用户名: 密码: 验证码:
前驱体纳米化后氧化钨陶瓷中高温温区的电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WO3是一种重要的高技术原材料,在低压压敏变阻器、电致变色、有毒气体探测和光降解催化等方面具有巨大的应用潜力。W03的分子式比较简单,但是由于其复杂的结构和组分变化,物理性质尤其是电学性质比较复杂,深入系统研究钨基氧化物的物理性质,对深层次开发我国的特色资源,具有重要的意义。前期的研究发现,前驱体微米化的钨基陶瓷在室温下相共存现象严重,这导致陶瓷的电学行为不稳定,初步实验研究发现前驱体纳米化后烧结的陶瓷在室温下是单相结构。因此本文以纳米W03粉作为前驱体,对钨基功能陶瓷的电学性质进行研究,结合国家自然科学基金的内容,尤其对中高温温区内的电学行为进行了系统研究,本文的研究内容可以丰富我们对钨基功能陶瓷电输运过程的认识。
     本文采用沉淀法和溶胶-凝胶法两种方法分别制备了纳米化WO3粉末,并以此为前驱体制备了不同条件的钨基陶瓷,两种制备方法制备的前驱体粉末在相同的条件下制备的陶瓷有很大的差别,文中给出了在1000℃C烧结1小时的实验结果,室温下电阻率分别为分别为1.05×104Ω.cm和51Ω-·cm,相差2000倍,XRD分析表明陶瓷中WO3的主晶相有很大差别。根据实验中所用前驱体的不同,本文的主要工作分为两大部分:
     第3章中,首先用沉淀法制备了纳米WO3粉,以此为前驱体研究了热处理温度和热处理时间以及Ce掺杂对其电学行为的影响。对陶瓷XRD的分析表明,1000℃烧结的陶瓷,室温下主晶相是单斜相;对热处理温度的研究表明700℃-900℃是一个重要的烧结区间,在此区间样品的晶粒迅速长大;文章给出了简单的前驱体纳米化后钨基陶瓷烧结过程中晶粒长大的动力学模型,计算了晶粒长大的激活能,前驱体纳米化后纯的WO3陶瓷晶粒长大的激活能为43.94kJ/mol,Ce掺杂样品的激活能为103.3kJ/mol,表明掺杂对晶界的迁移有阻碍作用,晶粒长大的激活能变为原来的2倍多;同一温度下不同烧结时间的研究发现,烧结时间在8小时以内,热处理温度为600℃和1000℃的条件下,烧结时间对纯WO3陶瓷晶粒的形状和大小影响不大,1000℃下烧结时间对晶界具有一定的贡献,低温下烧结时间对样品电学行为影响不大;600℃烧结的样品,室温下伏安特性为线性,随着测试温度的升高,在100℃时开始出现非线性,论文中用氧吸附和氧空位的理论对此进行了解释。
     第4章中,采用课题组成员郭娜发明的溶胶-凝胶法制备了纳米WO3粉,以此为前驱体研究了1000℃烧结的纯WO3陶瓷以及纳米Nd2O3和Dy2O3掺杂的钨基陶瓷的电学行为。对1000℃烧结的纯的WO3陶瓷进行XRD分析,表明室温下陶瓷的主晶相为WO3的三斜相,此时样品的电导率与WO3微晶本身的电导率相近;前驱体纳米化后Nd2O3和Dy2O3的掺杂表明,小比例掺杂下,样品的电学行为主要反映WO3的性质,大比例掺杂的情况下,在晶界处产生了新的物相,此时样品低电场线性区的电学行为主要反映晶界的电学特性,大比例掺杂样品的非线性电学行为归结为晶界处的肖特基势垒,此时由于新的物相处于晶界处,样品的氧吸附很难形成。
     第5章中,对钨基氧化物陶瓷的电学行为进行了一些简单的分析。
Tungsten trioxide (WO3) has received more attention because of its potential for many technology applications, such as varistors、electrochromic devices、gas sensors and photocatalytic degradation. The molecular formula of WO3is quite simple, but its electrical properties is complex, because that it undergoes several well-characterized phase transitions at different temperature and many intermediary suboxide. More importantly, the deep research about tungsten is lagged behind other countries such as the Occident and Japan. So it has scientific and practical significant to investigate the physical properties of tungsten oxide. Many investigations discovered that the electrical properties of sintered WO3ceramics are instable which lead to the coexistent of phase at room temperature. We found that the WO3ceramics prepared by nano-powders have only one phase. The electrical properties of WO3ceramics which prepared by nano-powders were studied in the room-to-high temperature range, combining with the National Natural Science Foundation of China. The research will enrich us to understand the electrical transport process.
     In this article, WO3namopowders have been prepared by precipitation method and sol-gel method, and prepared WO3ceramics by using nanopowders. We found the resistivity is1.05×104Ω·cm and51Ω·cm respectively at room temperature, and the analysis of the XRD indicated that the phase is different. In our present work, the article has two parts for two namopowders.
     In Chapter3, WO3nanopowdcrs were prepared by precipitation method. Effect of sintering temperature、sintering time and Ce-doped on electrical properties of WO3ceramics prepared by nanopowders was studied in detail. The XRD indicated the WO3ceramics which sintered at1000℃for1hour are monoclinic phase; and this is an important temperature section from700℃to900℃, the grain of samples rapidly grow up. A simple kinetics model of grain growing is established and the grain growth activation energy is calculated. The grain growth activation energy of pure WO3ceramics is43.94KJ/mol,and that doped by Ce is103.3KJ/mol, so the doping has hindered the migration of the grain boundaries; and we found that sintering time has little effect on the shape and size of the grains, the sintering time has made some contribution to the grain boundary at1000℃, the sintering time has little effect on electrical behavior of the samples sintered at600℃; the voltage-current characteristic of the samples sintered at600℃is the linearity at room temperature, and which is nonlinear at100℃, in this paper, we explain the change of the voltage-current characteristic of the samples sintered at600℃at different temperature with the oxygen adsorption and the oxygen vacancy.
     In Chapter4, WO3nanopowders were prepared by sol-gel method, the pure WO3ceramics and Dy2O3、Nd2O、3-doped WO3ceramics were prepared by the conventional solid state reaction at1000℃using nm-level powders, and the electrical properties of the samples were studied. The main phase of undoped WO3ceramics sintered at1000℃is triclinic,and the conductivity is higher, the measured conductivity is close to the specific conductivity of WO3crystallites. The electrical property of the samples doped by Dy2O3and Nd2O3is similar, when the amount of Dy2O3and Nd2O3is small, the voltage-current characteristic is the linearity,which is accord with the pure WO3ceramics, the new crystal boundary will appear with increasing Dy2O3and Nd2O3, and the voltage-current characteristic is a nonlinearity, which can be expained by Schottky barriers at grain boundary.
     In Chapter5, the analysis on the electrical behavior of WO3ceramics was explained simply.
引文
[1]GA.de Wijs, P. K. d. Boer, R. A. d. Groot, and G Kresse, Anomalous behavior of the semiconducting gap in WO3 from first-principles calculations. Phys.Rev. B,1999, 59:2684~2693.
    [2]P.M.Woodward, A.W.Sleight, T.Vogt, Structure refinement of triclinic tungsten trioxide. J.Phys.Chem.Solids.,1995,56(10):1305~1315.
    [3]E.Salje, Structural phase transitions in the system WO3-NaWO3. Ferroelectrics,1976, 12:215~217
    [4]T.Hirose. Structural phase transition and semiconductor-metal transition in WO3. J.Phys.Soc.Jpn.,1980,49(2):562-568.
    [5]E.Cazzanelli, G. Mariotto, C. Vinegoni, A. Kuzmin and J. Purans., Color Centres and Polymorphism in Pure WO3 and Mixed (1-x)W03_y ● xReO2 Powders. Ionics,1999,5:335-344.
    [6]E. Cazzanelli, G. Mariotto, C. Vinegoni, A. Kuzmin, J. Purans., Changes of structural, optical and vibrational properties of WO3 powders after milling and mixing with ReO3, in Electrochromic Materials and Their Applications III, eds. K.C.Ho,C.B.Greenberg and D.M.MacArthur.Proc.Electrochem.Soc.[J],1996,24:260-274
    [7]申泮文.无机化学丛书(第八卷).第1版.北京:科学出版社,1998.505~549
    [8]E.K.H. Salje, S. Rehmann, F. Pobell, et al., Crystal structure and paramagnetic behavior of ε-WO3-x. J.Phys.:Condens.Mater.,1997,9:6563~6577.
    [9]孙晓昱,陆金生.氧化钨的状态分析.科学技术与工程,2007,7(1):36~40.
    [10]邹志强,Schubert W, Lux B胺钨盐的性质及其在制取亚微米级钨粉方面的应用.中南矿治学院学报,1990,21(6):622~631.
    [11]黄忠良,吴介达,詹明军,杨宇翔.黑色氧化钨的制备及其表征.同济大学学报,2000,28(5):600~604.
    [12]A.Kuzmin, J.Purans, E.Cazzaneili, et al., X-ray diffraction, extended X-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x)W03.y-xReO2 mixtures. J.Appl.Phys.,1998,15:5515~5524
    [13]G.R. Bamwenda and H. Arakawa, The visible light induced photocatalytic activity of tungsten trioxide powders Appl.Catal.,2001, A 210:181~191.
    [14]W.Sahle, M.Nygren, Electrical conductivity and high resolution electron microscopy studies of WO3-X crystals with 0    [15]S.Sawada, G.C. Danielson, Electrical conduction in crystals and ceramics of WO3. Phys Rev,1959,113:803~805.
    [16]V.Makarov, M.Trontelj., Novel varistor material based on tungsten oxide. J.Mater.Sci.Lett,1994,13:937~939.
    [17]R.J.D. Tilley, Correlation between dielectric constant and defect structure of non-stoichiometric solids. Nature,1977,269(15):229~231.
    [18]P.M.Woodward, A.W. Sleight, T.Vogt, Forroelectric tungsten trioxide. J.Solid State Chem.,1997,131:9~17.
    [19]M.J.Sienko, B.Banerjee. Studies in Non-stoichiometry: Magnetic Susceptibilities in the Tungsten-Oxygen System. J. Am. Chem. Soc,1961,83:4149~4156.
    [20]A. Polacgek, et al. Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides [J]. J. Phys.Condens. Matter,1994,6:7909~7917.
    [21]Qiming Zhong., Lithium and Hydrogen Intercalation into Electrochromic Materials:Tungsten Trioxides and Cesium Tungsten Oxides. Simon Fraser University Doctor Degree Dissertation.1991.
    [22]S. K. Deb, Optical and photoelectric properties and colour centres in thin films of tungsten oxides. Philos Mag,1973,27:801-822
    [23]K.Viswanathan, K.Brandt and E.Salje, Crystal sturucture and charge carrier concentration of Wi8O49 J.Solid State Chem.,1981,36:45-51
    [24]D.R. Rosseinsky, R.J. Mortimer. Electrochromic systems and the prospects for devices. Adv.Mater.2001,13:783-793.
    [25]A.I. Gavrilyuk. Photochromism in WO3 thin films. Electrochimica Acta,1999, 44:3027-3037.
    [26]G. Leftheriotis, S. Papaefthimiou. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films,2001,384:298~306.
    [27]P. Gerard, A. Deneuville. Color in "tungsten trioxide" thin films. J.Appl.Phys.,1997,48: 4265-4255.
    [28]G. Leftheriotis, S. Papaefthimiou. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films,2001,384:298-306.
    [29]C.G.Granqvist, Electrochromic tungsten oxide films:Review of progress 1993-1998, Solar Energy Mater Solar Cells,2000,60:201-262
    [30]羊新胜,王豫,董亮,张锋,齐立祯.纳米WO3块体材料的电致变色效应.物理学报,2004,53(8):2724~2727.
    [31]C.Trimble. Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide. Thin Solid Films,1999, 355-356:26-34.
    [32]C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films:new developments and applications. Thin Solid Films,2002,411,1-5.
    [33]J.S. Hale, J.A. Woollam. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films,1999,339:174-180.
    [34]C. Bechinger, E. Wirth, P. Leiderer. Photochromic coloration of WO3 with visible light. Appl.Phys.Lett.1996,68:2834-2836.
    [35]Y.A. Yang, Y.W. Cao, P. Chen. Visible-light photochromism in electrolytically pretreated WO3 thin films. J.Phys.Chem Solids 1998,59:1667-1670.
    [36]Y Zhao, Z.C. Feng, Y. Liang. Laser-induced coloration of WO3. Appl.Phys.Lett.1997, 71:2227-2229.
    [37]N. Kaneki, H.Hara, K.Shimada, et al., Effect of atmosphere on resistivity of WO3 ceramics.1976,59:7-8.
    [38]M. Penza, M.A. Tagliente, L. Mirenghi, et al. Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor. Sensors and Actuators B,1998,50:9-18.
    [39]T.Inoue, K.Ohtsuka, Y.Yoshida, Y. Matsuura,Y. Kajiyama, Metal oxide semiconductor NO2 sensor, Sensors and Actuators B 1995(24-25):368-391.
    [40]徐宇兴,唐子龙,张中太.六方相氧化钨纳米线的制备及氨敏特性.稀有金属材料与工程(增刊),2009,38:932~934.
    [41]H.Y. Wang, P. Xu, T.M. Wang, Doping of Nb2O5 in photocatalytic nanocrystalline/nanoporous WO3 films.Thin Solid Films,2001,388:68~72.
    [42]H.Y. Wang, P. Xu, T.M. Wang. The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films. Materials and Design,2002,23:331~336.
    [43]T.K. Gupta. Application of Zinc Oxide varistors. Journal of the American Ceramic Society 1990,73(7):1817.
    [44]D.R. Clarke. Varistor Ceramics. Journal of the American Ceramic Society 1999,82(3): 485.
    [45]E. Olsson and G.L. Dunlop. The Effect of Bi2O3 content on the Microstructure and Electrical Properties of ZnO Varistor Materials. Journal of Applied Physics.1989,66(9): 4317.
    [46]H. Cerva and W. Russwurm. Microstructure and crystal structure of bismuth oxide phases in zinc oxide varistor ceramics. Journal of the American Ceramic Society.1988, 71(7):522.
    [47]J. Wong. Sintering and varistor characteristics of ZnO-Bi2O3 ceramics. Journal of Applied Physics.1980,51:4453.
    [48]A.B. Alles and V.L. Burdick. The effect of liquid-phase sintering on the properties of Pr6On-based varistors. Journal of Applied Physics.1991,70:6883.
    [49]Y.S. Lee, K.S. Liao and T.Y. Tseng. Microstructure and crystal phase of praseodymium oxides in zinc oxide varistor ceramics. Journal of the American Ceramic Society.1996, 79:2379.
    [50]K. Mukae, K. Tsuda and I. Nagasawa. Non-Ohmic Properties of ZnO-Rare Earth Metal Oxide-Co3O4 Ceramics. Japanese Journal of Applied Physics.1977,16:1361.
    [51]Y. Shimizu, F.C. Lin, Y. Takao and M. Egashira. Zinc oxide varistors gas sensors:II. Effect of chromium III oxide and yettrium oxide additives on the hydrogen-sensing properties. Journal of the American Chemical Society.1998,81(6):1633.
    [52]M.Houabes. R.Metz, Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceram.Int.2007,33:1191-1197.
    [53]M.F. Yan and W.W. Rhodes. Preparation and Properties of TiO2 Varistors. Applied Physics Letters.1982,40(6):536.
    [54]J.J. Cheng and J.M. Wu. Effect of Mn on the electrical properties of (Ba, Bi, Nb)-added TiO2 ceramics prepared by the sol-precipitation method. Materials Chemistry and Physics.1997,48:129.
    [55]C.P. Li, J.F. Wang, W.B. Su, H.C. Chen, Y.J. Wang and D.X. Zhuang. Effect of sinter temperature on the electrical properties of TiO2-based capacitor-varistors. Materials Letters.2003,57:1400.
    [56]P.N. Santhosh, D.K. Kharat and S.K. Date. Effect of strontium substitution in (Nb, Bi) doped TiO2 varistors. Materials Letters.1996,28-37.
    [57]W.B. Su, J.F. Wang, H.C. Chen, W.X. Wang, G.Z. Zhang and C.P. Li. Nonlinear electrical behavior of the TiO2·WO3 varistor. Journal of Applied Physics.2002,92(8): 4779.
    [58]N.Yamaoka, M. Masuyama and M. Fukui. SrTiO3-based boundary-layer capacitor having varistor characteristics. American Ceramic Society Bulletin.1983,62:698.
    [59]T.R.N. Kutty and S. Philip. Low voltage varistors based on SrTiO3 ceramics. Materials Science and Engineering B.1995,33:58.
    [60]J. Li, S. Li and M.A. Alim. The effect of reducing atmosphere on the SrTiO3 based varistor-capacitor materials. Journal of Materials Science:Materials in Electronics.2006, 17:503.
    [61]Z.Y. Zhang, L.L. Zhao, X.W. Wang and J.S. Yang. The Preparation and Electrical Properties of SrTiO3-Based Capacitor-Varistor Double-Function Ceramics. Journal of Sol-Gel Science and Technology.2004,32:367.
    [62]T.R.Nutty and V.Ravi. Varistor PrPoerty of n-BaiO3-Based Cuerrnt Limiters.Appl.Phys.Lett,1991,59 (21),2691-2693.
    [63]V.O. Makarov and M. Trontelj. Sintering and Electrical Conductivity of Doped WO3. Journal of the European Ceramic Society.1996,16(7):791.
    [64]V. Makarov and M. Trontelj. Effect of Al2O3 on the microstructure and electrical properties of WO3-based varistor ceramics. Journal of the European Ceramic Society.2000,20 (6):747
    [65]G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang and P. Qi. Nonlinear electrical behaviour of the WO3-based system. Journal of Materials Science.2004,39 (13):4373.
    [66]S.A. Pianaro, P.R. Bueno, E. Longo and J.A. Varela. Anew SnO2-based varistor system. Journal of Materials Science Letters.1995,14:692.
    [67]G.E. Pike and C.H. Seager. The dc voltage dependence of semiconductor grainboundary resistance. Journal of Applied Physics.1979,50(5):3414.
    [68]T.K. Gupta and W.G. Carlson. A Grain-Boundary Defect Model for Instability/Stability of a ZnO varistor. Journal of Material Science 1985,20:3487.
    [69]吴维韩.金属氧化物非线性电阻特性和应用.清华大学出版社,1998.
    [70]K.Eda. Conduction nechanism of non-ohmic zinc oxide ceramics. Journal of Applied Physics.1978,49(5):2964.
    [71]A. Goetzberger, B. McDonald, R.H. Haitz and R.M. Scarlett. Avalanche Effects in Silicon p-n Junctions. II. Structurally Perfect Junctions. Journal of Applied Physics.1963,34:1591.
    [72]G.A. Baraff. Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors. Physical Review.1962,128:2057.
    [73]G.D. Mahan, L.M. Levinson and H.R. Philipp. Theory of Conduction in. ZnO Varistors. Journal of Applied Physics.1979,50(4):2799.
    [74]M. Matsuoka. Nonohmic Properties of Zinc Oxide Ceramics. Japanese Journal of Applied Physics.1971,10:736.
    [75]Ferna'ndez-Hevia, J.d. Frutos, A.C. Caballero and J.F. Ferna'ndez. Bulk-grain resistivity and positive temperature coefficient of ZnO-based varistors. Applied Physics Letters.2003,82(2):212.
    [76]A.C. Caballero, D.F.N. Hevia, J.D. Frutos, M. Peiteado and J.F.F. Ndez. Bulk Grain Resistivity of ZnO-Based Varistors. Journal of Electroceramics.2004,13:759.
    [77]Cadoff J B, Miller E. Thermoelectric Materials and Device. New York:Reinhold Publ Corp,1961.
    [78]沈强,涂融,张联盟.热电材料的研究进展,硅酸盐通报,1998,4.
    [79]钱佑华,徐至中,半导体物理[M].北京:高等教育出版社:1999.
    [80]Pollock,Physics of Engineering Materials[M].New Jersey: Prentice Hall Pub Press:1990;p330.
    [81]Kanatzidis M.G.,Chung D.,Thermoelectric Materials 1998-The Next Generation Materials for Small-scale Refrigeration and Power Generation Application[M].2000;p 233.
    [82]刘恩科,朱秉升,罗晋生,半导体物理学[M].北京:国防工业出版社:1994;p 286~298.
    [83]Mahan G.D.,Bartkowiak M.,Wiedemann-Franz law at boundaries[J].Applied Physics Letters,1999,74:953~954.
    [84]Mahan G.D.,Figure of merit for thermoelectrics[J]. Journal of Applied Physics,1989,65(4):1578~1583.
    [85]Scheidemantel T.J.,Ambrosch-Draxl C.,Thonhauser T.,etc.,Transport coefficients from first-principles calculations[J].Physical Review B,2003,68(125210).
    [86]谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社:1998.
    [87]方俊鑫,陆栋,固体物理学[M].上海:上海科学技术出版社:1981.
    [88]Grosso G.,Solid state physics[M].Academic Press:2000.
    [89]Rowe D.M.,CRC Handbook of Thermoelectrics[M].Boca Raton:CRC Press:1995.
    [90]徐桂英,葛昌纯,热电材料的研究和发展方向[J].材料导报,2000,11:38~41.
    [91]刘宏,王继扬,半导体热电材料研究进展[J].功能材料,2000,31(2):116~118.
    [92]Schmidt M.A.Portable MEMS Power Sources[A],In IEEE International Solid-State Circuits Conference[C],San Francisco,USA,2003:394-395.
    [93]张建中,任保国,王泽深,空间应用放射性同位素温差发电器的发展趋势[J].电源技术,2006,30(7):525~530.
    [94]Fairbanks J.Thermoelectric generators for near-term automotive applications and beyond[A],In Proc.4th Euro.Conf.on Thermoelectrics[C],Cardiff,UK,2006:1.
    [95]Omer S.A.,Infield D.G.,Design optimization of thermoelectric devices for solar powergeneration[J].Solar Energy Materials:Solar Cells,1998,53:67-82.
    [96]张景韶,李绍莲,姜烈汉等,温差电器件低温余热发电的实验研究[J].新能源,1996,18(6):11~16.
    [97]LaGrandeur J.,Crane D.,Hung S.,etc.High Efficiency Waste Energy Recovery System for Vehicle Applications[A],In Proceedings 25th International Conference on Thermoelectrics[C],Wien,Austria,2006:349-353.
    [98]Kanatzidis M.G.,Chung D.,Thermoelectric Materials 1998-The Next Generation Materialsfor Small-scale Refrigeration and Power Generation Application[M].2000;p 233.
    [99]Chein R.,Huang G.,Thermoelectric cooler application in electronic cooling[J].Applied Thermal Engineering,2004,24:2207-2217.
    [100]Biersehenk J.,Gilley M.Assessment of TEC Requirements for Thermoelectrically Enhanced Heat Sinks for CPU Cooling Applications [A],In Proceedings 25th International Conference on Thermoelectrics[C],Wien,Austria,2006.
    [101]魏公,能使计算机速度快-倍的新热电材料[J].广西节能,2001,1:37.
    [102]刘华军,李来风,半导体热电制冷材料的研究进展[J].低温工程,2004,1:32~38.
    [103]Guler N.F.,Ahiska R.,Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit.Applied Thermal Engineering,2002,22(11): 1271-1276.
    [104]Maneewan S.,Khedari J.,Zeghmati B.,etc.,Investigation on generated power of thermoelectric roof solar collector[J].Renewable Energy,2004,29:743~752.
    [105]羊新胜,陈敏,王豫,Tb407掺杂的WO3陶瓷的高温热电现象,物理学报,2003,52(6),1545~1548
    [106]陈敏,刘祖黎,王传聪,王豫,羊新胜,姚凯伦,W-Bi-Ti-O系陶瓷低场电学性能的温度特性,科学通报,2004,49,46-49
    [107]羊新胜,王豫,董亮,纳米WO3块体材料的电致变色效应,物理学报,2004,53,2724~2727
    [108]Wang Yu, Z. Aburas and K. L. Yao, Anomalous temperature effect of nonlinearity of WO3 varistor doped with A12O3, Chin. Sci. Bull.1999,44(7),671-672
    [109]Y. Wang, X. S. Yang, Z. L. Liu and K. L. Yao. Varistor effect of WO3-based ceramics at high temperatures, Material Letter.2004,58,1017-1019
    [110]Y. Wang, X. S. Yang, Z. Q. Li, K. L. Yao and Z. L. Liu, Current-Voltage Characteristics and Grain Growth of Li2CO3-doped Tungsten Trioxide Ceramics, Mater. Res. Bull.2004, 39,1459-1467
    [111]L. Dong, H.J. Chen, T. Y. Li, D. Z. Li, Y. Wang, Y. Zhao, Influence of sintering temperature on electrical properties of Ce-doped WO3 ceramics prepared from nano-powders, Appl. Phys. D,40(2007):2573-2578
    [112]C.Herring,Effect of change of scale on sintering phenomena, J.Appl. Phys.,21(1950): 301-303
    [113]J.E.Bonevich and L.D.Marks, The sintering behavior of ultrafine alumina particles,J.Mater.Res.,7(6)(1992):1489-1500.
    [114]Filho A G S, Matias J G N, Dias N L, et al. Microstructural and electrical properties of sintered tungsten trioxide [J]. J Mater Sci,1999,34:1031-1035.
    [115]王克龙,等.双功能陶瓷和元件.功能材料,1998,29(3):229~231
    [116]李盛涛,刘辅宜.电子陶瓷电性能与微观结构参数的关系探讨.功能材料,1997,28(6):592~595
    [117]王豫,WO3陶瓷功能材料的非线性电学性质及相关问题[博士学位论文.华中科技大学物理系图书馆,2001.
    [118]羊新胜,稀上元素掺杂W03基功能材料的电学行为及相关问题研究.华中科技大学硕士学位论文,2004..
    [119]董亮,Gd、Ce-W03功能陶瓷以及纳米WO3电学行为的研究.华中科技大学硕士学位论文,2005.
    [120]郭娜,纳米粉为前驱体的氧化钨陶瓷制备工艺及电学性质研究,西南交通大学硕士学位论文,2009.
    [121]何天平,彭子飞,微乳液法制备纳米级W03粉体.合成化学,1997,5(1),4-6.
    [122]A.G.Souza Filho,J.G..N.Matias,N.L.Dias,V.N.Freire,J.F.Juliao,U.U.Gomes Microstructural and electrical properties[J],J. Mater. Sci,1999,34,1031-1035.
    [123]Tamaki J, Zhang Z, Akiyama M, et al2207-2210.,Grain-size effects in tungsten oxide-based sensor for nitrogen oxide [J].J Electrochem Soc,1994,141(8),2207-2210.
    [124]Thomas H A.J, Stevens R., Aluminium titanate—a literature review, Part 3:Preparation of powders. Br Ceram Tyans J,1989,88(4),229-233.
    [125]Dae-Sik Lee, Sang-do Han, Jeung-Soo Huh,et al,Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thin films gas sensor [J].Sensors and Actuators,1999,B60,57-63.
    [126]张立德,牟季美等,纳米材料学.辽宁科技出版社,1994,2~25.
    [127]王旭升,张良莹,姚熹等,溶胶-凝胶法制备WO3-SiO2材料的氨敏特性研究.功能材料,1998,29(3),276~280.
    [128JJ.C. Zhao, L.T. Li, Z.L. Gui,Influence of lithium modification on the properties of Y-doped Sro.5Pbo.5Ti03 thermistors.Sensors and Actuators A,,2001,95,46~50.
    [129]S. M. Haile, G. S. Staneff, K. H. Ryu, Non-stoichiometry、Grain boundary transport and chemical stability of proton conducting perovskites.Journal of materials Science,2001,36,1149~1160.
    [130]黎先财,汪文娟,杨沂凤等,H202氧化-水热结晶法合成纳米W03的研究[J].稀有金属,2005,29(3),377~380.
    [131]李标荣.电子陶瓷工艺原理.华中工学院出版社,1986.
    [132]J.C.Wurst and J.A.Nelson. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J.Am.Ceram.Soc.1972,55(2):109.
    [133]V.R. Kolbunov, A.I. Ivon and I.M. Chernenko. Influence of a high conductivity additive on the electrical properties of vanadium dioxide-based ceramics Journal of the European Ceramic Society.2003,23(9):1435.
    [134]赵洪旺,钨基氧化物电学特性的变温测量与相关分析,西南交通大学硕士学位论文,2010.
    [135]J.C.C.Abrantes, J.A.Labrineha, J.R.Frade.RePresentations of impedanee speetra of ceramics part1.Simulated study cases.Mater.Res.Bull.,2000,35:955~964
    [136]J.C.e.Abrantes, J.ALabrineha, J.R.Frade.Representations of impedance spectra of ceramics part11.Speetra of polyerystalline SrTiIO3. Mater.Res.Bull.,2000,35:965-976
    [137]J.C.C.Abrantes, A.Feighery, A.L.Ferreiraetal.ImPedance spectroscopy study of niobium-doped strontium titanate ceramies. J.Am.Ceram.Soe.,2002,85(11):2745-2752
    [138]M.S.Guo,T.S.Wu, S.X.Wang,et al. Characterization of CaCu3Ti4O12 varistor-capacitor ceramics by impedance spectroscopy. J.Appl.Phys.,2006,99:124113
    [139]康雪雅,多元纳米ZnO粉体制备电压压敏陶瓷和它的蜕变机理及稳定性,四川大学博士学位论文,2000.
    [140]李建华,前驱体法制备PZT/ZrO2纳米复相陶瓷性能研究,天津大学博士学位论文,2009.
    [141]Wang Yu-De, Chen Zhan-Xian, Li Yan-Feng, Zhou Zhen-Lai, Wu Xing-Hui. Electrical and gas-sensing properties of WO3 semiconductor material. Solid-State Electronics 45(2001):639-644.
    [142]花中秋,王海庆,赵洪旺,董亮,王豫.三氧化钨陶瓷非线性伏安特性研究.功能 材料,2010,8(34):1343~1346.
    [143]Z, Yu, A.Chen, P.M.Vilarinho e al.Dieleetric relaxation behaviour of Bi:SrTIO3:I.The low temperature permittivity peak.J.Eur.Ceram.Soe.,1998, 18:1613-1619
    [144]Z, Yu, A.Chen, P.M.Vilarinho e al.Dieleetric relaxation behaviour of Bi:SrTIO3:II. Influence of heat treatment on dieleetric properties.J.Eur.Ceram.Soe.,1998, 18:1621~1628
    [145]Z, Yu, A.Chen, P.M.Vilarinho e al.Dieleetric relaxation behaviour of Bi:SrTIO3:III.Dieleetric properties in the temperature range of 300-600K. J.Eur.Ceram.Soe.,1998,18:1629~1635
    [146]XinSheng Yang, Yu Wang, Liang Dong, Effect of CeO2 on the microstructure and electrical properties of WO3 capacitor-varistor ceramics, Materials Science & Engineering B,2004,110:6-10.
    [147]Komaba, S., Kumagai, N., Kato, K., and Yashiro, H., Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide,Solid State Ionics,2000,135:193-197.
    [148]Lou X W, Zeng H C.,An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution,Inorg. Chem.,2003,42:6169-6171.
    [149]Zhang H, Zhao H, Jiang YQ, Hou SY, Zhou ZH, Wan HL. pH-and mol-ratio dependent tungsten(VI)-citrate speciation from aqueous solutions:syntheses, spectroscopic properties and crystal structures. Inorg Chim Acta,2003,351:311-318.
    [150]Hla1bi M, Chapelle S, Bena1ssa M, J.-F. Verchere., Structures and Stabilities of Tungstate Complexes of.alpha.-Hydroxy Acids.183W NMR Study of the Influence of Ligand Substitution, Inorg. Chem.,1995,34:4434-4440
    [151]莫若飞,靳国强,郭向云.用柠檬酸作调控剂水热合成正交相三氧化钨.无机化学学报,2007,23(9):1615~1620.
    [152]吕松涛,稀土冶金学,冶金工业出版社,1981,11
    [153]严群,稀上氧化物及纳米氧化锌掺杂压敏材料的制备及机理研究,四川大学博士学位论文,2003.
    [154]苏文斌.TiO2压敏电阻晶界电学行为研究.山东大学博士论文,2005.
    [155]Keneko.H and Miyake.K., Estimation of the composition parameter of electrochemically colored amorphous hydrogen tungsten oxide films, J. Appl. Phys., 1989,66,845-850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700