用户名: 密码: 验证码:
置氢钛合金高效切削仿真及刀具磨损预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金以其优越的综合性能日益广泛的应用于航空航天及民用工业,然而钛合金高效切削时刀具的快速磨损制约了它进一步的推广应用,因此,如何改善和提高钛合金的切削加工性一直是钛合金切削加工研究的热点。钛合金的置氢处理技术是通过置氢的方式改变钛合金的组织结构进而改善其切削加工性的一种新工艺,为钛合金的高效加工提供了一种新途径。本文在国家自然科学基金(50775115)资助下,借助有限元软件并结合相关实验,建立了置氢钛合金高效切削仿真模型及刀具磨损预测模型,探讨了高效切削下置氢钛合金的切削加工性,分析了置氢对钛合金切削加工性的影响规律,研究了置氢量对刀具耐用度的影响规律及作用机理。主要研究内容如下:
     1.对置氢钛合金切削仿真中所涉及的关键技术进行了研究。
     (1)研究了置氢钛合金在高温、高应变率下的动态力学性能。采用分离式霍普金森压杆和材料试验机进行了置氢钛合金动态及准静态力学性能试验,获取了高温、高应变率下的动态力学性能。对Johnson-Cook(J-C)本构模型进行了改进,建立了置氢钛合金的塑性本构方程。
     (2)研究了适用于置氢钛合金切削仿真过程单元删除的断裂准则。借助于钛合金压缩实验及有限元仿真,对常用的几种韧性断裂准则进行了比较,发现以孔洞理论为基础的Oyane准则较适合于切削过程。并通过压缩实验,获取了置氢钛合金Oyane准则中的相关参数值。
     (3)通过研制的弹簧加载恒力平台进行了高速、大载荷下硬质合金与置氢钛合金间的摩擦实验,建立了包含温度及载荷的摩擦经验公式。测量和分析了载荷、温度及滑动速度等对滑动摩擦系数的影响,得出了包含载荷及温度在内的滑动摩擦经验公式。
     2.通过建立的置氢钛合金切削仿真模型,对高效切削置氢钛合金的切削过程进行了仿真。并通过实验对切削力、切削温度及切屑形态等仿真结果进行了验证。
     3.探讨了切削置氢钛合金时刀具的磨损形态及磨损机理。借助光学显微镜、SEM及EDS等仪器,分析了切削(车、铣)刀具的磨损形态,研究了切削置氢钛合金时刀具的磨损机理,分析了置氢对钛合金切削加工性的改善作用。
     4.建立了新的刀具磨损率模型。根据刀具的磨损机理,该模型充分反映切削置氢钛合金时刀具的磨粒、粘结及扩散磨损。通过采取增大刀-屑间传热系数、节点移动及边界光滑处理等方法,解决了刀具温度场不稳定、刀具磨损形貌变化及刀具单元畸变等一系列问题,建立了刀具磨损仿真有限元模型,并对仿真结果进行了实验验证。
     5.通过建立的刀具磨损预测有限元模型,对置氢钛合金高效切削时刀具的磨损情况进行了预测。对切削过程中不同磨损机理所占比重进行了定量分析,确定了主要的磨损机理及其随切削过程的变化趋势。通过对比,揭示了置氢的作用机理及置氢提高刀具耐用度的根本原因。通过研究切削参数对刀具磨损的影响规律,给出了高效切削置氢钛合金切削参数的合理选择范围。最后分析了刀具磨损对切屑形貌、切削力、切削温度及刀具所受应力的影响规律。
Titanium alloy are widely used in aeronautics and aerospace industry, and civil applications as wellowing to its excellent mechanical properties. However, the poor machinability and the induced rapidtool wear during cutting has limits the further wide application of titanium alloy. Therefore, how toimprove the machinability of titanium alloy has been drawn much attention. In recent year,thermohydrogen treatment technique has provided a potential way to realize the high efficiencycutting of titanium alloy because this special technique could change the microstructure of titaniumalloy. Supported by National Natural Science Foundation of China (50775115), the high-efficiencycutting mechanism and the tool wear behavior are investigated using the finite element simulationmethods. Particularly, the machinability of hydrogenated titanium alloy is studied under thehigh-efficiency cutting circumstance. The influence of the hydrogen content on the titanium alloymachinability and the tool wear are discussed.
     The major research work is as follows:
     1. Several key factors in finite element simulation of the cutting process of the hydrogenatedtitanium alloy are investigated.
     (1) The static and dynamic compression experiments of hydrogenated titanium alloys are carriedout with the material testing machine and split Hopkinson pressure bar (SHPB). The stress-straincurves are obtained at high temperature and high strain rate. The modified Johnson-Cook(J-C)constitutive relations of hydrogenated titanium alloy are derived.
     (2) The ductile fracture criterion, which is suitable to the cutting process is studied. Fourcommon ductile fracture criterions are compared each other depending on non-linear FEM softwareand compression tests of titanium alloy. The results reveal that the Oyane ctirerion based on cracktheory is suitable to describe the cutting process of hydrogenated titaium alloy. Furthermore, theconstant parameters in Oyane criterion of all hydrogenated titanium alloys are calculated. The resultsare proven valid in the cutting experiments.
     (3) The friction laws between cutting tool and hydrogenated titanium alloy are analyzed. Theconstant force test platform is designed and applied to simulate the sliding zone of Zorev’s frictionmodel. The sliding friction efficient is measured and compared under different loads, temperature andsliding velocity. The sliding friction laws are therefore obtained.
     2. The FEM models of the cutting process of the hydrogenated titanium alloy are established. Thesimulated cutting force, cutting temperature and chip morphology are compared with the experimental ones. Furthermore, the FEM models are utilized to simulate the high efficiency cutting process of thehydrogenated titanium alloy.
     3. The tool wear mechanism is studied during cutting the hydrogenated titanium alloy with opticalmicroscope and scanning electron microscope. At the same time, the relationship between tool lifeand cutting parameters were investigated. The results show that the hydrogenation could improve themachinability of Ti6Al4V alloy.
     4. The wear rate models concerning different wear mechanism are built according to the wearexperimental results, which include abrasive wear, adhesive wear and diffusion wear. Then the FEMmodel of tool wear simulation is presented. Several problems of tool wear simulation, i.e. predictionof temperature distribution, the updating of tool geometry and the smoothing of wear boundary of toolare presented and discussed. The reasonable prediction of the tool wear is proven feasible in thecutting experiments.
     5. The tool wear behavior is simulated during cutting hydrogenated titanium based on theestablished finite element model. The effect of cutting parameters on tool wear is investigated. Theexact proportion of different wear mechanism is determined according to the simulation results., Thedominate wear mechanism and the corresponding changing tendency in the cutting process isanalyzed. Moreover, based on the experiment and simulation results, the mechanism of hydrogenationon improving titanium’s machinability is discussed. The reasonable range of the cutting parametersduring high efficiency cutting hydrogenated titanium alloy is provided. Finally, the influence of toolwear on chip morphology, cutting temperature, cutting force and tool stress are investigated.
引文
[1]艾兴.坚持自主创新发展和应用高效切削技术提升加工制造水平.工具技术,2006,(6):2~6.
    [2]沈壮行.高效切削加工已成为全球制造技术的发展趋势-中国工具工业应迎头赶上.工具技术,2005,(4):2~5.
    [3] C.Leyens, M.Peters. Titanium and titanium alloys.2nd ed., Wiley-VCH Verlag GmbH&Co. KgaA,Weinhein,2003.
    [4] Noaker PM.高速铣削加工的发展.国外金属加工,1999,(2):23~28.
    [5]艾兴.高速切削加工技术.北京:国防工业出版社,2003.
    [6]傅玉灿.难加工材料高效加工技术.西安:西北工业大学出版社,2010.
    [7]訾群.钛合金研究新进展及应用现状.钛工业进展,2008,25(2):23~27.
    [8]陶春虎.航空用钛合金的失效及预防.北京:国防工业出版社,2002.
    [9]航空制造工程手册总编委会.航空制造工程手册(飞机机械加工、框架壳体工艺),北京:航空工业出版社,1995.
    [10] Bill Sweetman. The progress of the f-22fighter program, www.jane.com,1997.
    [11]张春江.钛合金切削加工技术.西安:西北工业大学出版社,1986.
    [12]杨冠军.钛合金研究和加工技术的新进展.钛工业进展,2001,(3):1~5.
    [13]陈明.机械制造技术.北京:北京航空航天大学出版社,2001.
    [14] S.Y. Hong. Economical cryogenic machining for high speed cutting of difficult-to-machinematerials, Proceedings of1st Inter. Conference on Manufact. Tech., Hong Kong,1991,27~29.
    [15] S.Y. Hong, Y. Ding. Cooling approaches and cutting temperatures in cryogenic machining of TC4,Inter. J. of Machine Tools&Manufacture,2001,(41):1417~1437.
    [16] S.Y. Hong, Y. Ding, W. Jeong. Friction and cutting forces in cryogenic machining of Ti–6Al–4V,Inter. J. of Machine Tools&Manufacture,2001,(41):2271-2285.
    [17] S.Y. Hong, I. Markus, W. Jeong. New cooling approach and tool life improvement in cryogenicmachining of titanium alloy TC4. Inter. J. of Machine Tools&Manufacture,2001,(41):2245~2260.
    [18]赵威.基于绿色切削的钛合金高速切削机理研究.南京:南京航空航天大学,2006.
    [19] E. Kuljanic, M. Fioretti, F. Miani. Milling titanium compressor blades with PCD cutter. CIRPAnnals Manufacturing Technology,1989,47(1):61~64.
    [20] Z.G. Wang, Y.S. Wong, M. Rahman. High-speed milling of titanium alloys using binderless CBNtools. Inter. J. of Machine Tools&Manufacture,2005,(45):105~114.
    [21] Z.G. Wang, M. Rahman, Y.S. Wong. Tool wear characteristics of binderless CBN tools used inhigh-speed milling of titanium alloys. Wear,2005,(258):752~758.
    [22] Hendrick Niemann, Eu-Gene Ng, Hue Loftus, et al. The effect of cutting environment and toolcoating when high speed ball nose end milling titanium alloy, metal cutting and high speedmachining. Kluwer Academic/Plenum Publishers,2002:81~89.
    [23] Ilyin A A, Polkin I S, Moamono A M, et al. Thermohydrogen treatment the base of hydrogentechnology of titanium alloys. Titanium’95: Science and Technology,1996,2462~2469.
    [24]侯红亮,李志强,王亚军,关桥.钛合金置氢处理技术及其应用前景.中国有色金属学报,2003,13(3):534~545.
    [25] Eylon. Method for developing ultrafine microstructures in titanium alloy casting, America,invention,4820360,1989.
    [26] Froes. Low temperature hydrogenation of gamma titanium aluminide, America, invention,5067988,1991.
    [27] Vogt. Method for refining microstructure of titanium ingot metallurgy articles, America, invention,4680063,1987.
    [28] Smickley. Microstructural refinement of cast metal, America, invention,4624714,1986.
    [29] Lederich. Transient titanium alloys, America, invention,4415375,1983.
    [30] Kimura. Process for preparing titanium and titanium alloy material having a fine equiaxedmicrostructure, America,invention,5108517,1992.
    [31] Kimura. Process for preparing titanium and titanium alloy having fine acicular microstructure,America, invention,5125986,1992.
    [32]宫波,赖祖函.用热化学处理改善(α+β)型钛合金的组织和力学性能.中国有色金属学报,1994,4(3):86~89.
    [33]曹兴民,奚正平,赵永庆.TC21合金高温渗氢组织变化研究.热加工工艺,2005,1:29~33.
    [34]曹兴民,奚正平,赵永庆.置氢处理在铸造钛合金中的应用.铸造,2005,154(14):391~393.
    [35]韩明臣.钛合金的置氢处理,宇航材料工艺.1999,(1):23~27.
    [36]苏彦庆,骆良顺,毕维升,等.置氢对Ti6AlV合金室温组织的影响.材料科学与工艺,2005,13(1):103~106.
    [37]宗影影,钛合金置氢增塑机理及其高温变形规律研究.哈尔滨:哈尔滨工业大学,2007.
    [38] Y.Y.Zong, D.B.Shan, Y.Lu, B.Guo. Effect of0.3%H addition on the high temperature deformationbehaviors of TC4alloy. International Journal of Hydrogen Energy,2007,(32):3936~3940.
    [39] D.B.Shan, Y.Y.Zong, Y.Lu, Y. Lv. Microstructural evolution and formation mechanism of FCCtitanium hydride in TC4-xH alloys. Journal of Alloys and Compounds.2007,427(1-2):229~234.
    [40] Y.Y.Zong, D.B.Shan, Y.Lu. Microstructural evolution of a Ti-4.5Al-3Mo-1V alloy during hotworking. Journal of Materials Science.2006,41(12):3753~3760.
    [41] B.A.Kolachev, Y.B. Egorova. Hydrogen influence on machining of titanium alloys. Advances inthe Science and Technology of Titanium Alloy Processing,1997:339~346.
    [42] B.A. Kolachev, V.D.Talalaev. Effect of hydrogen on the machinability of VT5-1alloy by cutting.Materials Science,1996,6:753~759.
    [43] B.A. Kolachev, Y.B.Egorova. Machinohydrogen treatment of titanium alloys. Titanium '95. Vol. I;Birmingham UK.1995,782~789.
    [44] Y. B. Egorova, A.A. II’in. Effect of the structure on the cutability of titanium alloys. Metal Scienceand Heat Treatment,2003,45(3-4):134~139.
    [45]危卫华.置氢处理改善钛合金切削加工性的基础研究.南京:南京航空航天大学,2010.
    [46]危卫华,徐九华,傅玉灿,等.置氢钛合金TC4的切削加工性研究.南京航空航天大学学报,2009,41(5):633~638.
    [47]危卫华,徐九华,傅玉灿,等.置氢切削加工中TC4钛合金置氢处理工艺及置氢量的优化.中国机械工程,2010,21(2):196~201.
    [48]李红,侯红亮,孙中刚.氢对TC4合金物理力学性能的影响及其与切削性能的相关性.航空制造技术,2008,20:80~88.
    [49]李红,孙中刚,侯红亮,等.置氢Ti_6Al_4V合金组织演变及其对切屑形成的影响.机械科学与技术,2011,30(3):373~376.
    [50]方刚,曾攀.切削加工过程数值模拟的研究进展.力学进展,2001,31(3):394-404.
    [51] A.vanLuttevrel, T.H.C.Childs, I.S.Jashir, et al. Siutation and future trends in modeling ofmachining opeartions. Annals of the CIRP,1998,47(2):587-626.
    [52] B.E.Klamecki. Incipient chip for mation in metal cutting-a three dimension finite analysis. Urbana:University of Illinois at Urbana-Chanpaign,1973.
    [53] E.Usui, T.Shirakashi. Mechanics of machining-from descriptive to predictive theory. On the Art ofCutting Metals-75Years Later,1982:13~35.
    [54] K.Iwata, K.Osakada, Y.Terasaka. Process modeling of orthogonal cutting by the rigid-plastic finiteelement method. ASME J Engng Material and Tech,1984,106:132~138.
    [55] Obikawa, Toshiyuki, Usui. FEM analysis on serrated chip formation of titanium alloy (2nd report)chip formation mechanism and cutting properties of titanium alloy,Seimitsu KogakuKaishi/Journal of the Japan Society for Precision Engineering,1993,59(6):933~938.
    [56] Xie. A study on shear banding in chip formation of orthogonal machining. International Journal ofMachine Tools and Manufacturing,1996,36:835~847.
    [57] Bakerm R, Osler J, Siemers C. A finite element model of high speed metal cutting with adiabaticshearing. Computers and Structures,2002,80(5):495~513.
    [58]曹自洋,何宁,李亮.高速切削钛合金Ti6Al4V切屑的形成及其数值模拟.中国机械工程,2008,19(20):2450~2454.
    [59]吴红兵,贾志欣,刘刚,等.航空钛合金高速切削有限元建模.浙江大学学报,2010,44(5):982~987.
    [60]杨振朝,张定华,姚倡锋,等.高速铣削速度对TC4钛合金表面完整性影响机理.南京航空航天大学报.2009,41(5):644-648.
    [61] K Cheng, X Luo, R Ward, et al. Modeling and simulation of tool wear in nanometic cutting. Wear,2003,(255):1427~1432.
    [62] Hoover W G, Hoover C G, Stower I F, et al. Interface tribology via nonequilibrium, moleculardynamics. Material Research Symposium,1989,140:119~124.
    [63] R Komanduri, N Chandrasekaran, L M aft. Effect of tool geometry in nanometric cutting amolecular dynamies simulation approach. Wear,1998,(219):84~97.
    [64] R Komanduri,N Chandrasekaran, L M Raft. MD simulation of indentation and seratehing ofsingle crystal aluminum. Wear,2000,(240):113~143.
    [65] R Komanduri, N Chandrasekaran, L M Raft. Molecular dynamie simulations of uniaxial tension atnanoseale of semieonduetor materials for miero-electro-meehanieal systems(MEMS) applications.Materials Science and Engineering,2003,(340):58~67.
    [66] R Komanduri, M Lee, L M Raft. The significance of norma1rake in oblique machining.Intemational Joumal of Machine Tools&Manufacture,2004,(44):1115~1124.
    [67]罗熙淳,梁迎春,董申.分子动力学在纳米机械加工技术中的应用.中国机械工程,1999,10(6):692~696.
    [68]黄丹,陶伟明,郭乙木.分子动力学模拟单晶纳米铝丝的拉伸破坏.兵器材料科学与工程.2005,28(3):1~3.
    [69]唐玉兰,梁迎春,霍德鸿,程凯.基于分子动力学单晶硅纳米切削机理研究.微细加工技术,2003,(2):76~80.
    [70] Taylor F W. On the art of cutting metals. Trans ASME,1907,28:31~35.
    [71] Hastings W F, Mathew P, Oxley L B, et Al. Estimated cutting temperatures their use as a predictorof tool performance when machining plain carbon steels. Proceedings of the20th InternationalMTDR Confference,1979.
    [72] P.Palanisamy, I.Rajendran, S.Shanmugasundaram. Prediction of tool wear using regression andANN models in end milling operation. Int J Adv Manuf Technol,2008,37:29~41.
    [73] Kuan-ming Li, StevenY.Liang. Predictive modeling of flank wear in turning under flood cooling.Journal of Manufacturing Science and Engineering,2007,129:513.
    [74] A.Molinari, M.Nouari. Modeling of tool wear by diffusion in metal cutting. Wear,2002,252:135~149.
    [75] Yong Huang, TyG. Dawson. Tool crater wear depth modeling in CBN hard turning. Wear,2005,258:1455~1461.
    [76] Yong Huang, Steven Y.Lian. Modelling of CBN tool crater wear in finish hard turning. Int J AdvManuf Technol,2004,24:632~639.
    [77] Yong Huang, Predictive Modeling of Tool Wear Rate with Application to CBN Hard Turning.Georgia Institute of Technology,2002.
    [78]王晓琴.钛合金Ti6Al4V高效切削刀具摩擦磨损特性及刀具寿命研究.济南:山东大学,2009.
    [79] E. Rabinowicz, L. A. Dunn, P. G. Russell. A study of abrasive wear under three-body conditions,Wear,1961,4:345~349.
    [80] E.Usui, T. Shirakashi. Analytical trediction of cutting tool wear. Wear,1984,100:129~151.
    [81] Kitagawa, Maekawa, Shirakashi, Usui. Analytical Prediction of flank wear of carbide tools inturning plain carbon steels (Part1)-Characteristic equation of flank wear. Bulletin of JapanSociety Of Precision Engineering,1988,22(4):263~269.
    [82] Kitagawa, Maekawa, Shirakashi, Usui. Analytical prediction of flank wear of carbide tools inturning plain carbon steels (Part2). Prediction of flank wear, Bulletin of Japan Society OfPrecision Engineering,1989,23(2):126~134.
    [83] H.Takeyama, R.Murata. Basic investigation of tool wear. Journal of Engineering for Industry,Transactions of the ASME,1963,85(1):33~38.
    [84] T.H.C.Childs, K.Maekawa, T.Obikawa, Y.Yamane. Metal cutting theory and applications, Arnold,London,2000:77.
    [85] X. Luo, K.Cheng, R. Holt and X.liu. Modeling flank wear of carbide tool insert in metal cutting.Wear,2005,259:1235~1240.
    [86] Jiang Hua, Rajiv Shivpuri. A cobalt diffusion based model for predicting crater wear of carbidetools in machining titanium alloys. Transactions of the ASME,2005,127:137~144.
    [87] A.Attanasio,E.Ceretti,S.Rizzuti.3D Finite element analysis of tool wear in machining. CIRPAnnals-Manufacturing Technology,2008,57:61~64.
    [88] L.Filice,D.Umbrello,F.Micari, FE analysis of tool wear in orthogonal cutting. In N.Bay(Ed.).Proceedings of the Second International Conference on Tribology in Manufacturing Processes,Nyborg,2004:187~194.
    [89] Luigino Filice, Fabrizio Micari, Luca Settineri. Wear modelling in mild steel orthogonal cuttingwhen using uncoated carbide tools. Wear,2007,262:545~555.
    [90] Y.C.Yen, J.Sohner, B.Lilly, T.Altan. Estimation of tool wear in orthogonal cutting using the finiteelement analysis. J.Mater.Proc.Technol,2004,146:82~91.
    [91] Yung-Chang Yen. Modeling of metal cutting and ball burnishing prediction of tool wear andsurface properties. Ohio State: School of The Ohio State University,2004.
    [92] J.Fleischer, J.Schmidt, L.J.Xie, C.Schmidt, F.Biesinger.2D tool wear estimation using finiteelement method, in: A.Moisan,G.Poulachon(Eds.). Proceedings of the Seventh CIRP InternationalWorkshop on Modeling of Machining Operations, Cluny,2004:82~91.
    [93] L.-J.Xie, J.Schmidt, C.Schmidt, F.Biesinge.2D FEM estimate of tool wear in turning operation.Wear,2005,258:1479~1490.
    [94] L.-J.Xie. Estimation of two-dimension tool wear based on finite element method. University ofKarlsruhe,2004.
    [95] S. Kalpakjian. Manufacturing processes for engineering materials. Menlo Park Addison–Wesley/Longman,1997:125.
    [96] J.M. Alexander. On problems of plastic flow of materials. London: Elsevier Applied SciencePublishers,1985:67.
    [97] Oxley, Stevenson M G.. Measuring stress/strain properties at very high strain rates using amachining test. J.Inst.Metals,1967.
    [98]王敏杰,胡荣生,刘培德.从正交切削试验法获得金属材料的动态力学性能.科学通报,1989,34(18):1249~1232.
    [99]付秀丽.高速切削航空铝合金变形理论及加工表明形成特征研究.济南:山东大学,2007.
    [100] Johnson G R. Cook W H. A constitutive model and data for metals subjected to large strains, highstrain rates and high temperatures[C]//In: Proc7th Int Symp on Ballistics. The Hague,Netherlands: American Defense Preparedness Association,1983:541~547.
    [101] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for materialdynamics calculations. Journal of Applied Physics,1987,61:1816~1825.
    [102] Zerilli F J, Armstrong R W. Description of Tantalum deformation behavior by dislocationmechanics based constitutive relations. J. Appl. Phys.,1990,68(4):1580~1591.
    [103] P.S.Follansbee, U.F.Kocks, Acta Met,1988:36~81.
    [104] Lee,W.S., Lin,C.F. High temperature deformation behavior of Ti6Al4V alloy evaluated by highstrain rate compression tests. J.Mater.Process.Technol,1998,75:127~136.
    [105] Meyer Jr. H.W, Kleponis. Analysis of parameters for the Johnson-Cook model for2-inch thickrolled homogeneous armor. In:Chinni,MichaelJ.(Ed.), Advanced Simulation TechnologiesConference, Military, Government and Aerospace Simulation Series,1998,30(4).
    [106] Dumitrescu, Elbestawi, El-Wardany. Mist coolant applications in high speed machining ofadvanced materials metal cutting and high speed machining. Kluwer Academic/PlenumPublishers,2002:329~339.
    [107] Songwon Seo, Oakkey min, Hyunmo Yang. Constitutive equation for TC4at high temperatursmeasured using the SHPB technique. International Journal of Impact Engineering,2005,31:735~754.
    [108] Madalina Calamaz, Dominique Coupard, Franck Girot. A new material model for2D numericalsimulation of serrated chip formation when machining ttanium alloy TC4. International Journalof Machine Tools&Manufacture,2008,48:275~288.
    [109]罗皎,李淼泉,李宏,于卫新. TC4钛合金高温变形行为及其流变应力模型.中国有色金属学报,2008,18(8):1395~1401.
    [110] Domenico Umbrello. Finite element simulation of conventional and high speed machining ofTi6Al4V alloy. Journal of materials processing technology,2008,196:79~87.
    [111]赵敬伟.置氢处理对钛合金组织演变及高温变形行为的影响.2009,沈阳:东北大学.
    [112]袁宝国.置氢TI-6AL-4V合金室温变形行为及改性机理研究.2010,哈尔滨:哈尔滨工业大学.
    [113]杨树宝,徐九华,危卫华,傅玉灿.置氢处理对TC4钛合金流变行为的影响.航空学报.2010,31(5):1093~1098.
    [114]李玉龙,索涛,郭伟国,等.确定材料在高温高应变率下动态性能的Hopkinson杆系统.爆炸与冲击,2005,25(6):487~492.
    [115]许泽建,李玉龙,刘明爽,等.不锈钢0Cr18Ni10Ti焊接头高温、高应变率下的动态力学性能.金属学报,2008;44(1):98~104.
    [116] SHA W, MCKINVEN C J. Experimental study of the effects of hydrogen penetration on gammatitanium aluminize and Beta21S titanium alloys. Journal of Alloy and Compounds,2002,335(1/2):16~20.
    [117] Zhao Jingwei, Ding Hua, Zhao Wenjuan, et al. Influence of hydrogenation on microstructuresand microhardness of Ti6Al4V alloy. Transactions of Nonferrous Metals Society of China,2008,18(03):506~511.
    [118] O N Senkov, F H Froes. Thermohydrogen processing of titanium alloys. International Journal ofHydrogen Energy,1999,24:565~576.
    [119] M. A. Meyers, Dynamic Behavior of Materials. New York: John Wiley&Sons, Inc,1994:260.
    [120]李红,侯红亮,孙中刚.氢对TC4合金物理力学性能的影响及其与切削性能的相关性.航空制造技术,2008,(20):80~88.
    [121]张幼桢.金属切削原理及刀具.北京:国防工业出版社,1990,75~91.
    [122]张宏建,温卫东,崔海涛,等.不同温度下IC10合金的本构关系.航空学报,2008,29(2):499~504.
    [123]李娜,李玉龙,郭伟国.3种铝合金材料动态性能及其温度相关性对比研究.航空学报,2008,29(4):903~908.
    [124] Liang,R.Q, Khan. A critical review of experimental results and constitutive models for BCC andFCC metals over a wide range of strain rates and temperatures. Int.J.of Plasticity,1999,15:963~980.
    [125] Rule W.K, Jones S.E. A revised form for the Johnson-Cook strength model. Int.J.ImPact Engng,1998,21(8):609~624.
    [126]林木森,庞宝君,张伟,迟润强.5A06铝合金的动态本构关系实验.爆炸与冲击,2009,29(3):306~311.
    [127]李国和.基于线性扰动分析的高速切削过程绝热剪切预测研究.大连:大连理工大学,2009.
    [128] Zorev, N.N. IN: International Researvh in Production Engineering. ASME. New York.1963:42.
    [129] E. Usui, T. Shirakashi. Mechanics of machining-from descriptive to predictive theory. ASMEPublications, PED Sciences,1997,(39):369~389.
    [130] T.H. Childs, K. Maekawa, T. Obikawa, Y. Yamane. Metal Machining: Theory and Applications,Elsevier, Amsterdam,2000:408.
    [131] L.Filice, F.Micari, S.Rizzuti, D.Umbrello. A critical analysis on the friction modeling in orthogonalmachining. International Journal Machine Toool&Manufacture,2007,47:709~714.
    [132]戴雄杰.摩擦学基础.上海:上海工业出版社,1984.
    [133]温诗铸.摩擦学原理.北京:清华大学出版社,1990.
    [134] Obikawa T, Usui E. Computational machining of titanium alloy-finite element modeling and afew results. Journal of Manufacturing Science and Engineering,1996,118:208~215.
    [135] Umbrello D, Rizzuti S, Outeiro J C, etal. Hardness-based flow stress for numerical simulation ofhard machining AISI H13tool steel. Journal of materials processing technology,2008,199:64~73.
    [136] Lee P, Kuhn H. Metall Trans,1973,(4):963~969.
    [137] Sowerby R, O’Reily I. Chandrasekaran Net al.J Eng Mat Tech Trans,1984,106:101
    [138] Cockcroft M G, Latham D J. Ductility and the workability of metals. J Inst Metals,1968,96:33~39.
    [139] Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their application. J MechWork Technol,1980,4(1):65~81.
    [140] Kazutake Komori. Effect of ductile fracture criteria on chevron crack formation and evolution indrawing. International Journal of Mechanical Sciences2003,45:141~160.
    [141]杨树宝,陈大宏,阎军.韧性断裂准则的研究及其在冷镦成形过程中的应用.重型机械,2007,(3):19~22.
    [142] H. Takudaa, K. Morib, N. Hattaa. The application of some criteria for ductile fracture to theprediction of the forming limit of sheet metals. Journal of Materials Processing Technology,199,(95):116~121.
    [143] Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metalsheets, sheet metal forming and formability. Proceedings of the Seventh Biannual Conference ofthe International Deep Drawing Research Group,1972.
    [144] Norris D M, Reaugh J E, Moran B, et al. J Eng Mater Tech.1978,100:279.
    [145] J.Lorentzon, N.Jarvstrat, B.L.Josefson. Modelling chip formation of alloy718. J. Mater. Process.Tech,2008:1~9.
    [146]苏国胜,刘战强.基于切削断裂带断裂特征的锯齿形切屑形成机理演化的研究.工具技术,2010,44(10):17~19.
    [147]王珉.钛合金铣削加工中刀具磨损的研究,南京:南京航空学院,1985.
    [148]李亮.钛合金高速铣削机理及其工艺研究,南京:南京航空航天大学,2005.
    [149]徐鸿钧,童宪超.刀具工件材料热电特性动态定度方法的研究,南京航空学院科技报告,1982.
    [150] P. P ōdra, S. Andersson. Wear simulation with the winkler surface model. Wear,1997,207(1-2):79~85.
    [151] Mahmoud Nagui Shatla. Prediction of forces, stresses, temperatures and tool wear in metalcutting. School of The Ohio State University.1999.
    [152] F. Kloche, H.W.Raedt, S.Hoppe.2D-FEM simulation of the orthogonal high speed cuttingprocess. Maching Science and Technology,2001,5(3)323~340.
    [153]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析.中国铁道科学,20008,29(4):89~94.
    [154]陈火红,杨剑,薛小香,王朋波.新编Marc有限元实例教程,北京:机械工业出版社,2007.
    [155] Mathew. Use of predicted cutting temperatures in determining tool performance. InternationalJournal of Machine Tools And Manufacture.1989,29(4):481~497.
    [156]李亮,戚宝运.钛合金材料铣削参数试验数据处理技术报告,南京航空航天大学科技报告.2009.
    [157] Kuan Ming, Steven Y.Liang. Modeling of cutting forces in near dry machining under tool weareffect. International Journal of Machine Tools and Manufacture,2007,47:1292~1301.
    [158] Wang J.Y, Liu C.R. The effect of tool flank wear on the heat transfer thermal damage and cuttingmechanics in finish hard turning.CIRP Annals,1999,48:53~58.
    [159] Chen N.N.S., Pun W K. Stresses at the cutting tool wearl land. International Joumal of MachineTools and Manufacturing,1988,(28):79~92.
    [160]张家梁,李蓓智,庞静珠.刀具磨损过程中的切削力特征研究.工艺与检测,2010,(5):111~113.
    [161]袁平.采用多刃铣刀的航空铝合金高速加工过程的数值模拟与实验研究.杭州:浙江大学,2008.
    [162] A. Mu oz-Sánchez, J.A. Canteli, J.L. Cantero, M.H. Miguélez. Numerical analysis of tool weareffect in th machining induced residual stresses. Simulation Medelling Practive and Theory.2011,19(2):872~886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700