用户名: 密码: 验证码:
薜荔之传粉小蜂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共生是最具影响力的种间相互作用之一,对生命各个层次都有深刻的且常常是决定性的影响;共生体系的长期维持引发了一系列的进化问题,也因此成为进化理论的一大挑战。榕和榕小蜂系统是目前所知的最严格的专性共生体系之一,两者异常丰富的物种多样性和宿主生活型为共生机理研究提供了理想的体系。
     榕-榕小蜂的共生关系古老且多样,早期的形态学研究显示1种榕往往只有1种对应的传粉小蜂,分子系统学研究也证实在较高的分类等级上两者间具有高度的协同枝系发生和协同进化关系,这种协同关系被应用到物种水平,“一对一”原则被认为在该系统中具有普适性。然而,近年来越来越多的案例证实许多榕属物种拥有1种以上的传粉小蜂,也有同一传粉小蜂为不同榕授粉的实例。特别是分子标记的应用,揭示出大量传粉小蜂隐存种,比例甚至达到所涉及榕属物种的60%;加之宿主转移现象和榕天然杂交后代的发现,冲击着榕-榕小蜂在物种水平高度对应的观点,Machado等也因此提出一个更为松散的进化模式,认为榕与榕小蜂的协同进化仅发生在两者群组之间,在榕群组内宿主转移现象可能经常发生。
     种间专一性屏障的松弛将极大地影响共生双方的动态,哪怕是低频率的例外事件也会导致严重的进化后果。Machado等的进化新模式主要依据巴拿马和墨西哥2个榕组及其对应的传粉小蜂,但有研究证实在某些地区和某些榕属类群中,榕-榕小蜂在物种水平高度对应,协同成种在其进化中占主导地位。因此要正确评价种间专一性在榕-榕小蜂共生体系中的真正地位,不同榕属类群和不同地区非一对一事件的发生频度及产生原因是不可或缺的基本信息。
     薜荔小蜂为薜荔及其变种爱玉子的专性传粉小蜂,至今形态学研究仍未发现它们在任何地区有差异,但薜荔和薜荔小蜂的分类地位飘浮不定,不同的研究者将它们归入不同的属,且在爱玉子人工栽培中薜荔小蜂能否为之有效传粉也有不同的结果。为探究薜荔传粉小蜂的物种组成、地域分布和系统发生关系,我们应用线粒体COI和Cytb、核核糖体ITS2基因对我国东南沿海岛屿及邻近大陆31个种群,331个个体进行了遗传组分、遗传多样性和种群扩张动态分析,并在GenBank中检索相关序列联合构建系统树,以期揭示薜荔传粉小蜂在该地区的物种组成、形成原因和可能的扩散路线;评价薜荔与其传粉小蜂间的物种专一性;评判岛屿和大陆生境对小蜂种群动态的影响;为印度-澳洲区系榕-榕小蜂专性对应程度提供案例;为协同进化模式研究提供参考。论文主要结论如下:
     1)薜荔传粉小蜂在我国东南沿海地区的遗传组成并不均一,可以划分为3个独立的枝系。3个枝系无论是线粒体基因还是核基因都超出了种内差异的范畴,达到物种分异水平;3个枝系没有明显的形态差异,为3个隐存种,分别为Sp.A、Sp.B、Sp.C。
     不同基因和不同方法均将31个种群的331个个体区分为3个枝系,枝系间的遗传分异明确。STUCTRUE软件模拟100万次将个体分配到各枝系的概率都在95%以上;系统树中3个单系的支持率都达99%;在巢式枝系结构中,3个枝系在95%的置信区间内完全分离。不同基因和不同方法区分得到的3个枝系在单倍型和个体水平都完全对应。
     比较3个枝系COI序列分化显示,平均枝系内K2P距离为0.57%,而枝系间分别达6.63%,10.94%和10.69%,任2个枝系间的序列分异都达到平均枝系内遗传差异的10倍以上。这不仅超过了区分动物物种的COI barcode标准距离域,也高于类似研究中榕小蜂隐存种对间的遗传距离,其线粒体基因达到物种分化水平。
     3个枝系的ITS2序列显示出致同进化的特征,枝系内部基本共享相同的ITS2单倍型,而不同枝系对应的单倍型间相差7-13个核苷酸。尽管枝系三有2个对应的ITS2单倍型,但它们仅相差1个碱基,且其中1个单倍型仅局限在1个南方种群。ITS2的单倍型格局从核基因水平证实3个枝系的物种性质。
     3个枝系达到物种分化水平的核基因证据还来源于Cytb的NUMTs序列,在Cytb单倍型和NUMTs的联合系统树中近期的NUMTs序列没有枝系的交叉,证实枝系间已完全隔离。
     2)薜荔传粉小蜂3个物种互为姊妹种。
     在薜荔小蜂COI和Cytb单倍型与其他小蜂相应序列联合构建的系统树中,薜荔小蜂序列聚为1个大单系的支持率为99%;2个物种中同时存在Cytb基因的NUMTs序列也说明它们为近缘种。联合Cytb单倍型和NUMTs序列进行系统重建,NUMTs古老单倍型聚在外类群位置,以之为根的系统树进一步证实了3个物种近缘的系统发生关系;而来源于不同物种的NUMTs序列在外类群中聚为单系更进一步确认它们互为姊妹种的性质。
     3)薜荔传粉小蜂3个物种在我们东南沿海地区有一定的地域分布和物候差异,生境偏好、地理和时间隔离可能是其物种分化的原因。
     薜荔传粉小蜂Sp.A完全分布于北部种群,Sp.B主要分布于南部种群,而Sp.C主要分布于北部的岛屿种群。地域分布差异反映了3个物种的生境偏好,纬度、地形地貌和岛屿大陆环境等差异导致的不同选择压力,山系和海洋导致的隔离都在薜荔小蜂祖先种群的分化中起到重要作用,小蜂先于薜荔的成种事件最终导致3种传粉小蜂在不同地域的共存。
     3个物种的物候有一定差异,Sp.C的出飞期较Sp.A晚10天左右,这种差异甚至逆纬度梯度存在,尽管这个差异在目前条件下尚不足以隔离物种,但在成种过程中起到一定作用。
     4)Sp.A非随机分布,呈现出明显的大陆-岛屿格局,岛屿群来源于大陆群的向外辐射。
     Sp.A广泛分布于北部的27个种群,STUCTURE和NCPA软件将之区分为大陆和岛屿2个下级组,X~2置换检验表明2组非随机分布,AMOVA分析揭示大陆群与岛屿群间的差异达到显著水平,它们在单倍型组成、遗传多样性和种群动态上都有不同。
     与大陆群相比较,岛屿群表现出更明显的种群扩张表征,在巢式枝系图中呈现出更典型的星状结构、更多的单倍型末枝。失配分布分析和统计扩张检验都显示岛屿群经历过或正经历着扩张和瓶颈效应,而大陆群的Tajima’s D和Fs统计量都没有显著偏离0。
     比较遗传多样性可以看到,尽管岛屿群的样本量为大陆群的3倍,但其遗传多样性无论在整体水平还是种群平均水平均低于大陆群,特别是平均序列差异。COI岛屿特有单倍型间最多相差3个点突变,而大陆特有单倍型间可达12个。系统重建也显示大陆单倍型更为古老,它们在有根树中都深埋于内部节点。
     从COI单倍型格局看,所有岛屿特有单倍型都以1个点突变围绕着2个频率最高的大陆岛屿共享单倍型,且都分布在相应大陆种群的东北方向,这不仅符合小蜂的生活史特性,也与杭州湾风力场特征一致。
     岛屿生境剧烈波动和小种群效应导致的更频繁的岛屿种群灭绝事件、大陆种群的远距离救援、以及其后的定居、种群扩张和相对独立条件下的进化,构成了Sp.A典型的大陆-岛屿格局。
     5)宁德及其以南地区为Sp.B和Sp.C的潜在冰期避难所。
     Sp.B和Sp.C在南方和北方种群都有分布,但南方种群表现出更高的遗传多样性,拥有更多的古老特有单倍型。就物种C而言,宁德具有最多的特有单倍型,3个特有单倍型间相差8-11个点突变;而在其他11个种群中,仅桃花岛有1个特有单倍型,后者的特有单倍型与分布最广泛的共享单倍型间只相差1个点突变。从种群动态看,宁德为长期存在种群,失配分析和中性检验的各统计量都显著拒绝其经历过近期统计扩张的假设。宁德及其以南区域很可能为物种B、C潜在的冰期避难所,该地区的武夷山系为薜荔小蜂冰期种群提供了保护地,冰期后,小蜂沿山系从西南向东北方向扩散,直至薜荔分布区北缘。
Mutualisms are one of the most important ecological interactions,with strong influences onalmost all levels in biological systems.Their long term persistence raises many challengingevolutionary questions.Figs and their pollinating wasps,with their great species richness anddiverse host life forms,are among the most tightly integrated pollination mutualisms known,andprovide a model system for developing and testing theories of mutualism evolution.
     The mutualisms of fig and fig wasps are both ancient and diverse.Results frommorphological studies suggested high species specificity between the two interacting partners.Initial molecular phylogenetic studies also suggested co-cladogenesis and coevolution at highertaxonomic levels.These studies led to the adoption of a predominant assumption of one host figtree to one pollinating wasp.However,more and more exceptions have been revealed by recent,especially molecular,studies and breakdowns in the one to one relationship may even representthe majority of relationships.In addition,the discovery of host switches of pollinating wasps andnatural hybrids between fig trees has further undermined the empirical basis of the one-to-one rule.Machado et al.(2005) have proposed a new evolutionary model,saying that the relationshipbetween fig and fig wasps is not strict-sense cospeciation between individual pairs of interactingfigs and wasps,but broad-sense coevolution between related groups,with host-shifting commonwithin groups of figs that are imperfectly defined genetically because of hybridization.However,their new model was based only on results from Ficus sections Pharmacosycea and Americana inthe Americas and may not be applicable elsewhere because some fig groups in other regions havedifferent relationships with their pollinators,with strict host specificity and cospeciation asdominant patterns.Consequently,the frequency in breakdowns of the one to one relationshipwithin different fig groups,in different regions,is essential for the understanding of the relativeimportance of the competing finer-scale cospeciation or broad-sense coevolution models.
     Wiebesia pumilae (Hill),originally described from Hong Kong,is the specific pollinator ofFicus pumila L.var.pumila and its variant var.awkeotsang,and shows no known morphological variation from place to place.However,the taxonomic status of F.pumila and W.pumilae areunresolved.The host was placed in Synoecia section Rhizocladus or Ficus section Ficus based ondifferent studies,while the pollinator was assigned to the genera Blastophaga or Wibesia bydifferent researchers.In addition studies in Taiwan and Fujian have found that some pollinatorsderived from var.pumila did not enter receptive figs of var.awkeotsang which suggested thatmore than one species of pollinator might be present.
     We employed three genes,COI (mitochondrial),Cytb (both mitochondrial and its NUMTssequences) and ITS2 (nuclear ribosomal) to investigate the extent of divergence,distributions andphylogenetic relationships within the Wiebesia pollinators of F.pumila in Southeastern China.Wesampled 331 individuals from 31 mainland and island populations.Using the softwareSTRUCTURE,ANeCA,PAUP and ARLEQUIN,we analysed the degree of genetic divergence,genetic diversity and demographic expansion dynamics.Integrating corresponding sequences inthe GenBank data base,we reconstructed phylogenetic trees.We also assessed the speciesspecificity of F.pumila and its pollinators,and estimated the influence of habitat differencesbetween mainland and islands on W.pumilae populations.
     The main results were as follows:
     1) The pollinators of F.pumila in Southeastern China showed deep genetic divergence,andcould be divided into three distinct clades.The genetic distances between any two clades exceededthose among conspecific individuals based on both mitochondrial and nuclear genes.Nomorphological differences were evident between the three clades.They should be recognized asthree cryptic species,named as Sp.A,Sp.B and Sp.C.
     The 331 wasp individuals were consistently placed into the three identical clades,irrespectiveof the genes and methods employed.All three clades were well defined genetically.Theprobabilities of assignment of individuals to each clade,assigned by STRUCTURE with1,000,000 repetitions,were all more than 95%.The three clades could not be linked togetherwithin the 95% statistical parsimony criterion by TCS integrated into ANeCA.The bootstrappercentages of the three monophyletic clades in different phylogenetic trees are all 99%.
     The divergences of COI between any two clades were more than ten times the averagedifferences within clades.The Kimura-2-parameter differences between clades were 6.63%, 10.94% and 10.69% respectively,while the average of those within each clades was only 0.57%.The distances between any two clades were not only beyond the standard COI barcoding thresholdfor animal species,but also higher than the known maximum found in similar studies on crypticfig wasps.
     The nuclear genes of W.‘pumilae’also showed deep divergence.Different individuals sharedthe same ITS2 haplotypes within two clades,while the haplotypes in the three different cladesdiffered from each other by 7 to 13 mutations.Although two ITS2 haplotypes were detected in oneof the three clades,they were highly homogenized with just one different nucleotide out of 454bpsequences.Moreover one of these two haplotypes was limited to just one population.Thedistribution of ITS2 haplotypes coincided with the concerted evolution of the ribosome gene,further demonstrating interspecies differences among the three clades.
     NUMTs of Cytb verified complete isolation among the three clades.The recent NUMTshaplotypes derived from the individuals from different clades clustered with corresponding Cytbhaplotypes only within each clade in the combined phylogenetic trees,rejecting the possibility ofrecent gene flow among clades.
     2) The three cryptic pollinators of F.pumila are sister species.
     When clustered with the corresponding sequences of other pollinating fig wasps in GenBank,all the W.pumilae haplotypes were fixed in one monophyly with bootstraps of 99%,based on bothCOI and Cytb.The co-occurrence of NUMTs sequences converted from the same fragment ofmitochondrial genome,Cytb,in two of the three species,also suggested close relationship amongthem.In addition,the NUMTs haplotypes derived from different clades clustered together inoutgroups,illustrating their recent common ancestry.
     3) The three cryptic species display divergence in distribution and phenology.Habitatpreferences,geographical and perhaps temporal isolation could explain the co-existence of threepollinators in Southeastern China.
     Wiebesia‘pumilae’Sp.A was widespread in almost all the northern populations,Sp.B wasdistributed mostly in southern populations,while Sp.C was mostly found in the northern islandpopulations.Their distributions suggested different habitat preferences,possibly related tolongitude,landforms,and mainland versus island environments.Habitat specialization and geographic barriers may have promoted the division and isolation of pollinators withoutequivalent host plant speciation.
     Sp.A and Sp.C displayed small differences in phenology,the former emerging about 10 daysearlier than the latter,independent of longitude.The difference in emergence time could havefavoured divergence among ancient populations of W.‘pumilae’.
     4) Sp.A is distributed unequally in mainland and island populations,suggesting colonizationfrom the mainland to the islands.
     Sp.A was found in 27 of the 31 populations.Chi-square tests revealed a nonrandomdistribution of these populations,with two repartitioned groups mainly on the mainland andislands respectively,as defined by STUCTURE and ANeCA.AMOVA analysis revealedsignificant differences between mainland and island groups.
     Compared with the mainland group,the island populations displayed more obvious signs ofdemographic expansion.The island-specific haplotypes showed a typical star-like network withmuch more tip haplotypes.Recent or undergoing demographic expansion and bottleneck eventsin the island group were verified by both mismatch distribution analysis and neutrality tests,while Tajiam's D and Fs statistics did not deviate significantly from zero in the mainland group.
     The island group showed lower genetic diversity than the mainland,despite larger samplesizes of populations and individuals.Both the total and average population genetic diversities inthe islands were lower than in the mainland group,especially the mean number of pairwisedifferences.The maximum difference in mainland-specific COI haplotypes was 12 mutations,while that of the islands was just 3,indicating an ancient existence of mainland haplotypes.Furthermore,all the mainland specific haplotypes were settled in deep inner nodes inphylogenetic trees,further affirming their ancient origin.
     All island specific COI haplotypes were linked to two shared haplotypes with one mutation.The two shared haplotypes were distributed widely in both mainland and island populations,withthe highest frequencies among all haplotypes.The distribution pattern of these two sharedhaplotypes was in concordance with the characteristics of sea-land breezes in Hangzhou Bay.
     Many factors may have contributed to the mainland-island pattern of Sp.A,such as morefrequent extinction events on the islands due to greater population fluctuations and smallerpopulation sizes,individual radiations from mainland populations,colonization,expansion and independent evolution in the relatively isolated island habitats.
     5) There were potential glacial refugia for Sp.B and Sp.C,in Ningde and the southernregions.
     The southern populations of Sp.B and Sp.C had higher genetic diversity and more ancientspecific haplotypes than elsewhere.Four population-specific Sp.C COI haplotypes were detected,three in Ningde,one in Taohua.The three specific haplotypes in Ningde were distinguished fromeach other by 8 to 11 mutations,while that in Taohua was linked to the most frequently sharedhaplotype by 1 mutation.Mismatch distribution analysis and neutrality tests detected nosignificant recent expansion events in the Ningde population and all statistics showed that it was astable population that had existed for a long period.So Ningde and other southern regions werepotential glacial refugia of W.‘pumilae’.The Wuyi Mountains there could provide protection forthe populations during glacial periods.After the last glacial maximum,wasps may haverecolonized north-eastern regions along the Wuyi Mountains.
     In conclusion,F.pumila is pollinated by three genetically distinguishable cryptic sisterspecies in Southeastern China.The three species coexist over much of the range of their host plant,with no evidence of hybridization,but vary in their relative abundance within the range of theirhost.Some differences in their biology were detected.
引文
Afzal-Rafii Z. & Dodd R.S. (2007) Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Molecular Ecology, 16, 723-736
    Arctander P. (1995) Comparison of a mitochondrial gene and a corresponding nuclear pseudogene. Proceedings of the Royal Society of London Series B-Biological Sciences, 262, 13-19
    ArisBrosou S. & Excoffier L. (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution, 13,494-504
    Bensasson D., Zhang D.X., Hartl D.L. & Hewitt G.M. (2001) Mitochondrial pseudogenes:evolution's misplaced witnesses. Trends in Ecology & Evolution, 16, 314-321
    Berg C.C. (1989) Classification and distribution of Ficus. Experientia, 45, 605-611
    Bickford D., Lohman D.J., Sodhi N.S., Ng P.K.L., Meier R., Winker K., Ingram K.K. & Das I.(2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148-155
    Bronstein J.L. & McKey D. (1989) The fig-pollinatior mutualism: a model system for comparative biology. Experientia, 45, 601-604
    Chen Y., Li H.Q., Ruan S.J. & Ma W.L. (2008a) Pollination of a cultivated fig, Ficus pumila var. awkeotsang, in South China. Symbiosis, 45, 33-36
    Chen Y., Shi M.M., Ai B., Gu J.M. & Chen X.Y. (2008b) Genetic variation in island and mainland populations of Ficus pumila (Moraceae) in eastern Zhejiang of China. Symbiosis, 45,37-44
    Ciborowski K.L., Consuegra S., de Leaniz C.G., Beaumont M.A., Wang J.L. & Jordan W.C. (2007) Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biology Letters, 3, 554-557
    Clement M., Posada D. & Crandall K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657-1659
    Colborn J., Crabtree R.E., Shaklee J.B., Pfeiler E. & Bowen B.W. (2001) The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution, 55, 807-820
    Collura R.V. & Stewart C.-B. (1995) Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature (London), 378, 485-489
    Compton S.G. (1990) A collapse of host specificity in some African fig wasps. South African Journal of Science, 86, 39-40
    Compton S.G., Ellwood M.D.F., Davis A.J. & Welch K. (2000) The flight heights of chalcid wasps (Hymenoptera, Chalcidoidea) in a lowland bornean rain forest: fig wasps are the high fliers. Biotropica, 32, 515-522
    Cook J.M. & Lopez-Vaamonde C. (2001) Fig biology: turning over new leaves. Trends in Ecology &Evolution, 16, 11-13
    Cook J.M. & Rasplus J.Y. (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology & Evolution, 18,241-248
    Corner E.J.H. (1965) Check-list of Ficus in Asia and Australasia with keys to identification. The Gardens' Bulletin Singapore, 21,1-186
    Corner E.J.H. (1985) Ficus (Moraceae) and Hymenoptera (Chalcidoidea): figs and their pollinators. Biological Journal of the Linnean Society, 25,187-195
    Crandall K.A. & Templeton A.R. (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134,959-969
    Eastwood R., Pierce N.E., Kitching R.L. & Hughes J.M. (2006) Do ants enhance diversification in lycaenid butterflies? Phylogeographic evidence from a model myrmecophile, Jalmenus evagoras. Evolution, 60, 315-327
    Emerson B.C., Paradis E. & Thebaud C. (2001) Revealing the demographic histories of species using DNA sequences. Trends in Ecology & Evolution, 16, 707-716
    Erasmus J.C., van Noort S., Jousselin E. & Greeff J.M. (2007) Molecular phylogeny of fig wasp pollinators (Agaonidae, Hymenoptera) of Ficus section Galoglychia. Zoologica Scripta,36,61-78
    Excoffier L. (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite island model. Molecular Ecology, 13, 853-864
    Excoffier L., Laval G. & Schneider S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1,47-50
    Falush D., Stephens M. & Pritchard J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164,1567-1587
    Falush D., Stephens M. & Pritchard J.K. (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574-578
    Frey J.E. & Frey B. (2004) Origin of intra-individual variation in MR-amplified mitochondrial cytochrome oxidase I of Thrips tabaci (Thysanoptera : Thripidae): mitochondrial heteroplasmy or nuclear integration? Hereditas, 140, 92-98
    Fu Y.X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925
    Funk D.J. & Omland K..E. (2003) Species level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 34, 397-423
    Garrick R.C., Dyer R.J., Beheregaray L.B. & Sunnucks P. (2008) Babies and bathwater: a comment on the premature obituary for nested clade phylogeographical analysis.Molecular Ecology, 17, 1401-1403
    Grant W.S. & Bowen B.W. (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89,415-426
    Haine E.R. & Cook J.M. (2005) Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proceedings of the Royal Society B-Biological Sciences, 272, 421-429
    Haine E.R., Martin J. & Cook J.M. (2006) Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. Bmc Evolutionary Biology, 6
    Harpending H. & Rogers A. (2000) Genetic perspectives on human origins and differentiation.Annual Review of Genomics and Human Genetics, 1, 361-385
    Harpending H.C. (1994) Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591-600
    Harrison R.D. (2000) Repercussions of El Nino: drought causes extinction and the breakdown of mutualism in Borneo. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 911-915
    Harrison R.D. (2003) Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, S76-S79
    Harrison R.D. (2006) Maintenance of specificity in an isolated fig. Biotropica, 39, 275-277
    Hebert P.D.N., Cywinska A., Ball S.L. & DeWaard J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences,270,313-321
    Hebert P.D.N., Penton E.H., Burns J.M., Janzen D.H. & Hallwachs W. (2004a) Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812-14817
    Hebert P.D.N., Ratnasingham S. & deWaard J.R. (2003b) Barcoding animal life: cytochrome coxidase subunit I divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, S96-S99
    Hebert P.D.N., Stoeckle M.Y., Zemlak T.S. & Francis C.M. (2004b) Identification of birds through DNA barcodes. Plos Biology, 2, 1657-1663
    Henry C.S. (1994) Singing and cryptic speciation in insects. Trends in Ecology & Evolution, 9,388-392
    Herre E.A., Jander K.C. & Machado C.A. (2008) Evolutionary ecology of figs and their associates:recent progress and outstanding puzzles. Annual Review of Ecology Evolution and Systematics, 39, 439-458
    Herre E.A., Knowlton N., Mueller U.G. & Rehner S.A. (1999) The evolution of mutualisms:exploring the paths between conflict and cooperation. Trends in Ecology & Evolution, 14,49-53
    Herre E.A., Machado C.A., Bermingham E., Nason J.D., Windsor D.M., McCafferty S.S.,VanHouten W. & Bachmann K. (1996) Molecular phylogenies of figs and their pollinator wasps. Journal of Biogeography, 23, 521-530
    Hewitt G.M. (1999) Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87-112
    Hill D. (1967) Fig-wasps (Chalcidoidea) of Hong Kong .I. Agaonidae. Zoologische Verhandelingen (Leiden) 89,3-55
    Hillis D.M. & Dixon M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66,411-453
    Hogg I.D. & Hebert P.D.N. (2004) Biological identification of springtails (Hexapoda : Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 82, 749-754
    Jackson A.P., Machado C.A., Robbins N. & Herre E.A. (2008) Multi-locus phylogenetic analysis of neotropical figs does not support co-speciation with the pollinators: the importance of systematic scale in fig/wasp cophylogenetic studies. Symbiosis, 45, 57-72
    Jacobs H.T. & Grimes B. (1986) Complete nucleotide sequences of the nuclear pseudogenes for cytochrome oxidase subunit I and the large mitochondrial ribosomal RNA in the sea urchin Strongylocentrotus purpuratus. Journal of Molecular Biology, 187, 509-527
    Janzen D.H. (1979) How to be a fig. Annual Review of Ecology and Systematics, 10, 13-51
    Jermiin L.S. & Crozier R.H. (1994) The cytochrome B region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. Journal of Molecular Evolution, 38,282-294
    Jiang Z.F., Huang D.W., Zhu C.D. & Zhen W.Q. (2006) New insights into the phylogeny of fig pollinators using Bayesian analyses. Molecular Phylogenetics and Evolution, 38, 306-315
    Jousselin E., Rasplus J.Y. & Kjellberg F. (2003) Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution, 57,1255-1269
    Jousselin E., van Noort S., Berry V., Rasplus J.Y., Ronsted N., Erasmus J.C. & Greeff J.M. (2008) One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution, 62,1777-1797
    Kerdelhue C, Hochber M.E. & Rasplus J.Y. (1997) Active pollination of Ficus sur by two sympatric fig wasp species in West Africa. Biotropica, 29, 69-75
    Kerdelhue C, Le Clainche I. & Rasplus J.Y. (1999) Molecular phylogeny of the Ceratosolen species pollinating Ficus of the subgenus Sycomorus sensu stricto: biogeographical history and origins of the species-specificity breakdown cases. Molecular Phylogenetics and Evolution, 11,401-414
    Kiester A.R., Lande R. & Schemske D.W. (1984) Models of coevolution and speciation in plants and their pollinators. American Naturalist, 124, 220-243
    Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16,111-120
    Kmiec B., Woloszynska M. & Janska H. (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Current Genetics, 50, 149-159
    Knowles L.L. (2000) Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution, 54, 1337-1348
    
    Knowles L.L. (2008) Why does a method that Fails continue to be used? Evolution, 62, 2713-2717
    Kolokotronis S.O., MacPhee R.D.E. & Greenwood A.D. (2007) Detection of mitochondrial insertions in the nucleus (Numts) of Pleistocene and modern muskoxen. Bmc Evolutionary Biology, 7
    Kumar S. & Gadagkar S.R. (2001) Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics, 158,1321-1327
    Kvist L., Martens J., Nazarenko A.A. & Orell M. (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Molecular Biology and Evolution, 20, 243-247
    Larkin M.A., Blackshields G, Brown N.P., Chenna R., McGettigan P.A., Mc William H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. (2007) Clustal W and clustal X version 2.0. Bioinformatics, 23, 2947-2948
    Lopez-Vaamonde C., Dixon D.J., Cook J.M. & Rasplus J.Y. (2002) Revision of the Australian species of Pleistodontes (Hymenoptera : Agaonidae) fig-pollinating wasps and their host-plant associations. Zoological Journal of the Linnean Society, 136, 637-683
    Lopez-Vaamonde C., Rasplus J.Y., Weiblen G.D. & Cook J.M. (2001) Molecular phylogenies of fig wasps: partial cocladogenesis of pollinators and parasites. Molecular Phylogenetics and Evolution,21,55-71
    Lopez J.V., Yuhki N., Masuda R., Modi W. & Obrien S.J. (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat.Journal of Molecular Evolution, 39, 174-190
    Lunt D.H., Zhang D.X., Szymura J.M. & Hewitt G.M. (1996) The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5, 153-165
    Machado C.A., Jousselin E., Kjellberg F., Compton S.G. & Herre E.A. (2001) Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps.Proceedings of the Royal Society of London Series B-Biological Sciences, 268, 685-694
    Machado C.A., Robbins N., Gilbert M.T.P. & Herre E.A. (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences of the United States of America, 102, 6558-6565
    Marussich W.A. & Machado C.A. (2007) Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps. Molecular Ecology, 16,1925-1946
    Mayr E. (1942) Systematics and the origin of species. Columbia Universtiy Press, New York.
    Mayr E. (1963) Animal species and evolution. Harvard University Press.
    Michaloud G., Carriere S. & Kobbi M. (1996) Exceptions to the one : one relationship between African fig trees and their fig wasp pollinators: possible evolutionary scenarios. Journal of Biogeography, 23, 513-520
    Michaloud G., Michaloud-Pelletier S., Wiebes J.T. & Breg C.C. (1985) The co-occurrence of two pollinating species of fig wasp and one species of fig. Proceedings of the Koninklijke Nederlandse Akademie van Wetenscahppen, C, 88, 93-119
    Mirol P.M., Routtu J., Hoikkala A. & Butlin R.K. (2008) Signals of demographic expansion in Drosophila virilis. Bmc Evolutionary Biology, 8
    
    Mitchell A. (2008) DNA barcoding demystified. Australian Journal of Entomology, 47,169-173
    Molbo D., Machado C.A., Sevenster J.G., Keller L. & Herre E.A. (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proceedings of the National Academy of Sciences of the United States of America, 100, 5867-5872
    Nason J.D., Herre E.A. & Hamrick J.L. (1998) The breeding structure of a tropical keystone plant resource. Nature, 391, 685-687
    Nevo E. (2001) Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 6233-6240
    Panchal M. & Beaumont M.A. (2007) The automation and evaluation of nested clade phylogeographic analysis. Evolution, 61,1466-1480
    Parrish T.L., Koelewijn H.P., van Dijk P.J. & Kruijt M. (2003) Genetic evidence for natural hybridization between species of dioecious Ficus on island populations. Biotropica, 35,333-343
    Pellmyr O. & Leebens-Mack J. (2000) Reversal of mutualism as a mechanism for adaptive radiation in yucca moths. American Naturalist, 156, S62-S76
    Peng Y.Q., Duan Z.B., Yang D.R. & Rasplus J.Y. (2008) Co-occurrence of two Eupristina species on Ficus altissima in Xishuangbanna, SW China. Symbiosis, 45, 9-14
    Pereira S.L. & Baker A.J. (2004) Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. Bmc Evolutionary Biology, 4
    Petit R.J. (2008) The coup de grace for the nested clade phylogeographic analysis? Molecular Ecology, 17,516-518
    Piganeau G, Gardner M. & Eyre-Walker A. (2004) A broad survey of recombination in animal mitochondria. Molecular Biology and Evolution, 21,2319-2325
    Posada D. & Crandall K.A. (2001) Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution, 16,37-45
    Posada D., Crandall K.A. & Templeton A.R. (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology, 9,487-488
    Pritchard J.K., Stephens M. & Donnelly P. (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959
    Ramirez W. (1974) Coevolution of Ficus and Agaonidae. Annal of the Missouri Botanical Garden,61,770-780
    Ramirez W.B. (1994) Hybridization of Ficus religiosa with F. septica and F. aurea (Moraceae).Revista de Biologia Tropical, 42, 339-342
    Ramos-Onsins S.E. & Rozas J. (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092-2100
    Rasplus J.Y. (1996) The one-to-one species specificity of the .Ficus-Agaoninae: how casual? In:The biodiversity of African plants (eds. Maesen LJGvd, Burgt XMvd & Rooy JMvMd),pp. 639-649. Kluwer Academic Publishers, Wageningen, The Netherlands
    Ray N., Currat M. & Excoffier L. (2003) Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution, 20, 76-86
    Rogers A.R. (1995) Genetic evidence for a pleistocene population explosion. Evolution, 49,608-615
    Ronsted N., Weiblen G.D., Clement W.L., Zerega N.J.C. & Savolainen V. (2008) Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis, 45, 45-55
    Ronsted N., Weiblen G.D., Cook J.M., Salamin N., Machado C.A. & Savolainen V. (2005) 60 million years of co-divergence in the fig-wasp symbiosis. Proceedings of the Royal Society B-Biological Sciences, 272,2593-2599
    Saez A.G. & Lozano E. (2005) Body doubles. Nature, 433, 111
    Sambrook J., Fritsch E.F. & Maniatis T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
    Schonrogge K., Barr B., Wardlaw J.C., Napper E., Gardner M.G., Breen J., Elmes G.W. & Thomas J.A. (2002) When rare species become endangered: cryptic speciation in myrmecophilous hoverflies. Biological Journal of the Linnean Society, 75, 291-300
    Shoemaker D.D., Machado C.A., Molbo D., Werren J.H., Windsor D.M. & Herre E.A. (2002) The distribution of Wolbachia in fig wasps: correlations with host phylogeny, ecology and population structure. Proceedings of the Royal Society of London Series B-Biological Sciences, 269, 2257-2267
    Simon C., Frati F., Beckenbach A., Crespi B., Liu H. & Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America, 87,651-701
    Slatkin M. & Hudson R.R. (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555-562
    Smith M.A., Woodley N.E., Janzen D.H., Hallwachs W. & Hebert P.D.N. (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera : Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 103,3657-3662
    Song H., Buhay J.E., Whiting M.F. & Crandall K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105,13486-13491
    Sorenson M.D. & Quinn T.W. (1998) Numts: a challenge for avian systematics and population biology.Auk, 115,214-221
    Stireman J.O., Nason J.D. & Heard S.B. (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution, 59,2573-2587
    Su Z.H., Iino H., Nakamura K., Serrato A. & Oyama K. (2008) Breakdown of the one-to-one rule in Mexican fig-wasp associations inferred by molecular phylogenetic analysis. Symbiosis,45,73-81
    Sunnucks P. & Hales D.F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution, 13,510-524
    Swofford D.L. (1998) PAUP*. phylogenetic analysis using parsimony (*and other methods).version 4. In. Sinauer Associates, Sunderland, Massachusetts, USA
    Tajima F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595
    Tamura K., Dudley J., Nei M. & Kumar S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599
    Tamura K. & Kumar S. (2002) Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Molecular Biology and Evolution, 19, 1727-1736
    Templeton A.R. (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology, 13,789-809
    Templeton A.R., Boerwinkle E. & Sing C.F. (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping .I. basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics, 117, 343-351
    Templeton A.R., Routman E. & Phillips C.A. (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140, 767-782
    Triant D.A. & DeWoody J.A. (2007) Extensive mitochondrial DNA transfer in a rapidly evolving rodent has been mediated by independent insertion events and by duplications.Gene,401,61-70
    Wang R.,Ai B.,Gao B.Q.,Yu S.,Li Y.Y.& Chen X.Y.(2009)Spatial genetic structure and restricted gene flow in a functionally dioecious fig,Ficus pumila L.var.pumila(Moraceae).Population Ecology,51,307-315
    Waugh J.(2007)DNA barcoding in animal species:progress,potential and pitfalls.Bioessays,29,188-197
    Weiblen G.D.(2000)Phylogenetic relationships of functionally dioecious Ficus(Moraceae)based on ribosomal DNA sequences and morphology.American Journal of Botany,87,1342-1357
    Weiblen G.D.(2001)Phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus based on mitochondrial DNA sequences and morphology.Systematic Biology,50,243-267
    Weiblen G.D.(2002)How to be a fig wasp.Annual Review of Entomology,47,299-330
    Weiblen G.D.(2004)Correlated evolution in fig pollination.Systematic Biology,53,128-139
    Wiebes J.T.(1979)Co-evolution of figs and their insect pollinators.Annual Review of Ecology and Systematics,10,1-12
    Wiebes J.T.(1991)Agaonidae(Hymenoptera Chalcidoidea)and Ficus(Moraceae):fig wasps and their figs Ⅶ(Pleistodontes).Proceedings of the Koninklijke Nederlandse Akademie van Wetenscahppen,C,94,137-152
    Wiebes J.T.(1994)The Indo-Australian Agaoninae(pollinators of figs),North-Holland,Amesterdam,Oxford,New York,Tokyo.
    Wilson E.O.(2000)A global biodiversity map.Science,289,2279-2279
    Wilson E.O.(2003)The encyclopedia of life.Trends in Ecology & Evolution,18,77-80
    Yokoyama J.(2003)Cospeciation of figs and fig wasps:a case study of endemic species pairs in the Ogasawara Islands.Population Ecology,45,249-256
    Zavodna M.,Arens P.,Van Dijk P.J.,Partomihardjo T.,Vosman B.& Van Damme J.M.M.(2005)Pollinating fig wasps:genetic consequences of island recolonization.Journal of Evolutionary Biology,18,1234-1243
    Zhang D.-X.& Hewitt G.M.(1996)Nuclear integrations:challenges for mitochondrial DNA markers.Trends in Ecology & Evolution,11,247-251
    Zhang D.Y.,Lin K.& Hanski Ⅰ.(2004)Coexistence of cryptic species.Ecology Letters,7,165-169
    Zischler H.(2000)Nuclear integrations of mitochondrial DNA in primates:inference of associated mutational events.Electrophoresis,21,531-536
    何坤耀(1991)爱玉子授粉小蜂.In:爱玉子专论(ed.林讚標),p.83-96.台湾林业实验所
    李惠丰&袁德辉(1985)浙江沿海海陆风的初步分析.东海海洋,3,12-16
    周钦华(1994)杭州湾沿岸海陆风环流的若干特征.东海海洋,12,12-20
    林淑玲,赵南先&陈贻竹(2008)榕树-榕小蜂的物种共形成.热带亚热带植物学,16,123-127
    林讚標(1991)爱玉子与薜荔.In:爱玉子专论(ed.林讚標),pp.17-22.台湾林业研究所
    罗光坦,李宏庆,马炜良&陈勇(2000)薜荔榕小蜂与薜荔生活期的配合.生态学杂志,19,73-75
    徐磊&杨大荣(2008)榕树及其传粉榕小蜂的系统发育和协同进化研究现状及展望.生物多样性16,446-453
    尧金燕,赵南先&陈贻竹(2004)榕树-传粉者共生体系的协同进化与系统学研究进展及展望.植物生态学报,28,271-277
    许再富(1994)榕树-滇南热带雨林生态系统中的一类关键植物.生物多样性2,21-23
    贾效成,陈贻竹&赵南先(2004)榕属与榕小蜂科的分类研究进展.广西植物24,407-410
    陈勇,李宏庆&马炜梁(2002)爱玉及其传粉昆虫的共生关系.武汉植物学研究,20,315-319
    陈勇,马炜梁&罗光坦(1996)薜荔榕小蜂出飞节律与光因子的关系.生态学报,16,160-166
    马炜梁&吴翔(1989)薜荔榕小蜂(Blastophaga pumilae Hill)与薜荔(Ficus pumila L.).生态学报,9,9-14
    马炜梁,陈勇&李宏庆(1997)榕树及其传粉者研究综述.生态学报,17,209-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700