用户名: 密码: 验证码:
无线电手持设备的射频辐射机理及绿色设计的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,诸如手机和无绳电话等无线电手持设备已经成为人们生活中必不可少的一部分,由此引起的电磁暴露问题也日益受到公众的广泛关注。无线电手持设备作为低功率的发射机,其天线紧贴人体头部,产生的感应场和辐射场可能会过量照射人体头部而对人体造成伤害。如何评估和避免其电磁辐射对人体的伤害,一直是学术界研究的热点,也是本文的主要研究内容。通过本文的研究工作,力争为开展生物电磁学实验和制订合理的非电离辐射卫生防护标准提供参考,为绿色环保型无线电手持设备的开发提供有益的指导。
     本文在综合国内外相关领域研究成果的基础上,应用电磁场与天线相关理论以及计算电磁学的数值方法,从射频电磁暴露评估关键技术、无线电手持设备天线设计与优化、儿童与成人头部吸收无线手持设备辐射电磁能量差异等方面进行了深入研究。研究内容包括无线电手持设备与人体相互作用的数值建模和仿真,比吸收率测量系统关键技术的研究、以及RFID读写器天线的仿真和优化等方面的工作。
     研究工作的主要创新点如下:
     (1)采用蒙特卡罗方法得到电场探头校准的高置信水平(置信概率)对应的置信区间。在整个测量范围内,肖特基检波二极管的压缩特性导致电场探头测量结果的非线性。因此,在电场探头用于电磁剂量学测量前,必须对电场探头进行校准并分析其不确定度。蒙特卡罗方法使用概率密度函数来分析电场探头校准的不确定度,避免了采用“测量不确定度表示指南”中的规则评估不确定度引入的近似,从而可以精确求解电场探头校准的高置信水平对应的置信区间
     (2)通过数值仿真和实验测试研究工作在UHF频段的双频平面倒F天线的电磁辐射在SAM头部模型中产生的比吸收率(SAR)分布情况。由于双频平面倒F天线(PIFA)天线能够同时工作在900MHz和1800 MHz的移动通信频段,因此在手机中得到了广泛的应用。论文利用时域有限差分法仿真分析了人体头部在PIFA天线近场的能量吸收机制,得到人体头部内的SAR分布。测试结果与仿真结果进行了比对分析。
     (3)为了克服平面倒F天线的两个谐振点频率相差大、带宽较窄的缺点,论文提出了一种新型射频识别读写器天线。该天线的两个工作频段的中心频点分别位于我国分配给射频识别技术(RFID)使用的两个超高频频段内。该天线很好地缓解了天线带宽增加和天线效率下降的矛盾,在我国为RFID分配的频段内具有较高的天线效率。在ISO/IEC推荐RFID使用频段内的反射损失小于-10dB,天线的相对带宽达到17%以上,能够工作在ISO/IEC推荐使用的频段内,达到实际应用的要求。论文采用最大暴露允许值(MPE)评估该手持RFID读写器天线电磁辐射特性。
     (4)利用数值仿真技术分析儿童头部与成人头部吸收无线电手持设备辐射电磁能量的差异。通过数值仿真分析了以往研究存在差异的主要原因,重点研究了天线和人体头部模型间的有效距离、手机的不同放置位置及仿真结果归一化处理对研究结果的影响。为进一步研究手机的绿色设计进行了有益地探索。
With rapidly increasing demand for wireless communication, wireless handsets such as cellular and cordless telephones have been widely used. Electromagnetic exposure of a wireless handset near human head is a major public concern. Wireless handset as a low power transmitter can make human head super-irradiated due to the induction and radiation field of the antennas of the handset. The microwave energy which is absorbed by human body may induce thermal and non-thermal effects that may lead to damages to human body. Specific Absorption Rate (SAR), which is based on the electric field within the exposed body, is a key evaluation index for such exposure accepted by most of the international standard organizations.
     The dissertation, articulates my researches on evaluation for electromagnetic exposure of wireless handsets, the effects of head size on the electromagnetic energy absorption, the design of antennas for RFID handsets and its key technology, are based on electromagnetism, antenna theory, computational electromagnetism and Exposure Assessment of RF Technologies. These researches results not only provide effective inquiry data for RF bioeffects study, but also make a guiding role for the green design of wireless handsets.
     The main efforts and contribution of this dissertation are as following:
     (1) The confidence interval of E-field probes calibration for a high level of confidence is derived from Monte Carlo method. The compression characteristic of Schottky detector diode causes E-field probes highly non-linear over signal strength. Therefore it is important to accurately calibrate E-field probes in simulation liquid at mobile communications frequencies before probes are used in dosimetric measurements. The Monte Carlo method uses the probability density function rather than the mean, standard deviation and degree of freedom. So it avoids the approximation in the evaluation of uncertainty of probe calibration in Guide to the Expression of Uncertainty in Measurement.
     (2) The SAR distribution in a SAM head model which induced by a planar inverted-F antenna are studied by simulation and measurement. The PIFA antenna is widely applied to mobile service in which the 900MHz frequency band and 1800MHz frequency band are the current carrier frequency bands in China. The impacts to human health are investigated using the finite-difference time-domain technique. Assessments of specific absorption rate in the head were conducted through simulating the energy absorption mechanism of head in the near field. The experimental results are in good agreement with the simulative results.
     (3) A novel antenna and feed networks are proposed for a dual frequency of 840MHz~845MHz and 920MHz~925MHz application which is allocated for radio-frequency identification (RFID) use in China. Due to enhanced bandwidth, the antenna can also be applied to ultra high frequency of 860MHz-960MHz that is proposed for RFID use by ISO/IEC. The feed networks which are used to attain circular polarization characteristics of the antenna were introduced. Simulation and measurement were performed and the frequency band with a return loss less than -10dB was achieved. The evaluation for electromagnetic Exposure of the antenna is discussed in details.
     (4) Electromagnetic exposure of a mobile phone near children's head which is compared with adult's head is investigated by using finite-difference time-domain method. The factors which cause variation of the results in previous research as are evaluated by Numerical simulation. We focus on the effects from different relative positions of mobile phones, the effective distance between the antennas and the human head, normalization of numerical simulation. The thesis results are important and can work as a foundation to conduct further research in green design for wireless handset.
引文
[1]葛德彪,闫玉波.电磁波时域有限差分法(第二版),西安电子科技大学出版社,2005.
    [2]盛新庆.计算电磁学要论(第二版),中国科学技术出版社,2008.
    [3]金亚秋等.复杂系统中的电磁波,复旦大学出版社,1994.
    [4]高本庆.时域有限差分法.国防工业出版社,1995.
    [5]D.M.Sullivan,O.P.Gandhi,A.Taflove.Use of the finite-difference time-domain method for calculating EM absorption in man models[J].IEEE Transaction on Biomedical Engineering,1988,35(3):179-186.
    [6]EN 50361,Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones(300 MHz-3 GHz),CENELC,2001.
    [7]IEEE Std 1528,IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques,IEEE,2003.
    [8]IEC 62209-1,Human Exposure to Radio Frequency Fields from Hand-Held and Bodymounted Wireless Communication Devices-Human Models.Instrumentation and Procedures -PART 1:Procedure to Determine the Specific Absorption Rate(SAR) for Hand-Held Devices Used in,IEC,2005.
    [9]IEEE Std 1309-1996,Calibration of electromagnetic field sensors and probes,excluding antennas,from 9 kHz to 40 GHz,IEEE,1996.
    [10]焦培南等.长椭球介质人头模型中的场分布,电波科学学报,2000,15(1):60-64.
    [11]O.P.Gandhi.Numerical methods for specific absorption rate calculations[C].Biologic Effects and Medical Applications of Electromagnetic Energy,O.P.Gandhi,editor.Englewood Cliffs,NJ:Prentice-Hall,1990:113-140.
    [12]O.P.Gandhi,J.Y.Chen.Electromagnetic absorption in the human head from experimental 6GHz hand-held transceivers[J].IEEE Trans.Electromagnetic Compatibility,1995,37(4):547-558.
    [13]V.Shankar,W.F.Hall and A.H.Mohammadian.A time domain differential solver for electro-magnetic scattering problems[C].Proceedings of the IEEE.1989,77:709-721.
    [14]D.W.Armitage,H.H.Levine and R.Pethig.Radio frequency induced hyperthermia computer simulation of specific absorption rate distributions using realistic anatomical models[J].Physics In Medicine and Biology,1983,28(1):31-42.
    [15]O.P.Gandhi,J.DeFord,and K.Kanai.Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia[J].IEEE Trans.Biomedical Eng.1984,31(10):644-651.
    [16]Chiba,et al.Application of the finite element method to analysis of induced current densities inside human model exposed to 60Hz electric field[J].IEEE Trans.Power Application Systems,1984,103(7):1895-1902.
    [17]D.R.Lynch,et al.Finite element solution of Maxwell's equations for hyperthermia treatment planning[J].Journal of Computational Physics,1985,58(2):246-269.
    [18]C.Hafner.The generalized multipole technique for computational electromagnetic[M].Boston:Artech House Books,1990.
    [19]C.Hafner,N.Kuster.Computations of electromagnetic fields by the MMP method(GMT)[J].Radio Science,1991,26(1):291-297.
    [20]P.Leuchtmann,L.Bomholt.Thin wire feature for the MMP-code[C].6th Annual Review Progress in Applied Computational Electromagnetic(AECS),Conference Proceedings,Monterey,CA,Mar.1990.
    [21]J.Y.Chen,O.P.Gandhiand and D.L.Conover.SAR and induced current distributions for operator exposure RF dielectric sealers[J].IEEE Trans.Electromagnetic Compatibility,1991,33(3):252-261.
    [22]O.P.Gandhi,Y.G.Gu,J.Y.Chen and H.I.Bassen.Specific absorption rates and induce current distributions in an anatomically based human model for plane wave exposures[J].Health Physics,1992,63(3):281-290.
    [23]吕英华.计算电磁学的数值方法[M].清华大学出版社,2006.
    [24]J.C.Lin,O.P.Gandhi.Computational models for predicting field intensity[M].Handbook of Biological Effects of Electro-magnetic Fields,C.Polk,E.Postow,Eds.Boca Raton,FL:CRC Press,1995:337-402.
    [25]Simunic Ed.Reference models for bio-electro-magnetic test of mobile communication systems[C].Proceedings of the COST 244 Meeting,Rome,Italy,Nov.17-19,1994.
    [26]A.W.Guy.Analyses of electro-magnetic fields induced in biological tissues by thermo graphic studies on equivalent phantom,IEEE Trans.Microwave Theory Tech.Vol.MTT-19,pp.205-214,Feb.1971.
    [27]S.S.Stuchly,A.Krassewski,M.A.Stuchly et al.Energy deposition in a model Of man in the near field.Bioelectromagnetics,1985,6:115-129.
    [28]Q.Bolzano,O.Garay,T.J.Manning.Electro-magnetic energy exposure of simulated users of portable cellular telephones[J].IEEE Trans.On Vehicular Technology,1995:44(3):390-403
    [1]P.Harris.Effects of non-ionizing radiation given priority status by congress[J].Microwaves, vol. 16,no.8,pp. 8-10, Aug. 1977.
    
    [2] N. H. Steneck, et al.,The origins of U. S. safety standards for microwave radiation. Science,vol. 208, pp. 1230-1237, June 13, 1980.
    
    [3] S. Baranski, P. Czerski. Biological effects of electromagnetic radiation, New York: New York University Press, 1976.
    
    [4] S. Cleary. Biological effects of microwave and radio-frequency radiation [J]. CRC Critical Review in Environmental Control, vol.17, no.12, pp. 51-59, Dec. 1980.
    
    [5] P. Brodeur. Reporter at Large [J]. New Yorker, pp. 43-83, Dec. 20,1976.
    
    [6] H. Bassen, P. Herchenroeder, A. Cheung. Evaluation of an implantable electric field in finite simulated tissue [J]. Radio, Sci, Suppl., pp. 15-25, Nov.-Dec.1977.
    
    [7] T. E. Batchman, G Gimpelson. An implantable electric-Field probe of sub millimeter Dimensions [J]. IEEE Trans. on Microwave Theory and Techniques, vol. MTT-31, no.9,pp.745-751, September 1983.
    
    [8] T. H. Marsburn. A noise analysis of an electromagnetic field strength probe of submillimeter Dimensions. Master's Thesis School of Engineering and Applied Science, University of Virginia, 1984.
    
    [9] P. H. Howerton. Integrated optical electric field strength probe [M]. Ph.D. Dissertation, School of Engineering and Applied Science, University of Virginia, 1986.
    
    [10] Dragan Poljak, Edmund. K. Miller, Y. Choy Tham. Root-mean-square measure of nonlinear effects to the transient response of thin wires [J]. IEEE Transactions on Antennas and Propagation, 2003, 51(12): 3280-3283.
    
    [11] Douglas A. Hill. Waveguide technique for the calibration of miniature implantable electric-field probes for use in microwave bioeffects Studies [J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(1): 92-99.
    
    [12] T. E. Batchman, D. P. Mulvey. Miniature electric field probes. IEEE CH2707-8/89/0362,1989.
    
    [13] K. Pokovic, T. Schmid, N. Kuster. Millimeter-resolution E-field probe for isotropic measurement in lossy media between 100MHz and 20GHz [J]. IEEE Transactions on Instrumentation and Measurements, 2000, 49(4): 239-243.
    
    [14] G. Smith, Ronald W. P. King. Electric field probes in material media and their application in EMC [J]. IEEE Transactions on electromagnetic compatibility, 1975, 17(4): 206-211.
    
    [15] Steven D. Harrah, K. T. NG and T. E. Batchman. Voltage response and field reconstruction for a miniature field probe in a spatially Nonuniform electric field [J]. IEEE Transactions on instrumentation and measurement, 1990, 39(1): 27-31.
    
    [16] B. R. Strickland, N. F. Audeh. Diode-loaded dipole antenna modeling and design [J]. IEEE Transactions on antennas and propagation, 1993, 41(3): 239-243.
    
    [17] B. R. Strickl, N. F. Audeh. Numerical analysis technique for diode-loaded dipole antennas [J].IEEE Transactions on electromagnetic compatibility, 1993, 35(4): 480-484.
    
    [18] T. Schmid, O. Egger, N. Kuster. Automated E-field scanning system for dosimetric assessments [J]. IEEE Trans. Microwave Theory Tech., 1996 44: 105-113.
    
    [19] "Guidelines for evaluating the environmental effects of radiofrequency radiation," Report and Order, ET Docket no. 93-62, FCC 96-326, Federal Communications Commission (FCC),Washington, D.C., 1996.
    
    [20] "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," International Commission on Non-Ionizing Radiation Protection,Health Physics, vol. 74, no. 4, pp. 494-522, 1998.
    
    [21] D. Hill. Waveguide technique for the calibration of miniature implantable electric-field probes for use in microwave-bioeffects studies [J]. IEEE Trans. Microwave Theory Tech.,vol. MTT-30, pp. 92-99, Jan. 1982.
    
    [22] Lord Rayleigh, "On the Passage of Electric Waves Through Tubes," Philos. Mag., vol. 43,pp.125-132,1897. Reprinted in Collected Papers, Cambridge Univ. Press, 1903.
    
    [23] K. S. Packard, "The Origin of Waveguide: A Case of Multiple Rediscovery," IEEE Trans.Microwave Theory and Tech, vol. MTT-32, pp.961-969, September 1984.
    [1]齐欢,王小平.系统建模与仿真[M].北京:清华大学出版社,2004.
    [2]JCGM.Evaluation of measurement data-Supplement 1 to the "Guide to the expression of uncertainty in measurement"-Propagation of distributions using a Monte Carlo method.JCGM 104:2007.
    [3]NIS81 NAMAS.The treatment of uncertainity in EMC measurement.Tech.Rep.,NAMAS Executive,National Physical Laboratory,Teddington,Middlesex,England,1994.
    [4]B.N.Taylor,C.E.Kuyatt.Guidelines for evaluating and expressing the uncertainity of NIST measurement results.Tech.Note 1297,National Institute of Standards and Technology,1994.
    [6]K.Pokovic.Advanced Electromagnetic Probes for Near-Field Evaluation.Doc.Tech.Sci.Diss.ETH Nr.13334,Swiss Federal Institute of Technology,Zurich,Switzerland,1999.
    [7]K.Pokovic et al.Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communication frequencies.Proceedings of ICECOM' 97.
    [8]刘智敏.用MC仿真计算不确定度[J].中国计量学院学报,2005,16(1):1-7.
    [9]陈晓怀等.基于蒙特卡罗方法的测量不确定度合成[J].仪器仪表学报,2005,26(8):759-761.
    [1] EN 50361, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), CENELC, 2001.
    
    [2] IEEE Std 1528, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques, IEEE, 2003.
    
    [3] EEC 62209-1, Human Exposure to Radio Frequency Fields from Hand-Held and Body-mounted Wireless Communication Devices - Human Models. Instrumentation and Procedures -PART 1: Procedure to Determine the Specific Absorption Rate (SAR) for Hand-Held Devices Used in, IEC, 2005.
    
    [4] IEEE Std 1309-1996, Calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz, IEEE, 1996.
    
    [5]Gandhi O. P. Some numerical methods for dosimetry: extremely low frequencies to microwave frequencies [J]. Radio Sci., 1995, 30 (1): 161-177.
    
    [6]Bernardi P., Cavagnaro M., Pisa S., et al. Evaluation of the SAR distributions in the human head for cellular phones used in a partially closed environment [J]. IEEE Trans. EMC, 1996, 38(3): 357 - 366.
    
    [7]Okomiewski M., Stuchly M.A. A study of the handset antenna and human body interaction[J].IEEE Trans. MTT, 1996,44 (10): 1855 - 1864.
    
    [8] Aksun M. I., Chuang S. L., On slot-coupled microstrip antennas and their applications to CP operation-Theory and experiment [J]. IEEE Trans. Antennas ProPagat., 38(8)1990: 1224-1230.
    
    [9] Prescott D. T. and Shuley N. V. A method for incorporating different sized cells into the finite-difference time-domain analysis technique. IEEE Microwave Guided Wave Lett., Nov.1992, 2(11): 434-436.
    
    [10] White M. J., Iskonder M. F. and Huang Z. Development of multigrid FDTD code for three-dimensional application. IEEE Trans. Antennas Propagat., Oct. 1997, AP-45(10):1512-1517.
    
    [11]A. W. Guy. Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent Phantom. IEEE Trans. Microwave Theory Tech., Vol. MTT19, pp.205-214, Feb. 1971.
    
    [12] Katja P., Michael B., Thomas S., et al. Experimental and numerical near field evaluation of RF transmitters[A]. In: Klauenberg B. J., Mlklavcic D. NATO advanced research workshop on radio frequency radiation dosimetry and its relationship to the biological effects of electromagnetic fields, Slovenia, 1998 [M ]. Dordrecht/Boston /London: Kluwer Academic Publishers, 1998, 159-186.
    
    [13]Watanabe S., Wakayanagi H., Hamada T., et al. An experimental study on the dependence of local SARs on a human ear during exposure toMW from a cellular telephone. International symposium on electromagnetic compatibility 1999, 341 - 344. Available form : IEEE / IEL.
    
    [14]Indira C. Quantification of electromagnetic absorp tion in humans from body-mounted communication transceivers [J]. IEEE Trans. VT, 1985, 34 (2): 56 - 62.
    
    [15]Stuchly S. S., Stuchly M. A., Krasxewski A., et al. Energy deposition in a model of man:frequency effects [J]. IEEE Trans BME,1986, 33 (7) : 702 - 713
    
    [16]Pakhomov A. G., Mathur S. P., Akyel Y. High resolution microwave dosimetry in lossy media [A]. In: Klauenberg B. J., Mlklavcic D. NATO advanced research workshop on radio frequency radiation dosimetry and its relationship to the biological effects of electromagnetic fields, Slovenia, 1998 [M]. Dordrecht/Boston /London: Kluwer Academic Publishers, 1998, 187-197.
    [17]Schuderer J.,Schmid T.,Urban G.,et al.Novel high resolution temperature probe for radio frequency dosimetry[J].Phys.Med Biol.,2004,49(6):N83-N92.
    [1]O.P.Gandhi,G.Lazzi,and C.M.Furse,"Electromagnetic absorption in the human head and neck for mobile telephones at 835 MHz and 1900 MHz," IEEE Trans.Microwave Theory Tech.,vol.44,pp.1884-1897,Oct.1996.
    [2]O.P.Gandhi and G.Kang,"Some present problems and a proposed experimental phantom for SAR compliance testing of cellular telephones at 835 MHz and 1900 MHz," Phys.Med.Biol.,vol.47,pp.1501-1518,2002.
    [3]F.Schoenborn,M.Burkhardt,and N.Kuster,"Differences in energy absorption between heads of adults and children in the near field of sources," Health Phys.,vol.74,no.2,pp.160-168,Feb.1998.
    [4]A.Drossos,V.Santomaa,and N.Kuster,"The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz,"IEEE Trans.Microwave Theory Tech.,vol.48,pp.1988-1995,2000.
    [5]J.C.Lin,"Cellular Mobile Telephones and Children," IEEE Antennas and Propagation Magazine,vol.44,no.5,Oct.2002.Citing S.Michaelson and J.C.Lin,Biological Effects and Health Implications of Radiofrequency Radiation.New York:Plenum,pp.137-218,1987.
    [6]P.J.Riu and K.R.Foster,"Heating of tissue by near-field exposure to a dipole:A model analysis," IEEE Trans.Biomed.Eng.,vol.46,pp.911-917,Aug.1999.
    [7]O.Fujiwara,T.Joukou,and J.Wang,"Dosimetry analysis and safety evaluation of realistic head models for portable telephones"(in Japanese),Trans.Inst.Electron.Inf.Commun.Eng.B,vol.J83-B,no.5,pp.720-725,May 2000.
    [8]V.Anderson,"Comparisons of peak SAR levels in concentric sphere head models of children and adults for irradiation by a dipole at 900MHz," Phys.Med.Biol.48,pp 3263-3275,2005.
    [9] A. W. Guy, C. K. Chou, and G. Bit-Babik, "FDTD derived SAR distributions in various size human head models exposed to simulated cellular telephone handset transmitting 600 mW at 835 MHz," in 24th Bioelectromagnetics Soc. Annu. Meeting, Quebec, QC, Canada, June 2002, pp. 7-13.
    
    [10] S. Mochizuki, S. Watanabe, M. Taki, Y. Yamanaka and H. Shirai, "Size of Head Phantoms for Standard Measurements of SAR Due to Wireless Communication Devices," Electronics and Communications in Japan, Vol.87, No.4, pp.82-91, Feb. 2004.
    
    [11] W. Kainz, A. Christ, T. Kellom, S. Seidman, N. Nikoloski, B. Beard and N.Kuster, "Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning," Phys.Med. Biol. 50, 3423-3445, 2005.
    
    [12] A. Christ and N. Kuster, "Modelling of RF exposure in the heads of adults and children: Differences in Energy Absorption," to be published in Bioelectromagnetics.
    
    [13] J. Q. Wang and O. Fujiwara, "Comparison and Evaluation of electromagnetic absorption characteristics in realistic human head models of adults and children for 900MHz mobile telephones," IEEE Trans. Microwave Theory Tech., vol. 51, no. 3, pp. 966-971, Mar. 2003.
    
    [14] G. Bit-Babik, A.W. Guy, C-K. Chou, A. Faraone, M. Kanda, A. Gessner, J. Wang and O.Fujiwara, "Simulation of Exposure and SAR Estimation for Adult and Child Heads Exposed to Radiofrequency Energy from Portable Communication Devices", Radiation Research 163,580-590, 2005.
    
    [15] B. B. Beard, W. Kainz, T. Onishi, T. Iyama, S. Watanabe, O. Fujiwara, J. Q. Wang, G.Bit-Babik, A. Faraone, J. Wiart, A. Christ, N. Kuster, A. K. Lee, H. Kroeze, M. Siegbahn, J.Keshvari, H. Abrishamkar, W. Simon, D. Manteuffel, and N. Nikoloski, "Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head", IEEE Trans. Electromagnetic Compatibility, vol. 48, no. 2,May 2006.
    [1]王伟.射频识别技术及其应用的研究[J].安徽师范大学学报(自然科学版),2008,31(2):139-143.
    [2]钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社,1991.
    [3]Liu D Z,Peter S H.Dual-frequency planar inverted-F antenna[J].IEEE Trans Antennas Propag(S0018-926X),1997,45(10):1451-1458.
    [4]Row J S.Experimental studies of the dual-band planar inverted-F antenna with a U-shaped slot[J].Microwave Opt Technol Lett(S0895-2477),2003,37(5):359-361.
    [5]Chen Z,Ganjara A D,Chen X.A dual-L antenna with a novel tuning technique for dual frequency applications[J].IEEE Trans Antennas Propag(S0018-926X),2002,50(3):402-403.
    [6]Virga K L,Rahmat-Samii Y.Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging[J].IEEE Trans Microwave Theory Tech(S0018-9480),1997,45(10):1879-1888.
    [7]Lo Y T,Solomon D,Richards W F.Theory and experiment on microstrip antennas.IEEE Trans Antennas Propag.(S0018-926X),1979,27(3):137-145.
    [8]钟顺时.微带天线理论与应用[M].西安电子科技大学出版社,1991.
    [9]张钧,刘克诚,张贤铎等.微带天线理论与工程[M].国防工业出版社,1988.
    [10]Tang C.L.,Lu J.H.etal.,Circularly polarizedequilateral-triangular microstrip antenna with truneated tip.[J].Electron.Lett.34(13)1998:1277-1278.
    [11]Wong K.L.and Lin Y.F.,Circularly polarized microstrip antenna with a tuning stub[J].Eleetron.Lett.,,34(9),1998:831-832.
    [12]Lu J.H.and Tang C.L.,Circular polarization design of a single-feede quilateral-triangular microstrip antenna.Eleetron.Lett.,34(4),1998:319-321.
    [13]Aksun M.I.,Chuang S.L.,On slot-coupled microstrip antennas and their applications to CP operation-Theory and experiment[J].IEEE Trans.Antennas ProPagat.,38(8)1990:1224-1230.
    [14]Zhang-Fa Liu.A method for designing broad-band microstrip antennas in multilayered planar struetures[J].IEEE Trans.On Antennas and Propagat.,1999,47(9):1416-1420.
    [15]J.Rasinger,A.L.Scholtz,W.Pichler,and E.Bonek,“A new enhanced-bandwidth internal antenna for portable communication systems,” in Proc.40th IEEE Veh.Technol.Conf.,Orlando,FL,May 1990,pp.7-12.
    [16]Chen Z,Ganjara A D,Chen X.A dual-L antenna with a novel tuning technique for dual frequency applications[J].IEEE Trans Antennas Propag(S0018-926X),2002,50(3):402-403.
    [17]GuPta K.C.etal.Microstrip antenna design.ArteehHouse,1988.
    [18]Rod B.Design of probe-Fed Staeked patehes[J].IEEE Transaetions On Antennas And Propagat.1999,47(12):1780-1784.
    [19]Pues,H.F.and Vande Capelle,A.R.A impedance matehing technique for inereasing the bandwidth of microstri pantennas[J].IEEET ranson Antennas and Propagat,1989,37(11):1345-1354.
    [20]王亚洲,苏东林,肖永轩,丁柯佳.宽频带正方形微带贴片天线的设计[J].微波学报,2006,22(sup):29-31.
    [21]李明星,张厂求.微带大线的宽带设计综述[J].无线电工程,2003,33(11):36-38.
    [22]王聪敏,高向军,夏冬玉.宽带微带天线技术的探讨[J].现代电子技术,2003,(8):16-18.
    [23]K.M.Luk,C.L.Mak,Y.L.Chow,and K.F.Lee.Broadband microstrip patch antenna[J].Electron Lett.,1998,34:1442-1443.
    [24]Chen,Z.N.and Chia,M.Y.W.Design of broadband probe fed plate antenna with stub[J].Microwaves,Antennas and Propagation,IEEE Proceedings,2001,148(4):221-226.
    [25]陈鹏,房少军.一种计算效率优于XFDTD电磁仿真软件的方法[J].系统仿真学报,2007,19(2):264-266.
    [26]J.Reed and G.J.Wheeler.A method of analysis of symmetrical four-port network[J].IRE Trans.on Microwave theory and technique,vol.MTT-4,pp.246-252,October 1956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700