用户名: 密码: 验证码:
原位自生(TiC+TiB)/Ti-1100复合材料的热氢处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空航天工业的发展,具有高强度、高弹性模量、低密度的高温钛合金受到了广泛关注。而钛基复合材料具有比钛合金更高的比强度、更优异的高温性能和蠕变性能,因此具有广阔的应用前景。然而高温变形塑性差、流变应力大、设备要求高等特点使高温钛合金基复合材料的热加工变得困难,从而大大限制了这种材料的实际应用。近些年发展起来的热氢处理技术,能够改善钛合金的高温塑性,降低热变形的流变应力和成形温度,这为改善高温钛合金基复合材料的热加工性能提供了一条新的思路。本工作便是针对高温钛合金基复合材料的难加工问题,首先原位合成了综合性能良好的Ti-1100基复合材料,研究了置氢材料的微结构、相变点以及显微硬度,进行了超塑性研究,简单探讨了失效机制。得出如下主要结论:
     利用钛、碳化硼粉末和石墨之间的反应,在真空自耗炉中两次重熔制备了三种不同增强体含量的Ti-1100基复合材料。拉伸试验发现,随着增强体体积分数增加钛基复合材料的室温和高温强度都明显提高,室温和高温延伸率分别在13%和23%以上。
     研究了钛基复合材料置氢后微结构、相变和显微硬度的变化。过量氢元素的加入导致钛基复合材料中少许氢化物的析出,由于氢的渗入,Ti相晶格膨胀,晶格常数变大;置氢显著降低了两种Ti-1100基复合材料的相变温度;另外,其显微硬度也都由于氢的加入而降低。
     高温超塑拉伸试验中,增强体含量为5 vol.%时,置氢Ti-1100基复合材料最大延伸率为294%;而10 vol.%(TiB+TiC)增强钛基复合材料最大延伸率为256%。在研究温度范围内,置氢明显提高了材料的延伸率。
     置氢显著降低了两种Ti-1100基复合材料的最佳超塑变形温度和流变应力,提高了最佳初始应变速率;流变应力随温度升高而下降,随初始应变速率增大而增加;另外氢的加入还降低了Ti-1100基复合材料的变形激活能。
     分析了不同初始条件变形后的微观形貌,较低的应变速率不一定得到较高的延伸率是因为在高温下较长时间晶粒的再结晶长大会降低了材料塑性。变形前后SEM照片对比分析发现,高温拉伸最终断裂是增强体与基体界面脱粘形成裂纹或空洞而后扩展导致的。
With the development of aeronautics and space industry, high temperature titanium alloys which possess great ultimate strength, high module and low density have abstracted great attention. The titanium matrix composites due to higher specific strength, more excellent high-temperature resistance and creep performance illustrate a good prospect of application. However, poor plasticity and high flow stress at high temperature and high demanding for equipments result in the difficulty of working of TMCs, restricting largely their application in practice. Thermohydrogen treatment (THT) as a newly developed technology can improve the high-temperature plasticity of titanium alloys, decrease the flow stress and processing temperature during hot working, which supplies a new method for ameliorating poor hot-working character of TMCs. To overcome the hot-working difficulty of TMCs, in the work, Ti-1100 matrix composites with good comprehensive mechanical properties was prepared using in-situ technology. The microstructure, phase transformation temperature and micro hardness of hydrogenated TMCs were studied. In addition, the studying of the superplastic behavior and failure mechanism was also carried out. The main conclusions were listed as follows.
     Based on the reaction among titanium, B4C powder and graphite, three kinds of Ti-1100 matrix composites with different reinforcement content were prepared by consumable vacuum arc remelting (VAR). It was found from tensile test that as hydrogen content increased the ultimate tensile strength at room temperature and elevated temperature increased evidently, and the elongations were more than 13% and 23%, respectively.
     The microstructure, phase transformation and microhardness of hydrogenated Ti-1100 matrix composites were studied. The addition of plenty of hydrogen leaded to the precipitation of hydride. And the infiltration of hydrogen resulted in titanium lattice expansion, largening the lattice constant. The results indicated a decrease inβtransus temperature of TMCs with an increase in hydrogen content. Moreover, the microhardness also decreased after hydrogenation.
     In high-temperature tensile test, the maximum elongation of hydrogenated TMCs with reinforcement content of 5 vol.% was 294% while that of 10 vol.% (TiB+TiC)/Ti-1100 composite was 256%. Within the studied temperature range, hydrogen increased the elongation in tentile test.
     Hydrogen decreased the optimal superplastic temperature and flow stress and increased the optimum superplastic strain rate for two kinds of TMCs. The flow stress decreased with the test temperature increment, and increased with the initial strain rate. Furthermore, due to the addition of hydrogen the activation energy Q of TMCs had a decrease.
     According to the microstructure analysis after deformation under different condition, the lower strain rate didn’t always mean the better elongation, which was because grain recrystallized and grew at high temperature for a long time. It can be seen based on SEM analysis of hydrogenated TMCs before and after deformation that the failure in tensile test was probably ascribed to the cracks or cavities resulting from debonding interface between matrix and reinforcement.
引文
[1]许国栋,王凤娥,高温钛合金的发展和应用,稀有金属,2008,32(6): 774-780
    [2]罗国珍,钛的研究发展评述,稀有金属材料与工程,1993,22(5),19-28
    [3]蔡建明,李臻熙,马济民等,航空发动机用600℃高温钛合金的研究与发展,材料导报,2005,19(1): 50-53
    [4]吕维洁,张荻,原位合成钛基复合材料的制备、微结构及力学性能,北京:高等教育出版社,2005
    [5]陈振中,金业壮,陈礼清,铝、钛基复合材料在航空发动机上的应用分析,航空发动机, 2006,32(4): 40-41
    [6]肖代红,黄伯云,原位合成钛基复合材料的最新进展,粉末冶金技术, 2008, 26(3): 217-223
    [7] Ranganath S., Review on particulate-reinforced titanium matrix composites, Journal of Materials Science, 1997, 32(1):1-16
    [8]杨树宝,徐九华,危卫华,置氢处理对TC4钛合金流变行为的影响,航空学报, 2010, 31(5): 1093-1098
    [9] Senkov O.N., Froes F.H., Thermohydrogen processing of titanium alloys, International Journal of Hydrogen Energy, 1999, 24(6): 565-576
    [10]廖际常,含氢热加工技术在耐热钛合金中应用前景,钛工业进展, 2002, (1):25-27
    [11] Eliaz N., Eliezer D., Olson D.L., Hydrogen-assisted processing of materials, Materials Science and Engineering A, 2000, 289(1): 41-53
    [12] Kolachev B.A., Ilyin A.A., Nosov V.K., Hydrogen technology as new perspective type of titanium alloy processing, In: Weiss I., Srinivasan R., Bania P.J., Advances in the science and technology of titanium alloy processing, Warrendale, PA: TMS, 1992, (2): 331-338
    [13] Froes F.H., Eylon D., Suryanarayana C., Thermochemical processing of titanium alloys, JOM, 1990, 42(3): 26-29
    [14]萧今声,许国栋,提高高温钛合金性能的途径,中国有色金属学报,1997, 7(4): 97-105
    [15]赵永庆,高温钛合金研究,钛工业进展, 2001, (1): 33-39
    [16]魏寿庸,何瑜,王青江等,俄航空发动机用高温钛合金发展综述,航空发动机,2005, 31(1): 52-58
    [17]钱九红,航空航天用新型钛合金的研发展及应用,稀有金属,2000,24(3): 218-223
    [18]毛小南,赵永庆,杨冠军,国外航空发动机用钛合金的发展现状,稀有金属快报,2007, 26(5): 1-7
    [19]魏寿庸,贾栓孝,王鼎春等,550℃高温钛合金的性能,钛工业进展,2000, (2): 25-29
    [20]胡清熊,刘振球,魏寿庸,宝鸡钛的35年,金属学报,1999, 35: S15
    [21]赵永庆,奚正平,曲恒磊,我国航空用钛合金材料研究现状,航空材料学报,2003, 23: 215-219
    [22]付艳艳,宋月清,惠松骁等,航空用钛合金的研究与应用进展,稀有金属,2006,30(6) : 850-856
    [23] Tuffs M., Hammond C., Effect of alloying element modification on superplastic deformation properties of Ti-4Mo-4Al-2Sn-0.5Si (IMI550), Mater Sci Techn, 1999, (15): 1154-1166
    [24]罗国珍,钛基复合材料的研究与发展,稀有金属材料与工程,1997,26(2): 1-7
    [25] Vaccari J. A., The Challenges of Orient Express, Am Mach, 1990, 134(1): 35
    [26]张国定,赵昌正,金属基复合材料,上海:上海交通大学出版社,1996
    [27] Ranganath S., Review on particulate-reinforced titanium matrix composites, Journal of Materials Science, 1997, 32(1): 1-16
    [28] Tjong S.C., Ma Z.Y., Microstructure and mechanical characteristics of in situ metal matrix composites, Materials Science and Engineering Reports, 2000, R29:49-113
    [29]吴人洁,复合材料,天津:天津大学出版社,2000
    [30]鲁云,朱世杰,马鸣图等,先进复合材料,北京:机械工业出版社,2004
    [31]吴人洁等译,复合材料的结构与性能,北京:科学出版社,1999
    [32]赫尔,复合材料导论,北京:国防工业出版社,1987
    [33] Fan Z., Niu H.J., Miodownik A.P., Saito T., Cantor B., Microstructure and mechanical properties of in situ Ti/TiB MMCs produced by a blended elemental powder metallurgy method, Key Engineering Materials, 1997, 127-131(1): 423-430
    [34] Jiang J.Q., Lin T.S., Kim Y.J., et al., In situ formation of TiC-(Ti-6Al-4V)composite, Materials Science and Technology, 1996, 12(4): 362-365
    [35] Tsang H.T., Chao C.G., Ma C.Y., Effects of volume fraction of reinforcement on tensile and creep properties of in situ TiB/Ti MMCs, Scrpta Materialia, 1997, 37(9): 1359-1365
    [36] Dubey S., Lederich R.J., Soboyejo W.O., Fatigue and fracture of damage-tolerant in situ titanium matrix composites, Metallurgical and Materials Transactions, A, 1997, 28(10): 2037-2047
    [37] Subrahmanyam J., Vijayakumar M., Self-propagating high-temperature synthesis, Journal of Materials Science, 1992, 27(23):6249-6273
    [38] Nakane S., Yamada O., Miyamoto Y., et al., Simultaneous synthesis and densification of TiB/α-Ti(N) composite material by self-propagating combustion under nitrogen pressure, Solid State Communications, 1999, 110(8):447-450
    [39] Yamamoto T., Otsuki A., Ishihara K., et al., Synthesis of net shape high density TiB/Ti composite, Materials Science and Engineering A, 1997, 239-240(1-2):647-651
    [40] Koch C.C., Intermetallic matrix composites prepared by mechanical alloying-A review, Materials Science and Engineering A, 1998, 244(1):39-48
    [41] Feng H.B., Jia D.C., Zhou Y., et al., Microstructural characterization of in situ TiB/Ti matrix composites prepared by mechanical alloying and hot pressing, Materials Science and Technology, 2000, 20(9):1205-1210
    [42] Srivatsan T.S., Sudarshan T.S., Lavernia E.J., Processing of discontinuously-reinforced metal matrix composites by rapid solidification, Progress in Materials Science, 1995, 39(4-5):317-409
    [43] Rangarajan S., Aswath P.B., Soboyejo W.O., Microsructure development and fracture of in-situ reinforced Ti-8.5Al-1B-1Si, Scripta Materialia, 1996, 35(2):39-245
    [44] Fan Z., Miodownik A.P., Chandrasekaran L., The Young's moduli of in situ Ti/TiB composites obtained by rapid solidification processing, Journal of Materials Science, 1994, 29(4):1127-1134
    [45] Yang B., Zhang E.L., Jin Y.X., et al., Microstructure characteristic of in-situ Ti/TiC composites, Journal of Materials Science and Technology, 2001, 17(1):103-104
    [46] Zhang E.L., Zeng S.Y., Zhu Z.J., Microstructure of XDTM Ti-6Al/TiC composites, Journal of Materials Science, 2000, 35(23): 5989-5994
    [47] Faller K., Froes F.H., The use of titanium in family automobiles: Current trends, JOM, 2001,53(4):27-28
    [48] Abkowitz S., Abkowitz S.M., Fisher H., et al., Cerme Ti? discontinuously reinforced Ti-matrix composites: Manufacturing, properties, and applications, JOM, 2004, 56(5):37-41
    [49] Lu Y.C., Sass S.L., Bai Q., et al, The influence of interfacial reactions on the fracture toughness of Ti-Al2O3 interfaces, Acta Metallurgica et Materialia, 1995, 43: 31-41
    [50] Loretto M.H., Konitzer D.G., The effect of matrix reinforcement reaction on fracture in Ti–6Al–4V-base composites, Metallurgical Transactions A, 1990, 21: 1579-1587
    [51] Choi S.K., Chandrasekaran M., Brabers M.J., Interaction between titanium and SiC, Journal of Materials Science, 1990, 25: 1957-1964
    [52] Ma X.Y., Li C.R., Zhang W.J., The thermodynamic assessment of the Ti–Si–N system and the interfacial reaction analysis, Journal of Alloys and Compounds, 2005, 394: 138-147
    [53] Gotman I., Gutmanas E.Y., Interaction of Si3N4 with titanium powder, Journal of Materials Science Letters, 1990, 9: 813-815
    [54] Lu W.J., Zhang D., Zhang X.N., et al, HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite, Scripta Materialia, 2001, 44: 1069-1075
    [55] Konitzer D.G., Loretto M.H., Microstructural assessment of Ti-6Al-4V-TiC metal matrix composite, Acta Metallurgica, 1989, 37: 397-406
    [56] Yang Z.F., Lu W.J., Qin J.N., et al, Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temperature, Materials Science and Engineering A, 2006, 425: 185-191
    [57] Xiao L., Lu W.J., Li Y.G., et al, Thermal stability of in situ synthesized high temperature titanium matrix composites, Journal of Alloys and Compounds, 2009, 467: 135-141
    [58]吴人洁,金属基复合材料的现状与展望,金属学报, 1997, 33(1):78-84
    [59] Miracle D.B., Metal matrix composites-From science to technological significance, Composites Science and Technology, 2005, 65(15-16):2526-2540
    [60]李建辉,李春峰,雷廷权,金属基复合材料成形加工研究进展,材料科学与工艺, 2002, 10(2):207-212
    [61] Klug K.L., Ucok I., Gungor M.N., et al., The near-net-shape manufacturing of affordable titanium components for the M777 lightweight howitzer, 2004, JOM, 56(11):35-41
    [62] Ghomashchi M.R., Fabrication of near net-shaped Al-based intermetallics matrix composites, Journal of Materials Processing Technology, 2001, 112(2-3):227-235
    [63] Semiatin S.L., Seetharaman V., Weiss I., Hot workability of titanium and titanium aluminide alloys-An overview, Materials Science and Engineering A, 1998, 243(1-2):1-24
    [64] Ilyin A.A., Polkin I.S., Mamonov A.M., et al., Thermohydrogen treatment-The base of hydrogen technology of titanium alloys, In: Blenkinsop P.A., Evans W.J., Flower H.M., Titanium '95: Science and Technology, London, 1995, (4): 2462-2469
    [65]曲银化,孙建科,孟祥军,钛合金等温锻造技术研究进展,钛工业进展, 2006, 23(1): 6-9
    [66] Zwicker U., Schleicher H.W., Process for improving the workability of titanium alloys, United States Patent 4505764, June, 1959
    [67]张少卿,氢在钛合金热加工中的作用,材料工程, 1992, (2):24-29
    [68] San-Martin A., Manchester F. D., The H-Ti (hydrogen-titanium) systems, Bulletin of Alloy Phase Diagrams, 1987, 8(1):30-42
    [69] Gabidullin E.R., Nosov Y.K., Ilyin A.A., Kinetic parameters of interaction of hydrogen andtitanium, Izvestia Akademii nauk SSSR, Metally, 1995, (6):71-75
    [70] Evard E.A., Gabis I.E., Voyt A.P, Study of the kinetics of hydrogen sorption and desorption from titanium, Journal of Alloys and Compounds, 2005, 404-406(SPEC.ISS.): 335-338
    [71]侯红亮,李志强,王亚军等,钛合金热氢处理技术及其应用前景,中国有色金属学报,2003, 13(3): 533-549
    [72]张鹏省,曾卫东,赵永庆,钛及钛合金热氢处理技术,材料热处理技术, 2009, 38(12): 133-136
    [73]韩明臣,钛合金的热氢处理,宇航材料工艺, 1999, (1): 23-27
    [74] Wang W. E., Thermodynamic evaluation of the titanium-hydrogen system, Journal of Alloys and Compounds, 1996, 238(1-2): 6-12
    [75] Zhang Y., Zhang S.Q., Hydrogenation characteristics of Ti-6Al-4V cast alloy and its microstructural modification by hydrogen treatment, International Journal of Hydrogen Energy, 1997, 22(2-3):161-168
    [76]万松明,储氢合金的表面动力学过程及表面改性,硕士论文,沈阳:中国科学院金属研究所, 1998
    [77]杜忠权,王高潮,陈玉秀,渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果,航空学报, 1994, 15(7): 882-886
    [78] Kerr W.R., Smith P.R., Rosendlum M.E., et al., Hydrogen as an alloying element in titanium (Hydrovac), In: Kimura H., Izumi O., Titanium '80 Science and Technology, Warrendale, PA, 1980, 2477-2486
    [79] Senkov O.N, Jonas F.H., Recent advances in the thermohydrogen processing of titanium alloys, JOM, 1996, 48(7): 42-47
    [80] Eylon D., Froes F.H., Yolton C.H., Method for improving the microstructure of titanium alloy wrought products, United States Patent 4872927, October, 1989
    [81] Ilyin A.A., Manonov A.M.,铸造钛合金的热氢处理,材料工程, 1992, (1):14-16
    [82]金秋亚,黄继华,候金保等,细晶钛合金的制备方法,航天制造技术, 2006, 10(5): 44-46
    [83] Yoshimura H., Nakahigashi J., Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protium treatment, International Journal of Hydrogen Energy, 2002, 27(7-8):769-774
    [84]刘勤,金属的超塑性,上海:上海交通大学出版社,1989
    [85]林兆荣,金属超塑性成形原理及应用,北京:航空工业出版社,1990
    [86] Griffith P W, Wisbey A, Wood M J, etc, Microstructure and tensile properties of continuous diamond fibre reinforced titanium alloy, Diamond and Related Materials, 1998, 7 (7): 957-961
    [87] Lederich R.J., Sastry S.M., O'Neal J.E., et al., Influence of hydrogen additions on high- temperature super-plasticity of titanium alloys, In: Hasson D.F., Hamilton C.H., Advanced Methods for Titanium, New York, 1982, 115-328
    [88]张浩,许嘉龙,林天辉等,氢对Ti-6Al-4V显微组织和超塑性变形的影响,稀有金属材料与工程, 1991, 20(5):52-58
    [89]宫波,氢致钛和钛合金的相变组织转变及其应用,博士论文,沈阳:东北大学, 1992
    [90] Senkov O.N., Froes F.H., Baburaj E.G., Development of a nanocrystalline titanium aluminide-titanium silicide particulate composite, Scripta Materialia, 1997, 37(5): 575-579
    [91]卢俊强,原位自生钛基复合材料的热氢处理研究,博士论文,上海,上海交通大学, 2010
    [92] Yang K., Guo Z.X., Edmonds D.V., Processing of titanium matrix composites with hydrogen as a temporary alloying element, Scripta Metallurgica et Materialia, 1992, 27(12):1695-1700
    [1]蔡建明,李臻熙,马济民等,航空发动机用600℃高温钛合金的研究与发展,材料导报,2005,19(1): 50-53
    [2] Yang K., Guo Z.X., Edmonds D.V., Processing of titanium matrix composites with hydrogen as a temporary alloying element, Scripta Metallurgica et Materialia, 1992, 27(12):1695-1700
    [3] Wang M.M., Lu W.J., Qin J.N., et al, Effect of volume fraction of reinforcement on room temperature tensile property of in-situ (TiB+TiC)/Ti matrix composites, Materials and design, 2006, 27(6): 494-498
    [4]王敏敏,吕维洁,覃继宁等,原位合成TiB和TiC增强钛基复合材料的超塑变形力学行为,上海交通大学学报, 2005, 39(1): 41-45
    [5] Lu W.J., Zhang D., Zhang X.N., et al, HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite, Scripta Materialia, 2001, 44: 1069-1075
    [6] Konitzer D.G., Loretto M.H., Microstructural assessment of Ti-6Al-4V-TiC metal matrix composite, Acta Metallurgica, 1989, 37: 397-406
    [7]吕维洁,张荻,原位合成钛基复合材料的制备、微结构及力学性能,北京:高等教育出版社,2005
    [8] Ma F.C., Lu W.J., Qin J.N., et al., Effect of forging temperature on microstructure and mechanical properties of in situ (TiB+TiC)/Ti composites, Materials Transactions, 2006, 47(7):1750-1754
    [9] Lee C.S., Oh J.C., Lee S., Improvement of hardness and wear resistance of (TiC, TiB)/ Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation, Metallurgical and Materials Transactions A, 2003, 34(7):1461-1471
    [10] Zhu S.J., Mukherji D., Chen W., et al., Steady state creep behaviour of TiC particulate reinforced Ti-6Al-4V composite, Materials Science and Engineering A, 1998, 256(1-2): 301-307
    [11] Wang M.M., Lu W.J., Qin J.N., et at., The effect of reinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite, Scripta Materialia, 2006, 54(11): 1955-1959
    [12] Li D.X., Ping D.H., Lu Y.X., et al., Characterization of the microstructure in TiB-whisker reinforced Ti alloy matrix composite, Materials Letters, 1993, 16(6):322-326
    [13] Lu W.J., Zhang D., Zhang X.N., et al., Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique, Journal of Alloys and Compounds, 2001, 327(1-2):240-247
    [14] Lu W.J., Zhang D., Zhang X.N., et al., Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique, Journal of Alloys and Compounds, 2001, 327(1-2):248-252
    [1] Ma F.C, Lu W.J., Qin J.N., et al., Microstructure evolution of near-αtitanium alloys during thermomechanical processing, Materials Science and Engineering A, 2006, 416(1-2):59-65
    [2] Ma F.C, Lu W.J., Qin J.N., et al., Hot deformation behavior of in situ synthesized Ti-1100 composite reinforced with 5 vol.% TiC particles, 2006, 60(3): 400-405
    [3] Senkov O.N., Froes F.H., Thermohydrogen processing of titanium alloys, International Journal of Hydrogen Energy, 1999, 24(6):565-576
    [4] Eliaz N., Eliezer D., Olson D.L., Hydrogen-assisted processing of materials, Materials Science and Engineering A, 2000, 289(1):41-53
    [5]廖际常,含氢热加工技术在耐热钛合金中应用前景,钛工业进展, 2002, (1):25-27
    [6] Kolachev B.A., Ilyin A.A., Nosov V.K., Hydrogen technology as new perspective type of titanium alloy processing, In: Weiss I., Srinivasan R., Bania P.J., Advances in the science and technology of titanium alloy processing, Warrendale, PA: TMS, 1992, (2):331-338
    [7]万松明,储氢合金的表面动力学过程及表面改性,硕士论文,沈阳:中国科学院金属研究所, 1998
    [8]曹兴民,热氢处理对钛合金组织和性能影响的研究,硕士论文,西安:西安建筑科技大学,2005
    [9] Sieverts A., Absorption of gases by metals, Zeitschrift fur Metallkunde, 1929, 21:37-46
    [10] Arbuzov V.L., Vykhodets V.B., Raspopova G.A., The trapping of hydrogen ions in vanadium and titanium, Journal of Nuclear Materials, 1996, 233-237(Part 1): 442-446
    [11] Lin T.H., Chang R.Q., Xu G.Q., et al., A M?ssbauer study on atomic interaction of hydrogen in aβ-titanium alloy, Scripta Metallurgica, 1989, 23(6): 885-890
    [12] Zhang S.Q., Pan F., Hydrogen treatment of cast Ti-6Al-4V alloy, Chinese Journal of Metal Science and Technology, 1990, 6: 187-191
    [13] Lu J.Q., Qin J.N., Lu W.J., Superplastic deformation of hydrogenated Ti-6Al-4V alloys, Materials Science and Engineering A, 2010, 527(18-19):4875-4880
    [1]林兆荣,金属超塑性成形原理及应用,北京:航空工业出版社,1990
    [2]窦健敏,白秉哲,我国钛合金超塑性研究的现状及进展,锻压技术,1991,16(3):33-37
    [3] Edington J.W., Melton K.N., Cutler C.P., Superplasticity, Progress in MaterialScience, 1976, 21(1-2):61-170
    [4] Nieh T.G., Wadsworth J., Sherby O.D., Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, 1997
    [5] Kobayashi M, Ochiai S, Funami K, Ouchi C, Suzuki S, Superplasticity of fine TiC and TiN dispersed Ti-6Al-4V alloy composites, Materials Science Forum, 1994, 170-172: 549-554
    [6] Schuh C, Dunand D C, Transformation superplasticity of Ti-6Al-4V/TiB whisker-reinforced composites, Scripta Materialia, 2001, 45(6): 631-638
    [7] Schuh C, Dunand D C, Transformation superplasticity of Ti-6Al-4V and Ti-6Al-4V/TiC composites at high stresses, Materials Science Forum, 2001, 357-359: 177-182
    [8] Schuh C, Dunand D C, Whisker alignment of Ti-6Al-4V/TiB composites during deformation by transformation superplasticity, International Journal of Plasticity, 2001, 17 (3): 317-340
    [9] Schuh C, Dunand D C, Contributions to transformation superplasticity of titanium from rigid particles and pressurized pores, Scripta Materialia, 1999, 40 (11): 1305-1312
    [10] Dunand D C, Bedell C M, Transformation-mismatch superplasticity in reinforced and unreinforced titanium, Acta Materialia, 1996, 44 (3): 1063-1076
    [11] Wang M.M, Lu W.J, Qin J.N, et al., Superplastic behavior of in situ synthesized (TiB+TiC)/Ti matrix composite, Scripta Materialia, 2005, 53 (2): 265-270
    [12] Wang M.M, Lu W.J, Qin J.N, et al., An EBSD and TEM study on the microstructural evolution of in situ synthesized (TiB+TiC)/Ti matrix composites during superplastic deformation, Materials Transaction JIM, 2005, 46 (8): 1833-1838
    [13]王敏敏,吕维洁,覃继宁等,原位合成TiB和TiC增强钛基复合材料的超塑变形力学行为,上海交通大学学报,2005,39(1):41-45
    [14] Kolachev B.A., Nosov V.K., Hydrogen plasticization and superplasticity in titanium alloys, Physics of Metals and Metallography, 1984, 57(1):161-169
    [15] Hamilton C. H., Superplastic Forming, In: Agrawal S.P., Symposium on Superplastic forming, Los Angeles, 1984, 13-22
    [16]赵林若,钛合金超塑性机理及氢的作用,博士论文,北京:北京航空材料研究院, 1988
    [17]高文,张少卿,氢对TC11钛合金超塑性能的影响,稀有金属, 1992, 16(3):227-230
    [18] Sirina J.V., Fedotov I.L., Portnoy V.K., et al., Effect of hydrogen on superplasticity of titanium alloys, Materials Science Forum, 1994, 170-172:299-304
    [19] Zhang S.Q., Zhao L.R., Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy, Journal of Alloys and Compounds, 1995, 218(2):233-236
    [20]丁桦,王殿梁,宋丹等,氢对Ti3Al-Nb合金微观组织和超塑变形行为的影响,钢铁研究学报, 2000, 12(2):45-48
    [21] Lu J.Q., Qin J.N., Chen Y.F., et al., Superplasticity of coarse-grained (TiB+TiC)/Ti-6Al-4V composite. Journal of Alloys and Compounds, 2010, 490(1-2):118-123
    [22] Lu J.Q., Qin J.N., Lu W.J., et al., Effect of hydrogen on superplastic deformation of (TiB+TiC)/Ti-6Al-4V composite. International Journal of Hydrogen Energy, 2009, 34(19): 8308-8314
    [23] Wang M.M, Lu W.J, Qin J.N, et al., The effect of reinforcements on superplasticity of in situ synthesized (TiB+TiC)/Ti matrix composite, Scripta Materialia, 2006, 54(11):1359-6462
    [24]吴诗惇,金属超塑性变形理论,北京:国防工业出版社,1997
    [25]刘勤,金属的超塑性,上海:上海交通大学出版社,1989
    [26] Backofen W.A., Turner I.R., Avery D.H., Superplasticity in an Al-Zn alloy, Transactions of the American Society of Materials, 1964, 57:980-990
    [27]宋玉泉,测定超塑性应变速率敏感指数m的新公式—用长度及其增量测定m值,吉林工业大学学报,1984,4:116-119
    [28]宋玉泉,连书君,张振军,载荷跃变法测量m值,机械工程学报, 1989, 25(3): 39-43
    [29] Aran A., Experimental comparison of different methods to determine the strain rate sensitivity index of superplastici materials, Scripta Metallurgica, 1979, 13(9):843-846
    [30]郦定强,林栋梁,刘俊亮等,大晶粒FeAl合金超塑性变形的显微组织演变和变形激活能,金属学报, 1997, 33(9): 897-902
    [31]张保良,王燕文,魏铮等,变形温度对碳化硅颗粒增强铝基复合材料超塑变形的影响,塑性工程学报, 1995, 2(1): 22-25
    [32]宋玉泉,程永春,刘术梅,超塑拉伸变形应变速率敏感性指数的力学解析,机械工程学报, 2001, 37(3): 5-10
    [33]张津徐,葛红林,程晓英,一种可在低温高应变速率下超塑成形的钛合金研究及其开发,稀有金属材料与工程, 2000, 29(2): 105-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700