用户名: 密码: 验证码:
稀土氧化物基功能陶瓷的非线性电学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素广泛地应用于发光材料、激光材料、永磁材料、磁致冷材料、磁致伸缩材料、储氢材料、高温超导材料等高技术领域,已经引起了广泛的重视。这些功能材料都是基于稀土作为掺杂元素或者其中的复合元素,对稀土基功能材料的研究,特别是稀土基电性功能材料的研究基本上还是一个空白。本文对稀土基陶瓷的电学性能展开了系统地研究,发现Pr6O11和Tb4O7陶瓷具有非线性电学行为,可以作为电子和电力系统的保护装置。
     第1章介绍了稀土元素的种类、基本性质和主要应用,强调了对稀土基电性功能材料研究的必要性,然后对压敏电阻的研究现状进行了综述,最后提出了本文的研究内容。
     第2章对本论文涉及的实验方法和表征手段进行了阐述。实验方法方面,详细描述了本论文所采用的传统陶瓷制备工艺技术。表征手段方面,对微结构、缺陷能级和晶界势垒参数的分析过程进行了介绍。
     第3章对纯氧化镨陶瓷的微结构和电学性能进行了系统地研究。当烧结温度为600℃时开始出现非线性电学特性,烧结温度超过1000℃时氧化镨陶瓷的相对密度才有明显的提高。交流阻抗分析表明在陶瓷晶界处存在晶界高阻层。鉴于在晶界处没有偏析相,提出晶界高阻层起源于晶界势垒。通过不同温度下测量的伏安特性曲线,证明了双肖特基势垒的存在,并计算了晶界势垒参数。氧化镨具有OSC(氧存储)特性,在升温过程中释放氧,在降温过程中吸收氧。我们认为晶界势垒起源于降温过程中的氧吸附,并且此观点得到了AES深度分析的支持。根据Gupta和Carlson提出的ZnO压敏电阻的缺陷势垒模型,提出了修正的缺陷势垒模型用来解释氧化镨晶界势垒的形成,在耗尽层内存在VO*和VO**。两种类型的施主缺陷。与ZnO具有过量的填隙锌离子不同的是氧化镨是氧空位型的n型半导体,因此氧化镨压敏电阻具有优良的电学稳定性和抗老化能力。
     第4章利用液相烧结和替代反应的方法对氧化镨陶瓷进行了致密化研究。Bi203在烧结过程中能够形成液相偏析于晶界区域促进了陶瓷的烧结性,CuO和ZnO能够替代氧化镨晶格中的镨离子,产生的缺陷促进了烧结过程中的体扩散和晶界扩散,从而提高了氧化镨陶瓷的致密度。提出除了离子半径,化学键类型也是影响替代反应的重要因素。
     第5章对氧化铽陶瓷的非线性电学行为和导电机理进行了研究。氧化铽压敏电阻具有较低的压敏电压,同时表现出优良的介电性能和能量吸收能力,可以应用于微电子电路的过压保护。结合不同气氛处理的氧化铽陶瓷的晶界势垒参数,我们认为氧化铽压敏电阻和氧化镨压敏电阻一样,其非线性也是起源于晶界氧吸附。
     第6章制备了Tb系ZnO压敏电阻和ZnO-Pr6O11复合压敏电阻。与Pr6O11一样,Tb4O7对ZnO压敏电阻非线性的产生有关键的作用。根据氧化镨和氧化铽的共性,我们认为Tb系ZnO压敏电阻的非线性应该与Tb4O7的氧存储特性有关,有必要作进一步的研究。制备的ZnO-Pr6O11复合压敏电阻具有在1.5~26.9范围内的非线性系数和在26~829V/mm范围内的压敏电压,因此可以通过改变复合陶瓷的成分获得满足不同实际需要的压敏电阻。此外,还给出了稀土氧化物线性电阻的实验数据。
Rare-earth elements have received a great deal attention due to wide application in luminescent materials, laser materials, permanent-magnet materials, magnetic refrigeration materials, magnetostrictive materials, hydrogen storage materials, high temperature superconductor and other high technology fields. Rare earth elements as doping or composition exist in these functional materials, rare earth-based functional ceramics, especially for rare earth-based electrical functional ceramics, have received comparatively little attention. In this work, the electrical properties of rare earth-based ceramics have been systematically studied, it was found that Pr6O11 and Tb4O7 ceramics have nonlinear electrical properties, which can be used in protection devices for electronic and electrical power systems.
     In Chapter 1, the category, basic properties and main application of rare earth elements were introduced, the necessary to study rare earth-based electrical functional ceramics was emphasized, the current status of varistors was then described, and finally the research contents of this paper were provided.
     In Chapter 2, the experimental process and characterization methods used in this paper were introduced. As for experimental process, the conventional ceramic processing techniques were particularly described. As for characterization methods, the analysis process of microstructure, defect energy level and grain boundary barrier parameters were provided.
     In Chapter 3, the microstructure and electrical properties of pure Pr6O11 ceramics were systematically studied. The ceramic samples began to present nonlinear electrical properties when sintered at 600℃, the density has a significant increase when sintering temperature exceeds 1000℃. Ac impedance analysis indicated that grain boundary high resistance layer present at the grain boundary region. Since there are no segregation phase located at the grain boundary, it was proposed that the grain boundary high resistance layer originates from the grain boundary barriers. The existence of double Schottky-type barriers was affirmed by analyzing the I-V curves measured at different temperature and the corresponding parameters were calculated. Pr6O11 can release oxygen with the increase of ambient temperature and then incorporate oxygen in the process of cooling due to the OSC (oxygen storage capacity) characteristics. It was proposed that the formation of grain boundary barriers can be attributed to the oxygen absorption during the cooling process, which was supported by AES profile analysis. Based on the defect barrier model for ZnO based varistors proposed by Gupta and Carlson, a modified defect barrier model was introduced to explain the formation of the grain boundary barriers, (?) and (?) as the donor defect exist in the depletion layer. Pr6O11 is an n-type semiconductor with oxygen vacancies, which is different from n-type ZnO semiconductor with excess interstitial zinc ions, so Pr6O11 varistors present excellent electrical stability and anti-ageing capacity.
     In Chapter 4, the densification of Pr6O11 ceramics was studied by liquid phase sintering and substitution reaction. Bi2O3 can improve the sintering process by forming liquid phase segregated to the grain boundary regions, CuO and ZnO can substitute the Pr ions in the lattice, the produced defects can facilitate the densification process by improving the bulk diffusion and grain boundary diffusion. Besides the ionic radius factor, the chemical bonding type should be considered during the substitution reaction.
     In Chapter 5, the nonlinear electrical properties and conduction mechanism of Tb4O7 varistors were studied. Tb4O7 varistors have low breakdown voltage, and present excellent dielectric properties and energy absorption capability, which is suitable for application in overvoltage protection for microelectronic circuit. According to grain boundary barrier parameters of the samples treated in different atmospheres, it was proposed that the nonlinear electrical properties of Tb4O7 varistors can be attributed to the adsorbed oxygen on the grain surfaces, which is similar to Pr6O11 varistors.
     In Chapter 6, Tb-based ZnO varistors and ZnO-Pr6O11 mixed oxide varistors were prepared. Similar to Pr6O11, Tb4O7 also play a key role in the formation of nonlinear electrical properties of ZnO varistors. According to the similarity between Tb4O7 and Pr6O11, it was proposed that the nonlinear behavior of Tb-based ZnO varistors should be concerned with the oxygen storage characteristic of Tb4O7, further study is necessary. The prepared ZnO-Pr6O11 mixed oxide varistors have the nonlinear coefficient range from 1.5 to 26.9 and breakdown voltage range from 26 to 829V/mm, so the varistors can satisfy different application by changing the composition of the mixed oxide varistors. In addition, the experimental data of rare earth oxide ceramics with linear electrical properties was also provided.
引文
[1]苏锵.稀土元素:您身边的大家族.清华大学出版社,2000.
    [2]徐光宪,倪嘉缵.神奇之土:稀土科学基础研究.湖南科学技术出版社,1995.
    [3]易宪武.无机化学丛书第七卷钪、稀土元素.科学出版社,1998.
    [4]王中林,康振川.功能与智能材料:结构演化与结构分析.科学出版社,2002.
    [5]C.L. pez-Cartes, J.A.P. rez-Omil, J.M. Pintado, J.J. Calvino, Z.C. Kang and L. Eyring. Rare-earth oxides with fuorite-related structures:their systematic investigation using HREM images, image simulations and electron dilraction pattern simulations. Ultramicroscopy.1999,80:19.
    [6]Z.C. Kang and L. Eyring. The prediction of the structure of members of the homologous series of the higher rare earth oxides. Journal of Alloys and Compounds.1998,275-277:30.
    [7]Z.C. Kang and L. Eyring. Lattice Oxygen Transfer in Fluorite-Type Oxides Containing Ce, Pr, and/or Tb. Journal of Solid State Chemistry.2000,155:129.
    [8]M. Kawabe, H. Ono, T. Sano, M. Tsuji and Y. Tamaura. Thermochemical oxygen pump with praseodymium oxides using a temperature-swing at 403-873 K. Energy.1997,22(11):1041.
    [9]T.K. Gupta. Application of Zinc Oxide varistors. Journal of the American Ceramic Society 1990,73(7):1817.
    [10]D.R. Clarke. Varistor Ceramics. Journal of the American Ceramic Society 1999, 82(3):485.
    [11]H. Cerva and W. Russwurm. Microstructure and crystal structure of bismuth oxide phases in zinc oxide varistor ceramics. Journal of the American Ceramic Society.1988,71(7):522.
    [12]E. Olsson and G.L. Dunlop. The Effect of Bi2O3 content on the Microstructure and Electrical Properties of ZnO Varistor Materials. Journal of Applied Physics.1989,66(9):4317.
    [13]J. Wong. Sintering and varistor characteristics of ZnO-Bi2O3 ceramics. Journal of Applied Physics.1980,51:4453.
    [14]A.B. Alles and V.L. Burdick. The effect of liquid-phase sintering on the properties of Pr6O11-based varistors. Journal of Applied Physics.1991,70:6883.
    [15]Y.S. Lee, K.S. Liao and T.Y. Tseng. Microstructure and crystal phase of praseodymium oxides in zinc oxide varistor ceramics. Journal of the American Ceramic Society.1996,79:2379.
    [16]K. Mukae, K. Tsuda and I. Nagasawa. Non-Ohmic Properties of ZnO-Rare Earth Metal Oxide-Co3O4 Ceramics. Japanese Journal of Applied Physics.1977, 16:1361.
    [17]Y. Shimizu, F.C. Lin, Y Takao and M. Egashira. Zinc oxide varistors gas sensors: II. Effect of chromium III oxide and yettrium oxide additives on the hydrogen-sensing properties. Journal of the American Chemical Society.1998, 81(6):1633.
    [18]苏文斌.TiO2压敏电阻晶界电学行为研究.山东大学博士论文,2005.
    [19]M.F. Yan and W.W. Rhodes. Preparation and Properties of TiO2 Varistors. Applied Physics Letters.1982,40(6):536.
    [20]J.J. Cheng and J.M. Wu. Effect of Mn on the electrical properties of (Ba, Bi, Nb)-added TiO2 ceramics prepared by the sol-precipitation method. Materials Chemistry and Physics.1997,48:129.
    [21]C.P. Li, J.F. Wang, W.B. Su, H.C. Chen, Y.J. Wang and D.X. Zhuang. Effect of sinter temperature on the electrical properties of TiO2-based capacitor-varistors. Materials Letters.2003,57:1400.
    [22]P.N. Santhosh, D.K. Kharat and S.K. Date. Effect of strontium substitution in (Nb, Bi) doped TiO2 varistors. Materials Letters.1996,2837.
    [23]W.B. Su, J.F. Wang, H.C. Chen, W.X. Wang, G.Z. Zhang and C.P. Li. Nonlinear electrical behavior of the TiO2·WO3 varistor. Journal of Applied Physics.2002, 92(8):4779.
    [24]N. Yamaoka, M. Masuyama and M. Fukui. SrTiO3-based boundary-layer capacitor having varistor characteristics. American Ceramic Society Bulletin.1983,62:698.
    [25]T.R.N. Kutty and S. Philip. Low voltage varistors based on SrTiO3 ceramics. Materials Science and Engineering B.1995,33:58.
    [26]J. Li, S. Li and M.A. Alim. The effect of reducing atmosphere on the SrTiO3 based varistor-capacitor materials. Journal of Materials Science:Materials in Electronics.2006,17:503.
    [27]Z.Y. Zhang, L.L. Zhao, X.W. Wang and J.S. Yang. The Preparation and Electrical Properties of SrTiO3-Based Capacitor-Varistor Double-Function Ceramics. Journal of Sol-Gel Science and Technology.2004,32:367.
    [28]V. Makarov and M. Trontelj. Novel Varistor Material based on Tungsten Oxide. Journal of Materials Science Letters.1994,13(13):937.
    [29]V.O. Makarov and M. Trontelj. Sintering and Electrical Conductivity of Doped WO3. Journal of the European Ceramic Society.1996,16(7):791.
    [30]V. Makarov and M. Trontelj. Effect of Al2O3 on the microstructure and electrical properties of WO3-based varistor ceramics. Journal of the European Ceramic Society.2000,20 (6):747
    [31]GZ. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang and P. Qi. Nonlinear electrical behaviour of the WO3-based system. Journal of Materials Science.2004,39(13):4373.
    [32]S.A. Pianaro, P.R. Bueno, E. Longo and J.A. Varela. A new SnO2-based varistor system. Journal of Materials Science Letters.1995,14:692.
    [33]S.A.Pianaro, P.R.Bueno and J.A.Varela. Microstructure and electric propertiesof a SnO2 based varistor. Ceramics International.1999,25:1.
    [34]S.R. Dhage and V. Ravi. Influence of various donors on nonlinear Ⅰ-Ⅴ characteristics of tin dioxide ceramics. Applied Physics Letters.2003,83(22): 4539.
    [35]J.A. Cerri, E.R. Leite, D. Gouvea, E. Longo and J.A. Varela. Effectof Cobalt(II) oxide and Manganese(IV) oxide on sintering of Tin(IV) oxide. Journal of the American Ceramic Society.1996,79(3):799.
    [36]GZ. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang and P. Qi. Effect of CO2O3 on the microstructure and electrical properties of Ta-doped SnO2 varistors. Journal of Physics D:Applied Physics.2005,38:1072.
    [37]R. Metza, D. Koumeir, J. Morel, J. Pansiot, M. Houabes and M. Hassanzadeh. Electrical barriers formation at the grain boundaries of Co-doped SnO2 varistor ceramics. Journal of the European Ceramic Society.2008,28:829.
    [38]G. Brankovic, Z. Brankovic, M.R. Davolos, M. Cilense and J.A. Varela.
    Influence of the common varistor dopants (CoO, Cr2O3 and Nb2O5) on the structural properties of SnO2 ceramics. Materials Characterization.2004,52: 243.
    [39]J.A. Varela, J.A. Cerri, E.R. Leite, E. Longo, M. Shamsuzzoha and R.C. Bradt. Microstructural evolution during sintering of CoO doped SnO2 ceramics. Ceramics International.1999,25:253.
    [40]M.S. Castro and C.M. Aldao. Characterization of SnO2 varistors with different additives. Journal of the European Ceramic Society 1998,18:2233.
    [41]C.P. Li, J.F. Wang, W.B. Su, H.C Chen, W.L. Zhong and P.L. Zhang. Effect of Mn2+ on the electrical nonlinearity of (Ni,Nb)-doped SnO2 varistors. Ceramics International.2001,27(6):655.
    [42]C.M. Wang, J.F. Wang, W.B. Su, H.C. Chen, G.Z. Zang and P. Qi. Microstructure development and nonlinear electrical characteristics of the SnO2·CuO·Ta2O5 based varistors. Journal of Materials Science.2005,40(24): 6459.
    [43]C.M. Wang, J.F. Wang, W.B. Su, G.Z. Zang and P. Qi. Electrical properties of SnO2·CuO·Ta2O5 varistor system. Materials Letters.2005,59:201.
    [44]W.X. Wang, J.F. Wang, H.C Chen, W.B. Su and G.Z. Zang. Electrical nonlinearity of (Cu, Ni, Nb)-doped SnO2 varistors system. Materials Science and Engineering B.2003,99:457.
    [45]C.M. Wang, J.F. Wang, W.B. Su, GZ. Zang and P. Qi. Effects of Ta2O5 on the electrical properties of SnO2 · CuO ceramics. Journal of Physics D:Applied Physics.2005,38:1485.
    [46]N. Dolet, J.M. Heintz, L. Rabardel, M. Onillon and J.P. Bonnet. Sintering mechanisms of 0.99 SnO2-0.01 CuO mixtures Journal of Materials Science.1995,30(2):365.
    [47]Y.J. Wang, J.F. Wang, H.C Chen, W.L. Zhong, P.L. Zhang, H.M. Dong and L.Y. Zhao. Electrical properties of Sn02-Zn0-Nb2O5 varistor system. Journal of Physics D:Applied Physics.2000,33(1):96.
    [48]Y.J. Wang, J.F. Wang, H.C Chen, W.L. Zhong, P.L. Zhang, H.M. Dong and L.Y. Zhao. Novel (Zn,Nb)-Doped SnO2 varistors. Materials Science and Engineering B.2002,96(1):8.
    [49]R.Parra, J.A. Varela, C.M. Aldao and M.S. Castro. Electrical and micro structural properties of (Zn, Nb, Fe)-doped SnO2 varistor systems. Ceramics International.2005,31(5):737.
    [50]L. Perazolli, A.Z.S.e. T, U.C. Jr, F.M. Filho, S. Gutierrez, C.O.P. Santos, J.A.G. Carrio, R.F.C. Marques and J.A. Varela. Structural and microstructural behaviour of SnO2 dense ceramics doped with ZnO and WO3. Materials Letters.2005,59:1859.
    [51]F.M. Filhoa, A.Z. Simoesa, A. Riesa, L. Perazollia, E. Longob and J.A. Varela. Nonlinear electrical behaviour of the Cr2O3, ZnO, CoO and Ta2O5-doped SnO2 varistors. Ceramics International.2006,32:283.
    [52]羊新胜.稀土元素掺杂WO3基功能陶瓷的电学行为及相关问题研究.华中科技大学硕士论文,2004.
    [53]M. Peiteado, M.A.D.1. Rubia, J.F. Fernandez and A.C. Caballero. Thermal evolution of ZnO-Bi2O3-Sb2O3 system in the region of interest for varistors. Journal of Materials Science.2006,41:2319.
    [54]J. Fan and R. Freer. The electrical properties and d.c. degradation characteristics of silver doped ZnO varistors. Journal of Materials Science.1993,28:1391.
    [55]F. Stucki and F. Greuter. Key role of oxygen at zinc oxide varistor grain boundaries. Applied Physics Letters.1990,57:446.
    [56]A. Smith, J.F. Baumard and P. Abelard. Ac impedance measurements and Ⅴ-Ⅰ characteristics for Co-, Mn-, or Bi-doped ZnO. Journal of Applied Physics.1989, 65(12):5119.
    [57]H.A. Harwig and J.W. Weenk. Phase Relations in Bismuthsesquioxide. Z. Anorg. Allg.Chem.1978,444:167.
    [58]H.A. Harwig and A.G. Gerards. Electrical Properties of the α-, β-, γ-and δ-Phases of Bismuth Sesquioxide. Journal of Solid State Chemistry.1978,26: 265.
    [59]R. Metz, H. Delalu, J.R. Vignalou, N. Achard and M. Elkhatib. Electrical properties of varistors in relation to their true bismuth composition after sintering. Materials Chemistry and Physics.2000,63:157.
    [60]J. Kim, T. Kimura and T. Yamaguchi. Sintering of Sb2O3-doped ZnO. Journal of Materials Science.1989,24(1):213.
    [61]R. Waser and R. Hagenbeck. Grain boundaries in dielectric and mixed-conducting ceramics. Acta materialia.2000,48(44):797.
    [62]王春明.高压二氧化锡压敏材料和高温钛酸铋钠钾压电材料的研究.山东大学博士论文,2007.
    [63]G.D. Mahan, L.M. Levinson and H.R. Philipp. Theory of Conduction in. ZnO Varistors. Journal of Applied Physics.1979,50(4):2799.
    [64]G.E. Pike and C.H. Seager. The dc voltage dependence of semiconductor grainboundary resistance. Journal of Applied Physics.1979,50(5):3414.
    [65]T.K. Gupta and W.G. Carlson. A Grain-Boundary Defect Model for Instability/Stability of a ZnO varistor. Journal of Material Science 1985,20: 3487.
    [66]吴维韩.金属氧化物非线性电阻特性和应用.清华大学出版社,1998.
    [67]K.Eda. Conduction nechanism of non-ohmic zinc oxide ceramics. Journal of Applied Physics.1978,49(5):2964.
    [68]A. Goetzberger, B. McDonald, R.H. Haitz and R.M. Scarlett. Avalanche Effects in Silicon p-n Junctions. Ⅱ. Structurally Perfect Junctions. Journal of Applied Physics.1963,34:1591.
    [69]G.A. Baraff. Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors. Physical Review.1962,128:2057.
    [70]M. Matsuoka. Nonohmic Properties of Zinc Oxide Ceramics. Japanese Journal of Applied Physics.1971,10:736.
    [71]J. Bernasconi, H.P. Klein, B. Knecht and S. Strassler. Investigation of various models for metal oxide varistors Journal of Electronic Materials.1976,5:473.
    [72]L.M. Levinson and H.R.Philipp. The Physics of Metal Oxide Varistor. Journal of Applied Physics.1975,46(3):1332.
    [73]D. Ferna'ndez-Hevia, J.d. Frutos, A.C. Caballero and J.F. Ferna'ndez. Bulk-grain resistivity and positive temperature coefficient of ZnO-based varistors. Applied Physics Letters.2003,82(2):212.
    [74]A.C. CABALLERO, D.F.N. HEVIA, J.D. FRUTOS, M. PEITEADO and J.F.F. NDEZ. Bulk Grain Resistivity of ZnO-Based Varistors. Journal of Electroceramics.2004,13:759.
    [75]P.R. Bueno, E.R. Leite, M.M. Oliveira, M.O. Orlandi and E. Longo. Role of
    oxygen at the grain boundary of metal oxide varistors A potential barrier formation mechanism. Applied Physics Letters.2001,79:48.
    [76]M. Miyayama and H. Yanagida. Oxygen ion conduction in y-Bi2O3 doped with Sb2O3. Journal of Materials Science.1986,21(4):1573.
    [77]K. Tsuda and K. Mukae. Characterization of Interface States in ZnO Varistors by DLTS Method. Journal of the ceramic Society of Japan.1989,97(10):1211.
    [78]K. Mukae and K. Tsuda. C-t characteristics of Pr doped ZnO varistors. Journal of the ceramic Society of Japan.1992,100(1164):1048.
    [79]Y.S. Lee, K.S. Liao and T.Y. Tseng. Microstructure and Crystal Phases of Praseodymium Oxides in Zinc Oxide Varistor Ceramics. Journal of the American Ceramic Society.1996,79:2379.
    [80]S. Hirose, K. Nishita and H. Niimi. Influence of distribution of additives on electrical potential barrier at grain boundaries in ZnO-based multilayered chip varistor. Journal of Applied Physics.2006,100(8):083706.
    [81]Y. Sato, T. Mizoguchi, F. Oba, M. Yodogawa, T. Yamamoto and Y. Ikuhara. Identification of native defects around grain boundary in Pr-doped ZnO bicrystal using electron energy loss spectroscopy and first-principles calculations. Applied Physics Letters.2004,84:5311.
    [82]H. Hanada, I. Sakaguchi, A. Watanabe, T. Ishigaki and J. Tanaka. Oxygen diffusion in single-and poly-crystalline zinc oxides. Journal of Electroceramics.1999,4:41.
    [83]A. Bui, A. Khedim, A. LoubiGre and M.B. Kourdi. Aging of zinc oxide varistors subjected to partial discharges in sulfur hexafluoride. Journal of Applied Physics.1991,69(2):1036.
    [84]T.K. Gupta, W.G. Carlson and P.L. Hower. Current instability phenomena in ZnO varistors under a continuous ac stress. Journal of Applied Physics.1981, 52(6):4104.
    [85]K. Eda, A. Iga and M. Matsuoka. Current Creep in Nonohmic ZnO Ceramics. Japanese Journal of Applied Physics.1979,18:997.
    [86]K. Eda, A. Iga and M. Matsuoka. Degradation mechanism of non-Ohmic zinc oxide ceramics. Journal of Applied Physics.1980,51:2678.
    [87]K. Sato, Y Takada, H. Maekawa, M. Ototake and S. Tominaga. Characterization of Interface States in Degraded ZnO Varistors. Japanese Journal of Applied Physics.1980,19:909.
    [88]周东祥,张绪礼,李标荣.半导体陶瓷及应用.华中理工大学出版社,1991.
    [89]Y.Yano, Y.Takai and H. Morooka. Interface States in ZnO Varistor with Mn, Co, and Cu Impurities. Journal of Materials Research.1994,9:112.
    [90]P.R. Bueno, M.R. Cassia-Santos, E.R. Leite, E. Longo, J. Bisquert, G. Garcia-Belmonte and F. Fabregat-Santiago. Nature of Schottky-type barrier of highly dense SnO2 systems displaying non-ohmic behaviour. Journal of Applied Physics.2000,88:6545.
    [91]P.R. Bueno, M.M. Oliveira, W.K. Bacelar-Junior, E.R. Leite, E. Longo and G. Garcia-Belmonte. Analysis of the admittance-frequency and capacitance-voltage of dense SnO2·CoO-based varistor ceramics. Journal of Applied Physics.2002, 91(9):6007.
    [92]Y. Nakano and N. Ichinose. Oxygen adsorption and VDR effect in (Sr,Ca)TiO3-χ based ceramics. Journal of Materials Research.1990,5(12):2910.
    [93]K.Eda. Zinc Oxide Varistors. IEEE Electrical Insulation Magazine.1989,528.
    [94]J. Han, P.Q. Mantas and A.M.R. Senos. Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO. Journal of the European Ceramic Society 2002,22:49.
    [95]M. Elfwing and E. Olsson. Electron holography study of active inter-faces in zinc oxide varistor materials. Journal of Applied Physics.2002,92:5272.
    [96]李标荣.电子陶瓷工艺原理.华中工学院出版社,1986.
    [97]R.D. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Crystallographica.1976, A32:751.
    [98]J.C.Wurst and J.A.Nelson. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J.Am.Ceram.Soc.1972,55(2):109.
    [99]M.W. Barsoum. Fundamentals of Ceramics. McGraw-Hill Companies,1997.
    [100]V.R. Kolbunov, A.I. Ivon and I.M. Chernenko. Influence of a high conductivity additive on the electrical properties of vanadium dioxide-based ceramics Journal of the European Ceramic Society.2003,23(9):1435.
    [101]E.R. Leite, J.A. Varela and E. Longo. A new interpretation for the degradation phenomenon of ZnO varistors. Journal of Materials Science.27(19):5325.
    [102]Y. Shim and J.F. Cordaro. Admittance Spectroscopy of Polycrystalline ZnO-Bi2O3 and ZnO-BaO Systems. Journal of American Ceramic Society.1988,71:184.
    [103]Y. Shim and J.F. Cordaro. Effects of dopants on the deep bulk levels in the ZnO-Bi2O3-MnO2 system. Journal of Applied Physics.1988,643994.
    [104]A.K. Jonscher. Dielectric response of p-n junctions. Solid-State Electronics.1993,36:1121.
    [105]P.R. Bueno, J.A. Varela and E. Longo. SnO2, ZnO and related polycrystalline compound semiconductors:An overview and review on the voltage-dependent resistance (non-ohmic) feature. Journal of the European Ceramic Society.2008, 28:505.
    [106]A.K. Jonscher and M.N. Robinson. Dielectric spectroscopy of silicon barrier devices. Solid-State Electronics.1988,31:1277.
    [107]C. Leon, J.M. Martin, J. Santamaria, J. Skarp, G. Gonzalez-Diaz and F. Sanchez-Quesada. Use of Kramers-Kronig transforms for the treatment of admittance spectroscopy data of p-n junctions containing traps. Solid-State Electronics.1996,79:7830.
    [108]G. Garcia-Belmonte, J. Bisquert and F. Fabregat-Santiago. Effect of trap density on the dielectric response of varistor ceramics. Solid-State Electronics.1999,43:2123.
    [109]V.C.D. Sousa, M.M. Oliveira, M. Orlandi, E.R. Leite and E. Longo. (Ta, Cr)-doped TiO2 electroceramic systems. Journal of Materials Science: Materials in Electronics.2006,17:79.
    [110]J.p. Han, A.M.R. Senos, P.Q. Mantas and W.w. Cao. Dielectric relaxation of shallow donor in polycrystalline Mn-doped ZnO. Journal of Applied Physics.2003,93(7):4097.
    [111]M.H. Wang, K.A. Hua, B.Y. Zhao and N.F. Zhang. Electrical characteristics and stability of low voltage ZnO varistors doped with Al. Materials Chemistry and Physics.2006 100 142.
    [112]W.I. Lee and R.L. Young. Defects and degradation in ZnO varistor. Applied Physics Letters.1996,69(4):526.
    [113]D. Zhou, C. Zhang and S. Gong. Degradation phenomena due to dc bias in l ow-voltage ZnO varistors. Materials Science and Engineering B.2003,99:412.
    [114]Y.P. Wang, W.I. Lee and T.Y. Tseng. Degradation phenomena of multilayer ZnO-glass varistors studied by deep level transient spectroscopy. Applied Physics Letters, Volume 1996,69(12):1807.
    [115]M.R. Cassia-Santos, V.C. Sousa, M.M. Oliveira, F.R. Sensato, W.K. Bacelar, J.W. Gomesa, E. Longoa, E.R. Leite and J.A. Varela. Recent research developments in SnO2-based varistors. Materials Chemistry and Physics.2005, 90:1.
    [116]M.M. Oliveira, P.R. Bueno, M.R. Cassia-Santos, E.L. a and J.A. Varela. Sensitivity of SnO2 non-ohmic behavior to the sintering process and to the addition of La2O3. Journal of the European Ceramic Society 2001,21:1179.
    [117]M.R.C. Santos, P.R. Bueno, E. Longo and J.A. Varela. Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. Journal of the European Ceramic Society 2001,21:161.
    [118]E.R. Leite, A.M. Nascimento, P.R. Bueno, E. Longo and J.A. Varela. The infuence of sintering process and atmosphere on the non-ohmic properties of SnO2 based varistor. Journal of Materials Science:Materials in Electronics.1999,10:321.
    [119]A.S. Tonkoshkur, V.I. Klimenko and I.V. Gomilko. Characteristics of thermally stimulated depolarization phenomena in zinc-oxide ceramics for varistors. Technical Physics.1997,42(10):1166.
    [120]V.P.B. Marques, A. Ries, A.Z. Simoes, M.A. Rami'rez, J.A. Varela and E. Longo. Evolution of CaCu3Ti4O12 varistor properties during heat treatment in vacuum. Ceramics International.2007,33(7):1187.
    [121]S. Castro, L. Perissinotti and C.M. Aldao. Cooling rate effects in ZnO varistors. Journal of Materials Science:Materials in Electronics.1992,3:218.
    [122]J. Han, A.M.R. Senos and P.Q. Mantas. Varistor behaviour of Mn-doped ZnO ceramics. Journal of the European Ceramic Society.2002,22:1653.
    [123]马跃,许毓春,王礼琼.李慧玲添加剂对Fe-Cu系陶瓷材料负阻特性的影响.压电与声光.1997,19(6):420.
    [124]郭颖.负阻效应的原理与应用.西南科技大学学报.2006,21(1):67.
    [125]L.L. Chang, L. Esaki and R. Tsu. Resonant tunneling in semiconductor double barriers. Applied Physics Letters.1974,24(12):593.
    [126]H. Morkoc, J. Chen, U. KReddy, T. Henderson and S. Luryi. Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well. Applied Physics Letters.1986,49(2):70.
    [127]W.D. Goodhue, T.C.L.G Sollner, H.Q. Le, E.R. Brown and B.A. Vojak. Large room-temperature effects from resonant tunneling through AlAs barriers. Applied Physics Letters.1986,49:1086.
    [128]庄严.氧化物烧结体的负阻特性及应用.电子元件与材料.1985,1:27.
    [129]G. Dearnaley. A model for filament growth and switching in amorphous oxide films. Journal of Non-Crystalline Solids.1970,4:593.
    [130]何贤昶.陶瓷材料概论.上海科学普及出版社.2005.
    [131]S.A. Pianaro, P.R. Bueno, E.L. P Olivi and J.A. Varela. Electrical properties of the SnO2-based varistor. Journal of Materials Science:Materials in Electronics.1998,9:159.
    [132]T.R.N. Kutty and S.E. Valavan. Influence of Alkali Ions in Enhancing the Nonlinearity of ZnO-Bi2O3-Co3O4 Varistor Ceramics. Japanese Journal of Applied Physics.1995,34:6125.
    [133]A. Kirianov, N. Ozaki, H. Ohsato, N. Kohzu and H. Kishi. Studies on the solid solution of Mn in BaTiO3. Japanese Journal of Applied Physics.2001,40: 5619.
    [134]J.M. Carlsson, B.H. Ellsing and H.S. Domingos. Electronic properties of a grain boundary in Sb-doped ZnO. Journal of Physics:Condensed Matter.2001, 13:9937.
    [135]L.M. Levinson and H.R. Philipp. Zinc oxide varistors-a review. Ceramic Bulletin.1986,65(4):639.
    [136]C.M. Wang, J.F. Wang, C.L. Wang, H.C. Chen, W.B. Su, G.Z. Zang and P. Qi. Nonlinear electrical characteristics of SnO2·CuO ceramics with different donors. Journal of Applied Physics.2005,97:126103.
    [137]A.A. Sagiies, S.C. Kranc and E.I. Moreno. Evaluation of electrochemical impedance with constant phase angle component from the galvanostatic step response of steel in concrete. Electrochimica Acta.1996,41:1239.
    [138]D.M. Gruen, W.C. Koehler and J.J. Katz. Higher Oxides of the Lanthanide Elements. Terbium Dioxide. journal of American Ceramic Society 1951,73: 1475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700