tin Oxide-Based Materials for Li-Ion Battery Anodes Influence of Process Parameters on the Electrochemical Behavior, Journal of the Electrochemical Society,2000.147,4411-4420.
    195. Y. I. Kim, W. H. Lee. H. S. Moon, K. S. Ji. S. H. Seong and J. W. Park, Effect of Si Addition to Thin-film SnOo Microbattery Anodes on Cycling Performance. Journal of Power Sources,2001,101,253-258.
    196. S. C. Nam. Y. S. Yoon, W. I. Cho, B. W. Cho, H. S. Chun and K. S. Yun, Reduction of Irreversibility in the First Charge of Tin Oxide Thin Film Negative Electrodes, Journal of the Electrochemical Society,2001,148, A220-A223.
    197. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon. Nano-sized Transition-metal Oxides as Negative-Electrode Materials for Lithium-ion Batteries, Nature,2000,407.496-499.
    198. S. T. Chang, I. C. Leu. C. L. Liao, J. H. Yen and M. H. Hon, Electrochemical Behavior of Nanocrystalline Tin Oxide Electrodeposited on a Cu Substrate for Li-ion Batteries, Journal of Materials Chemistry,2004,14, 1821-1826.
    199. J. S. Chen. Y. L. Cheah, Y. T. Chen. N. Jayaprakash, S. Madhavi, Y. H. Yang and X. W. Lou. SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C.2009.113.20504-20508.
    200. X. W. Lou. J. S. Chen. P. Chen and L. A. Archer. One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties, Chemistry of Materials,2009.21.2868-2874.
    201. Y. Chen. Q. Z. Huang. J. Wang. Q. Wang and J. M. Xue, Synthesis of Monodispersed SnO,@C Composite Hollow Spheres for Lithium Ion Battery Anode Applications. Journal of Materials Chemistry,2011,21, 17448-17453.
    202. S. Ding, J. S. Chen and X. W. Lou. CNTs@Sn02@Carbon Coaxial Nanocables with High Mass Fraction of SnO2 for Improved Lithium Storage. Chemistry-An Asian Journal.2011.6.2278-2281.
    203. P. Wu. N. Du. H. Zhang. C. Zhai and D. Yang. Self-Templating Synthesis of SnO:-Carbon Hybrid Hollow Spheres for Superior Reversible Lithium Ion Storage. ACS Applied Materials& Interfaces,2011,3, 1946-1952.
    204. X. W. Lou. D. Deng. J. Y. Lee and L. A. Archer. Preparation of SnOi/Carbon Composite Hollow Spheres and Their Lithium Storage Properties, Chemistry of Materials,2008,20,6562-6566.
    205. X. W. Lou. C. M. Li and L. A. Archer, Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage, Advanced Materials.2009,21,2536-2539.
    206. S. Ding, D. Luan. F. Y. C. Boey, J. S. Chen and X. W. Lou, SnO2 Nanosheets Grown on Graphene Sheets with Enhanced Lithium Storage Properties, Chemical Communications,2011.47,7155-7157.
    207. N. H. Hong, Ferromagnetism in Transition-metal-doped Semiconducting Oxide Thin Films, Journal of Magnetism and Magnetic Materials.2006,303.338-343.
    208. N. H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter and F. Gervais, Ferromagnetism in Transition-metal-doped TiO2 Thin Films, Physical Review B.2004,70.195204.
    209. S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni. J. Higgins, C. Land, J. R. Simpson, N. D. Browning. S. Das Sarma, H. D. Drew, R. L. Greene and T. Venkatesan. High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2, Physical Review Letters,2003.91.077205.
    210. M. Venkatesan, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey. Anisotropic Ferromagnetism in Substituted Zinc Oxide. Physical Review Letters.2004,93,177206.
    211. S. Yin. M. X. Xu, L. Yang, J. F. Liu, H. Rosner. H. Hahn, H. Gleiter, D. Schild. S. Doyle, T. Liu. T. D. Hu, E. Takayama-Muromachi and J. Z. Jiang. Absence of Ferromagnetism in Bulk Polycrystalline Zn09Co0]O. Physical Review B,2006,73,224408.
    212. C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov. J. M. D. Coey. P. A. Stampe. R. J. Kennedy, E. C. Moreira and U. S. Sias, Magnetism in Dilute Magnetic Oxide Thin Films Based on SnO2. Physical Review B,2006.74,115307.
    213. N. H. Hong, N. Poirot and J. Sakai, Ferromagnetism Observed in Pristine SnO2 Thin Films. Physical Review B,2008,77,033205.
    214. J. Zhang, R. Skomski, Y. F. Lu and D. J. Sellmyer, Temperature-dependent Orbital-moment Anisotropy in Dilute Magnetic Oxides, Physical Review B,2007,75.214417.
    215. C.-w. Zhang, H. Kao and J.-m. Dong, Origin of Ferromagnetism via Hole Doping in SnO2:First-principles Calculation, Physics Letters A,2009,373,2592-2595.
    216. W. Zhou, L. Liu and P. Wu, Nonmagnetic Impurities Induced Magnetism in SnO2. Journal of Magnetism and Magnetic Materials,2009.321,3356-3359.
    217. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles. Magnetism in Hafnium Dioxide, Physical Review B,2005,72,024450.
    218. C. Das Pemmaraju and S. Sanvito. Ferromagnetism Driven by Intrinsic Point Defects in HfO2. Physical Review Letters,2005,94,217205.
    219. N. H. Hong. J. Sakai. N. Poirot and V. Brize. Room-temperature Ferromagnetism Observed in Undoped Semiconducting and Insulating Oxide Thin Films. Physical Review B.2006.73.132404.
    220. A. Sundaresan. R. Bhargavi. N. Rangarajan. U. Siddesh and C. N. R. Rao, Ferromagnetism as a Universal Feature of Nanoparticles of the Otherwise Nonmagnetic Oxides. Physical Review B.2006.74.161306.
    221. M. Venkatesan. C. B. Fitzgerald and J. M. D. Coey, Thin films:Unexpected Magnetism in a Dielectric Oxide, Nature,2004.430.630-630.
    222. P. Sharma. A. Gupta. K. V. Rao. F. J. Owens, R. Sharma. R. Ahuja. J. M. O. Guillen, B. Johansson and G. A. Gehring, Ferromagnetism Above Room Temperature in Bulk and Transparent Thin Films of Mn-doped ZnO. Nat Mater,2003,2,673-677.
    223. N. H. Hong, J. Sakai. N. T. Huong, N. Poirot and A. Ruyter, Role of Defects in Tuning Ferromagnetism in Diluted Magnetic Oxide Thin Films, Physical Review B.2005,72,045336.
    224. S. Yin. M. X. Xu. L. Yang. J. F. Liu, H. Rosner, H. Hahn, H. Gleiter, D. Schild. S. Doyle, T. Liu, T. D. Hu, E. Takayama-Muromachi and J. Z. Jiang. Absence of Ferromagnetism in Bulk Polycrystalline Zn0.9Co0.1O, Physical Review B.2006,73,224408.
    225. Y. He, P. Sharma. K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura. J. S. Tse, S. Yin and J. Z. Jiang, Origin of Ferromagnetism in ZnO Codoped with Ga and Co:Experiment and Theory, Physical Review 5,2008,78,155202.
    226. E. Z. Liu, Y. He and J. Z. Jiang. Ferromagnetism Induced by Defect Complex in Co-doped ZnO, Applied Physics Letters.2008.93.132506.
    227. E. Z. Liu, J. F. Liu. Y. He and J. Z. Jiang. H-impurity Induced High-Temperature Ferromagnetism in Co-doped ZnO. Journal of Magnetism and Magnetic Materials,2009,321,3507-3510.
    228. E. Z. Liu and J. Z. Jiang. O-vacancy-mediated Spin-spin Interaction in Co-doped ZnO:First-principles Total-energy Calculations, Journal of Applied Physics,2010,107,023909.
    229.Y. Matsumoto. M. Murakami. T. Shono, T Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara and H. Koinuma. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide. Science.2001,291,854-856.
    230. J. Kuljanin-Jakovljevic. M. Radoicic, T. Radetic, Z. Konstantinovic, Z. V. Saponjic and J. Nedeljkovic, Presence of Room Temperature Ferromagnetism in Co2+Doped TiO2 Nanoparticles Synthesized through Shape Transformation. The Journal of Physical Chemistry C,2009,113.21029-21033.
    231. S. B. Ogale. R. J. Choudhary. J. P. Buban, S. E. Lofland. S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci. J. R. Simpson, N. D. Browning. S. Das Sarma. H. D. Drew. R. L. Greene and T. Venkatesan, High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2, Physical Review letters.2003.91.077205.
    232. P.1. Archer, P. V. Radovanovic, S. M. Heald and D. R. Gamelin, Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor: Ni2+-Doped SnO2. Journal of the American Chemical Society,2005.127,14479-14487.
    233. J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard. J. Peloquin and K. M. Reddy, Relationship between the Structural and Magnetic Properties of Co-doped SnO2 Nanoparticles, Physical Review B,2005.72.075203.
    234. A. Punnoose. J. Hays, A. Thurber. M. H. Engelhard, R. K. Kukkadapu. C. Wang, V. Shutthanandan and S. Thevuthasan. Development of High-temperature Ferromagnetism in SnO2 and Paramagnetism in SnO by Fe Doping. Physical Review B.2005,72.054402.
    235. K. Gopinadhan, S. C. Kashyap, D. K. Pandya and S. Chaudhary, High Temperature Ferromagnetism in Mn-doped SnO2 Nanocrystalline Thin Films. Journal of Applied Physics,2007.102,113513-113518.
    236. R. Adhikari, A. K. Das, D. Karmakar, T. V. C. Rao and J. Ghatak, Structure and Magnetism of Fe-doped SnO2 Nanoparticles. Physical Review B.2008.78.024404.
    237. K. Srinivas. M. Vithal. B. Sreedhar, M. M. Raja and P. V. Reddy. Structural. Optical, and Magnetic Properties of Nanocrystalline Co Doped SnO2 Based Diluted Magnetic Semiconductors, The Journal of Physical Chemistry C,2009,113,3543-3552.
    238. M. Venkatesan, C. B. Fitzgerald and J. M. D. Coey, Unexpected Magnetism in a Dielectric Oxide, Nature. 2004.430.630-630.
    239. E. Tirosh and G Markovich. Control of Defects and Magnetic Properties in Colloidal HfO2 Nanorods. Advanced Materials.2007,19.2608-2612.
    240. Q. Xu, H. Schmidt, S. Zhou. K. Potzger. M. Helm. H. Hochmuth. M. Lorenz, A. Setzer. P. Esquinazi. C. Meinecke and M. Grundmann, Room Temperature Ferromagnetism in ZnO Films due to Defects, Applied Physics Letters.2008.92.082508.
    241. N. H. Hong, J. Sakai, N. Poirot, Briz. eacute and Virginie, Room-temperature Ferromagnetism Observed in Undoped Semiconducting and Insulating Oxide Thin Films. Physical Review B.2006.73.132404.
    242. S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich. X. Zuo, D. A. Arena. K. Ziemer. C. Vittoria and V. G Harris. Oxygen-defect-induced Magnetism to 880 K in Semiconducting Anatase TiO2-delta Films. Journal of Physics-Condensed Matter.2006.18. L355-L361.
    243. D. Gao. G Yang, J. Li. J. Zhang, J. Zhang and D. Xue, Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. The Journal of Physical Chemistry C.2010.114.18347-18351.
    244. M. Y. Ge. H. Wang. E. Z. Liu. J. F. Liu. J. Z. Jiang. Y. K. Li. Z. A. Xu and H. Y. Li. On the Origin of Ferromagnetism in CeO2 Nanocubes. Applied Physics Letters.2008.93.062505.
    245. J. Hu. Z. Zhang. M. Zhao. H. Qin and M. Jiang. Room-temperature Ferromagnetism in MgO Nanocrystalline Powders. Applied Physics Letters.2008.93.192503-192503.
    246. C. M. Araujo. M. Kapilashrami. X. Jun. O. D. Jayakumar. S. Nagar. Y. Wu. C. Arhammar. B. Johansson. L. Belova. R. Ahuja, G A. Gehring and K. V. Rao. Room Temperature Ferromagnetism in Pristine MgO Thin Films. Applied Physics Letters.2010.96.232505.
    247. D. Gao. J. Li.Z. Li. Z. Zhang. J. Zhang. H. Shi and D. Xue. Defect-mediated Magnetism in Pure CaO Nanopowders. The Journal ofPhysical Chemistry C.2010,114,11703-11707.
    248. N. H. Hong. N. Poirot and J. Sakai. Ferromagnetism Observed in Pristine SnO2 Thin Films. Physical Review B.2008.77.033205.
    249. G. Rahman, V. M. Garcia-Suarez and S. C. Hong. Vacancy-induced Magnetism in SnO2:A Density Functional study. Physical Review B.2008.78,184404.
    250. C. W. Zhang, H. Kao and J. M. Dong. Origin of Ferromagnetism via Hole Doping in SnO2:First-principles Calculation, Physics Letters A.2009,373.2592-2595.
    251. J. I. Beltran, C. Monty, L. Balcells and C. C. Martinez-Boubeta, Possible d0 Ferromagnetism in MgO, Solid State Communications.2009,149.1654-1657.
    252. F. Wang, Z. Pang, L. Lin. S. Fang, Y. Dai and S. Han. Magnetism in Undoped MgO Studied by Density Functional Theory. Physical Review B,2009,80,144424.
    253.1. S. Elfimov, S. Yunoki and G A. Sawatzky. Possible Path to a New Class of Ferromagnetic and Half-Metallic Ferromagnetic Materials, Physical Review Letters,2002,89.216403.
    254. N. H. Hong. J. Sakai and V. Brize, Observation of Ferromagnetism at Room Temperature in ZnO Thin Films, Journal of Physics-Condensed Matter,2007,19.036219.
    255. D. Kim. J.-h. Yang and J. Hong, Ferromagnetism Induced by Zn Vacancy Defect and Lattice Distortion in ZnO. Journal of Applied Physics,2009,106,013908-013905.
    256. X. L. Lin, S. S. Yan, M. W. Zhao. S. J. Hu, C. Han, Y. X. Chen, G. L. Liu, Y. Y. Dai and L. M. Mei, Possible Origin of Ferromagnetism in Un-doped ZnO:First-principles Calculations, Physics Letters A.2011,375, 638-641.
    257. S. Zhang, S. B. Ogale, W. Yu, X. Gao. T. Liu. S. Ghosh, G P. Das. A. T. S. Wee, R. L. Greene and T. Venkatesan, Electronic Manifestation of Cation-Vacancy-Induced Magnetic Moments in a Transparent Oxide Semiconductor:Anatase Nb:TiO2. Advanced Materials,2009,21.2282-2287.
    258. H. Uchiyama, H. Ohgi and H. Imai, Selective Preparation of SnO2 and SnO Crystals with Controlled Morphologies in an Aqueous Solution System, Crystal Growth& Design,2006.6,2186-2190.
    259. J. J. Loferski, Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion, Journal of Applied Physics,1956,27,777-784.
    260. D. Chun. R. M. Walser, R. W. Bene and T. H. Courtney. Polarity-dependent Memory Switching in Devices with SnSe and SnSe2 Crystals. Applied Physics Letters.1974.24.479-481.
    261. M. Takeda and B. A. Parkinson. Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS? Surfaces, Journal of the American Chemical Society.2003,125,5559-5571.
    262. M. T. Spitler and B. A. Parkinson. Dye Sensitization of Single Crystal Semiconductor Electrodes, Accounts of Chemical Research.2009.42.2017-2029.
    263. T. Brousse, S. M. Lee, L. Pasquereau. D. Defives and D. M. Schleich, Composite Negative Electrodes for Lithium-ion Cells. Solid State Ionics.1998.113-115,51-56.
    264. H. Mukaibo. A. Yoshizawa. T. Momma and T. Osaka. Particle Size and Performance of SnS2 Anodes for Rechargeable Lithium Batteries, Journal of Power Sources,2003.119-121.60-63.
    265. W. D. Shi. L. H. Huo, H. S. Wang, H. J. Zhang, J. H. Yang and P. H. Wei, Hydrothermal Growth and Gas Sensing Property of Flower-shaped SnS2 Nanostructures, Nanotechnology,2006.17.2918-2924.
    266. H. S. Kim. Y. H. Chung, S. H. Kang and Y.-E. Sung. Electrochemical Behavior of Carbon-coated SnS, for Use as the Anode in Lithium-ion Batteries. Electrochimica Ada,2009,54,3606-3610.
    267. Y. C. Zhang, Z. N. Du, S. Y. Li and M. Zhang, Novel Synthesis and High Visible Light Photocatalytic Activity of SnS2Nanoflakes from SnCl2H2O and S Powders. Applied Catalysis B:Environmental,2010,95,153-159.
    268. L. Amalraj. C. Sanjeeviraja and M. Jayachandran, Spray Pyrolysised Tin Disulphide Thin Film and Characterisation, Journal of Crystal Growth,2002,234,683-689.
    269. S. Y. Hong. R. Popovitz-Biro, Y. Prior and R. Tenne, Synthesis of SnS2/SnS Fullerene-like Nanoparticles:A Superlattice with Polyhedral Shape. Journal of the American Chemical Society,2003,125,10470-10474.
    270. D. Chen. G Z. Shen, K. B. Tang. S. J. Lei. H. G Zheng and Y. T. Qian. Microwave-assisted Polyol Synthesis of Nanoscale SnSx(x=l,2) Flakes, Journal of Crystal Growth,2004,260.469-474.
    271. A. R. Wang and H. Xiao. Controllable Preparation of SnO2 Nanoplates and Nanoparticles via Hydrothermal Oxidation of SnS2 Nanoplates, Materials Letters,2009,63,1221-1223.
    272. A. Yella, E. Mugnaioli. H. A. Therese. M. Panthofer, U. Kolb and W. Tremel, Synthesis of Fullerene-and Nanotube-Like SnS2 Nanoparticles and Sn/S/Carbon Nanocomposites, Chemistry of Materials,2009,21, 2474-2481.
    273. J. Peng, Y. Xu. H. Wu, M. Hojamberdiev, Y. Fu, J. Wang and G Zhu, Self-assembly of SnS2 Submicron-sized Flakes to form Microspheres Under Template-free Hydrothermal Conditions, Journal of Alloys and Compounds,2010,490. L20-L23.
    274. S. K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya and S. Chaudhuri, Optical Properties of Nanocrystalline SnS, Thin Films. Materials Research Bulletin,2007,42.576-583.
    275. M. Kruk and M. Jaroniec, Gas Adsorption Characterization of Ordered Organic-inorganic Nanocomposite Materials. Chemistry of Materials,2001,13.3169-3183.
    276. T. Klar. M. Pemer, S. Grosse, G von Plessen, W. Spirkl and J. Feldmann, Surface-plasmon Resonances in Single Metallic Nanoparticles. Physical Review Letters,1998,80,4249-4252.
    277. J. J. Mock, M. Barbie. D. R. Smith, D. A. Schuitz and S. Schultz, Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles, Journal of Chemical Physics.2002.116.6755-6759.
    278. J. Aizpurua. P. Hanarp. D. S. Sutherland, M. Kail. G. W. Bryant and F. J. G de Abajo. Optical Properties of Gold Nanorings, Physical Review Letters,2003.90,057401.
    279.E. Hutter and J. H. Fendler, Exploitation of Localized Surface Plasmon Resonance. Advanced Materials.2004. 16.1685-1706.
    280. L. M. Liz-Marzan. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir,2006,22.32-41.
    281. A. M. Funston. C. Novo, T. J. Davis and P. Mulvaney. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Letters.2009,9,1651-1658.
    282. J. Y. Chen, B. Wiley, Z. Y. Li, D. Campbell, F. Saeki. H. Cang. L. Au, J. Lee, X. D. Li and Y. N. Xia. Gold Nanocages:Engineering Their Structure for Biomedical Applications, Advanced Materials,2005,17, 2255-2261.
    283.1. H. El-Sayed, X. H. Huang and M. A. El-Sayed. Surface Plasmon Resonance Scattering and Absorption of Anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:Applications in Oral Cancer. Nano Letters,2005,5,829-834.
    284. A. J. Haes, S. L. Zou, G. C. Schatz and R. P. Van Duyne, A Nanoscale Optical Biosensor:The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,Journal of Physical Chemistry B,2004,108.109-116.
    285. H. C. Huang, S. Barua. D. B. Kay and K. Rege, Simultaneous Enhancement of Photothermal Stability and Gene Delivery Efficacy of Gold Nanorods Using Polyelectrolytes. Acs Nano.2009.3.2941-2952.
    286. X. H. Huang. I. H. El-Sayed, W. Qian and M. A. El-Sayed. Cancer Cell Imaging and Photothermal Therapy in the Near-infrared Region by Using Gold Nanorods. Journal of the American Chemical Society.2006.128, 2115-2120.
    287. Y. F. Huang, K. Sefah, S. Bamrungsap. H. T. Chang and W. Tan. Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods. Langmuir.2008.24,11860-11865.
    288. S. Lal, S. E. Clare and N. J. Halas, Nanoshell-Enabled Photothermal Cancer Therapy:Impending Clinical Impact Accounts of Chemical Research,2008,41.1842-1851.
    289. S. E. Skrabalak. J. Chen. L. Au. X. Lu. X. Li and Y. Xia, Gold Nanocages for Biomedical Applications. Advanced Materials.2007,19.3177-3184.
    290. P. Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir,1996.12.788-800.
    291. B. Nikoobakht and M. A. El-Sayed, Preparation and Growth Mechanism of Gold Nanorods (NRs) using Seed-mediated Growth Method. Chemistry of Materials.2003.15.1957-1962.
    292. P. Pramod and K. G. Thomas. Plasmon Coupling in Dimers of Au Nanorods. Advanced Materials.2008.20. 4300-4305.
    293. Z. H. Sun, W. H. Ni. Z. Yang. X. S. Kou. L. Li and J. F. Wang. pH-controlled Reversible Assembly and Disassembly of Gold Nanorods. Small.2008.4.1287-1292.
    294. S. J. Oldenburg. R. D. Averitt. S. L. Westcott and N. J. Halas. Nanoengineering of optical resonances. Chemical Physics Letters.1998,288.243-247.
    295. T. Pham, J. B. Jackson, N. J. Halas and T. R. Lee. Preparation and Characterization of Gold Nanoshells Coated with Self-assembled Monolayers. Langmuir.2002.18.4915-4920.
    296. H. Wang. D. W. Brandl. F. Le. P. Nordlander and N. J. Halas. Nanorice:A Hybrid Plasmonic Nanostructure, Nano Letters.2006,6,827-832.
    297. N. Phonthammachai, J. C. Y. Kah. G. Jun. C. J. R. Sheppard. M. C. Olivo. S. G Mhaisalkar and T. J. White, Synthesis of Contiguous Silica-gold Core-shell Structures:Critical Parameters and Processes, Langmuir.2008. 24.5109-5112.
    298. N. Phonthammachai and T. J. White. One-step Synthesis of Highly Dispersed Gold Nanocrystals on Silica Spheres. Langmuir,2007,23,11421-11424.
    299. Y. G. Sun and Y. N. Xia, Shape-controlled Synthesis of Gold and Silver Nanoparticles, Science,2002.298, 2176-2179.
    300. Y. G. Sun and Y. N. Xia. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society.2004,126.3892-3901.
    301. R. J. Futato and R. H. Doremus. Nucleation in Photosensitive Gold Ruby Glass. Journal of the American Ceramic Society.1980.63.157-160.
    302. M. Haruta, T. Kobayashi. H. Sano and N. Yamada. Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C. Chemistry Letters.1987.16,405-408.
    303. F. Moreau. G. C. Bond and A. O. Taylor. Gold on Titania Catalysts for the Oxidation of Carbon Monoxide: Control of pH during Preparation with Various Gold Contents. Journal of Catalysis.2005,231.105-114.
    304. K. C. Grabar. P. C. Smith. M. D. Musick. J. A. Davis, D. G. Walter. M. A. Jackson. A. P. Guthrie and M. J. Natan, Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces:Rational Nanometer-Scale Architecture. Journal of the American Chemical Society.1996.118.1148-1153.
    305. K. C. Grabar. R. G. Freeman, M. B. Hommer and M. J. Natan, Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry,1995.67.735-743.
    306. M. Quinten and U. Kreibig. Optical-Properties of Aggregates of Small Metal Particles. Surface Science,1986. 172.557-577.
    307. S. L. Westcott. S. J. Oldenburg. T. R. Lee and N. J. Halas. Construction of Simple Gold Nanoparticle Aggregates with Controlled Plasmon-plasmon Interactions. Chemical Physics Letters.1999.300.651-655.
    308. C. L. Nehl. N. K. Grady. G. P. Goodrich. F. Tarn. N. J. Halas and J. H. Hafner. Scattering Spectra of Single Gold Nanoshells. Nano Letters.2004.4.2355-2359.
    309. R. D. Averitt. D. Sarkar and N. J. Halas. Plasmon Resonance Shifts of Au-coated Au2S Nanoshells:Insight into Multicomponent Nanoparticle Growth. Physical Review Letters.1997.78.4217-4220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700