用户名: 密码: 验证码:
液态置氢对Ti600和TC21合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态置氢技术是将氢气或者钛氢化合物直接置入液态金属中去的全新的氢处理方法,是一种新方法,新手段。本文研究了液态置氢吸氢行为;通过金相显微镜、扫描电镜、透射电镜研究了液态置氢后钛合金的宏观组织和微观组织的变化;通过Gleeble-1500热模拟机、万能材料试验机和显微硬度计测试了液态置氢后的力学性能变化。
     研究结果表明:置氢的量随着氢分压力的增加而增加,最大置氢量可以达到10at.%;液态置氢的时间极短,对于29克的钮扣锭约为100s以内。
     Ti600合金液态置氢后,发现组织先细化后又长成粗大的柱状晶;TC21合金随着氢含量的增加组织细化趋势明显,并生长成细小柱状组织。通过理论分析认为细化由于形核率的提高和枝晶游离造成的,氢元素降低了临界晶核表面自由能;降低扩散激活能,氢增强了钛原子的自扩散能力和溶质原子的扩散能力;从而增加了熔体的形核率;晶粒的游离是由于氢原子促近了枝晶的产生及其枝晶根部的颈缩和重熔。柱状组织的产生是由于氢电弧促使熔体表面温度过高造成的。组织的形态是由两者竞争形成的,可见氢对组织的形态有重要影响。
     Ti600合金液态置氢后,α板条变得细小,当加氢至6.2at.%时组织中出现了α′马氏体和β相,当加氢至10.0at.%时,合金中发现有β相、α′马氏体、β相和γ(面心四方结构)氢化物生成。TC21合金液态置氢后,α′板条变得细小,当加氢至6.5at.%时形成了α"相马氏体,随着加氢量的增加α"相增多,加氢至9.2at.%时形成了孪晶α′相。
     液态置氢使得Ti600和TC21两种合金的流变应力和屈服强度降低,10at.%左右的氢可以使得两种合金的流变应力和屈服强度降低25%左右。氢的加入降低了变形温度和提高了应变速率。Ti600和TC21两种合金随置氢的增加,流变应力和屈服强度随着温度降低的趋势变缓。Ti600钛合金随着置氢量的增加硬度上升,这是由于合金中的α板条变得细小并且氢含量较高时有α′马氏体和γ氢化物生成使得合金硬度增加,尽管这里有β相生成。TC21钛合金随着置氢量的增加硬度下降,这是由于合金中的β相增多,并且有较软的α"相生成。
The technology of liquid state hydrogenation for titanium alloy is a new means which directly add hydrogen or TixHy into liquid state titanium alloy. In the paper, The hydrogenation behavior were studied. Optical microscope (OM), scanning electron microscope(SEM) and transmission electron microscope (TEM) were used to study the influence of hydrogen on the microstructures and macrostructures. Ti600 and TC21 alloy are compressed inα+βandβphase field on a Gleeble-1500 Simulator and Universal Testing Machines. Their hardness is tested by Micro Hardness Tester.
     Experimental results showed that the amount of hydrogen absorbed in titanium alloy is increasing with the pressure of hydrogen and the process is accomplished only in 100s for 29g titanium alloy of liquid state and the most the amount of hydrogen absorbed in titanium alloy is about 10.0at.%H.
     As increase of hydrogen desorbed in liquid state of Ti600 titanium alloy, the macrostructures was refined at the first, then it become a kind of coarse columnar crystal. But TC21 is from a kind of coarse equiaxed structure to fine columnar crystal. According to solidification theory, the improvment of nucleation rate and dendrite fragmentation is contributed to the refinement of Ti600 and TC21. In addition, it is a main reason for columnar structure that hydrogen promote superheat of melt surface. So, the macrostructures conformation is a result of competition of refinement and superheat of melt surface.
     After hydrogenated for Ti600,αlamellar was refined. There areβandα′martensite found in the specimen containning 6.2at.%H andγtitanium hydride precipitated in the specimen containning 10.0at.%H as well asβandα′martensite.After hydrogenated for TC21,α′martensite was refined, orthorhombic martensiteα" was found in the specimen containning 6.5at.%H and the content ofα" martensite increases with hydrogen.
     Hydrogen absorption in titanium alloys could decrease the flow stress and high temprature yield strength of titanium alloys, 10at.% of hydrogen can decrease about 25at.% of the flow stress and high temprature yield strength of titanium alloys. Therefore, hydrogen may reduce the requirement of deformation temperature and strain rate for plastic forming. With increase of the content of hydrogen, sensitivity of the flow stress and high temprature yield strength for hydrogen is decreased.The hardness of TC21 alloy is continuously decreased with increasing hydrogen content due to the effect of the softβandα" phase. However, the hardness of Ti600 alloy is continuously increased with increasing hydrogen concent due to the refinement of theαlamellar and the appearance ofα′martensite andγtitanium hydride.
引文
1付艳艳,宋月清,惠松骁,米绪军.航空用钛合金的研究与应用进展.稀有金属. 2006, 30(6): 850~857
    2侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景.中国有色金属学报. 2003, 13(3):533~549
    3孙东立,韩潇,王清,吴涛,李中华.氢处理对钛合金组织性能的影响及其机理.宇航材料工艺. 2005, (3): 11~17
    4 Kerr, et al. Hydrogen as an Alloying Element in Titanium (Hydrovac). Titanium’80 Science and Technology. 1980: 2477~2486
    5黄东,南海,吴鹤,赵嘉琪.氢处理技术在钛合金中的应用.金属热处理. 2004, 29(6): 44~48
    6 A. M. Mamonov. Influence of heat and hydrogen treatment on structure, texture and mechanical properties of articles of heat resistant titanium alloy type VT18U. Izvestiya Akademii Nauk SSSR. Metally n6NovDec. 1995: 106~112
    7 V. M. Vozdvizhenskij, et al. Study of fracture regularities in titanium base alloy type VT23 after heat hydrogen treatment. Izvestiya Akademii Nauk SSSR. Metally n6NovDec. 1995: 113~118
    8 Levin, et al. Method for refining microstrutures of titanium alloy castings. United States Patent: 4612066, 1986-09-16
    9 A. A. Ilyin , I. S.Polkin, A.M. Moamonov, et al . Thermohydrogen treament-the base of hydrogen technology of titanium alloys. Titaniump95: Science and Technology. 1996, 2462~2469
    10 W. Y. Chu, A. W. Thompson, et al. Hydrogen Effect on Material Behavior TMS Warrendale. 1990: 285
    11 B. A. Kolachev, Y. B. Egorova. Hydrogen influence on machining of titanium alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1997: 339~346
    12 J. J. Senkov. Dynamic strain aging and hydrogen induced softening in alpha titanium. Metall Mater Trans. 1996, 27: 1877~1882
    13 K. Yang . D. V.Edmonds. Effect of hydrogen as a temporary alloying element on the microstructure of Ti3Al intermetallic. Scripta Metal Mater. 1993, 28(1): 71~77
    14张勇.钛合金及Ti3Al合金的氢处理研究.北京:北京航空材料研究院博士论文. 1996
    15李芳,陈业新,万晓景,王青江,刘羽寅.氢对Ti-60钛合金显微组织和高温力学性能的影响.金属学报. 2006, 42(2): 143~146
    16潘峰,张少卿等.氢处理对铸造Ti-6Al-4V合金组织的影响.宇航学报. 1987, 8(1): 78~82
    17崔建忠,高建成,丁桦,路贵民,张彩暗.氢处理Ti3Al金属间化合物组织和性能的影响.材料科学与工艺. 1998, 6(4):55~63
    18杜云蕙,丁桦,宋丹.氢对Ti3Al-Nb合金组织和高温变形的影响.稀有金属材料与工程. 1999, 28(3): 137~139
    19何晓,沈保罗,曹建玲,邱绍宇.氢对两种新型钛合金强度和塑性的影响.稀有金属材料与工程. 2003, 32(5): 390~393
    20 E. Tal-Gutelmacher.Hydrogen cracking in titanium-based alloys. Journal of Alloy and compounds. 2005, 621~625
    21辛社伟,赵永庆,曾卫东.钛合金固态相变归纳与讨论-同素异构转变. 2007, 24(5): 23~27
    22 I.J. Polmear. Light Alloys: Metallurgy of the Light Metals, 3rded, John Wiley and Sons, Inc, NY. 1989: 272~277.
    23 A. A. Ilyn: Izv. VUZ Tsvetn. Metall. 1987, 1: 96~101
    24郭景杰,苏彦庆.钛合金ISM熔炼过程热力学与动力学分析.哈尔滨:哈尔滨工业大学出版社, 1998
    25黄刚,曹小华,龙兴贵.钛-氢体系的物理.化学性质材料导报. 2006, 20(10): 821~826
    26 ZHANG Hao, XU Jia-long, LIN Tian-hui, et al. The influence of hydrogen on microstructure and superplasiticity for Ti6Al4V. Rare Metal Materials and Engineering. 1991, 20(5): 52~57.
    27 Yoshimura, Jun Nakahigashi. Ultra-fine-grain refinement and superplasticity of titanium alloys obtained through protiumtreatm ent. International Journal of Hydrogen Energy. 2002, 27: 769~774
    28王宇,王佩璇,张建伟等.纯钛吸氢后的微观结构研究.稀有金属. 1995, 19(5): 348
    29 C.Q.Chen, S.X.Li, H.Zheng, L.B Wang, K.Lu. An investigation on structure, deformation and fracture of hydrides in titanium with a large range of hydrogen contents. Acta Materialia. 2004, 52: 3697~3706
    30 O. N. Senkov, M. Dubois and J. J. Jonas: Metall. Mater. Trans. A, 1996, 27A, 3963~3970
    31 O. N. Senkov, B. C. Chakoumakos, J. J. Jonas and F. H. Froes:Mater. Effect of temperature and hydrogen concentration on the lattice parameter of beta titanium. Materials Research Bulletin. 2001, 36: 1431~1440
    32 C. C. Shen, T. P. Perng. Pressure-composition isotherms and reversible hydrogen-induced phase transformations in Ti-6Al-4V. Acta Materialia, 2007, 55: 1053~1058
    33 S. V. Ronald. Hydrogen solubility in alphatitanium. Metall Trans. 1971, 2: 608~609
    34 J. E. Costa, D. Banerjee, J. C. Williams. Hydrogen effectsinβ- titamium alloys. In: Boyer R R, Rosenberg H W ed. Beta titanium alloys in the 1980’s, 1983: 69~83
    35韩明臣.钛合金的热氢处理.宇航材料工艺. 1999, (1): 23~27
    36 Chia-Te Liu, Tair-I. Wu, Jiann-Kuo Wu. Formation of nanocrystalline structure of Ti–6Al–4V alloy by cyclic hydrogenation–dehydrogenation treatment. Materials Chemistry and Physics. 2008, 110(2-3): 440~444
    37 J. J. Senkov. Dynamic strain aging and hydrogen induced softening in alpha titanium. Metall Mater Trans. 1996, 27: 1877~1882
    38 S. Q.Zhang, L. R. Zhao. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy. Alloy and Compounds. 1995, 218: 223~229
    39杜忠权,王高潮,陈玉秀.渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果.航空学报. 1994, 15(7): 882~886
    40 A. A. Ilyin, V. K. Nosov, M. Y. Kollerov, et al. Hydrogentechnology of semiproducts finished goods production from high strength titanium alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1997: 517~523
    41 K. R. Morasch, D. F. Bahr. The effects of hydrogen on deformation and cross slip in BCC titanium alloy. Script Materialia. 2001, 45(2): 839~845
    42 W. Sha, C. J. Mckinven. Experimental study of the effects of hydrogen penetration on gamma titanium aluminide and beta 21S titanium alloys. Journal of Alloy and Compounds, 2002, (3): 16~20
    43徐振声,宫波,张彩锫.氢对Ti-6Al-4V合金高温增塑作用.金属学报. 1991, 27: 270~275
    44 B. A. Klachev, V. K. Nosov. Hydrogen plasticization in hot deforming of titanium alloys. 1984: 625~631
    45徐振声,宫波,张彩锫.氢对TC4钛合金高温拉伸行为的影响.稀有金属. 1993, 17(3): 205~208
    46林天辉.钛合金中的氢及其对力学性能的影响.北京:北京科技大学博士论文. 1990
    47 ZHU Jinghuai, CHENG Guoan, ZHANG Shengshan.Technology research of titanium powder by hydrided. Jiangxi Metallurgy, 1998, 18(1): 26~27
    48 ZHANG Qing, WU Yin-jiang, TANG Hui-ping, et al. Influence of different crashing method on shape of titanium powder. Progress on Titanium Industry. 2002, (2): 14~17
    49冯颖芳.提高钛粉粉末冶金制品力学性能的途径.钛工业进展. 2002, (2): 222~223
    50 P. A. Sundaram, D. Basu, R. W. Steinbrech, et al. Effect ofhydrogen on the elastic modulus and hardness of gamma titanium aluminides. Script Materialia. 1999, 41(8): 839~845
    51 J. I. Qazi, O. N. Senkov, J. Rahim, F. H. (Sam) Froes. Kinetics of martensite decomposition in Ti6Al4V-xH alloys. Materials Science and Engineering. 2003, A359: 137~149
    52张少卿.氢在钛合金热加工中的作用.材料工程. 1992, (2): 24~29
    53翁文达,林天辉.钛合金气相充氢中氢分压的测量方法.稀有材料与工程. 1994, 23(1): 66~68
    54 A. A. Ilyin, S. V. Skvortsova, A.M. Mamonov, et al. Effect of Hydrogen on phase and Structural Transformation in Titanium Alloys of Different Classses.Materials Science. 2006, 42(3): 316~322
    55 R. M. German. Powder Maetallurgy Science. Princeton, NJ: Metal PowderIndustries Fedration. 1994
    56康强,张彩培等. Ti-H合金共析转变的形态和产物.金属学报. 1995, (6): 241~247
    57 Y. Zhang and S. Q. zhang. Hydrogenti on Characteristics OF TI-6AL-4V and Microstructuctural Modification by Hydrogen Treatment. Int.J.Hydrogen Energy. 1997, 22: 161~168
    58 D. Guay, R. Schulz, M. E. Bonneau. Neutron and in situ X-ray investigation of hydrogen intake in titanium-based cubic alloys. 1999, 11 (11): 3220
    59 I. Qazi, O. N. Senkov, J. Rahim, A. Genc and F. H. Froes: Metall. Mater. Trans. A, 2001, 32A: 2453~2463
    60 Q.Chen, S.X.Li. Tensile and low-cycle fatigue behaviors of commercially pure titanium containingγhydrides. Materials Science and Engineering. A, 2004, 387-389: 470~475
    61 Erjun Guo Dongrong Liu. Modeling of microstructure refinement in Ti-6Al-
    4V alloy by hydrogen treatment. Material Science of Engineering. 2007, (12): 1~12
    62李晓芹.钛合金β锻造组织不均匀性研究.金属热处理. 2000, 3: 17~20
    63张廷杰.钛合金相变的电子显微镜研究-钛合金的马氏体相变.稀有金属材料与工程. 1989, (4): 71~78
    64树上阳太郎.钛合金相变与热处理.稀有金属材料与工程. 1986, (6): 42~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700