用户名: 密码: 验证码:
基于RTAI的多关节式月球车运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据多关节式月球车的机构特征和多电机独立驱动下多运动模式协调运动控制强实时性、高稳定可靠的要求,本文开展了基于RTAI(Real-Time Application Interface,实时应用接口)的开放式月球车运动控制平台及其相关关键技术的研究,并对实时Linux下车轮的伺服特性和苛刻地形中基于RTAI的月球车协调运动关键实现方法展开了深入研究,为基于Linux的实时多任务运动控制平台在航天工程中的应用提供基础。
     首先以多关节式六圆柱-圆锥轮式月球车为研究对象,根据此类月球车的机构特点,提出一种基于月面地形特征的非结构化地形分类法的多运动模式运动控制策略。将多关节式月球车的运动模式分为被动适应地形运动模式、轮步运动模式、主动越障运动模式及跨越壕沟运动模式。分析不同运动模式在复杂月面地形中运动的特点及多模式运动规划方法,并在此基础上建立了在月球车车体和运动关节的运动坐标系下极端复杂地形中月球车运动学模型,为多关节独立驱动月球车的实时协调控制技术奠定了基础。
     以开源系统Linux为平台,通过所开发的软件完成运动控制的所有工作,为减小系统硬件的复杂性和提高系统的可靠性,构建一种基于RTAI,采用软运动控制方案构建的强实时运行平台。根据月球车控制系统和RTAI的特点,开发基于RTAI的开放式月球车系统平台。以线程合作模型为基础,用RTAI线程建立了月球车系统多任务结构模型。深入讨论了基于RTAI的月球车控制系统通信的实现方法,以指令中继转发的方式简化月球车系统的通信结构。最后以多关节式月球车为例,实现了基于RTAI操作系统平台的月球车控制系统,为基于RTAI的开放式实时平台在月球车控制系统中的应用提供了应用实例。
     为进一步探求基于RTAI的实时运动控制平台的性能和实现方法的便捷性,提出了一种基于RTAI-Lab技术的实时控制系统设计方法,并以此作为开发运动控制算法的原型设计工具,减少系统设计周期和提高系统设计可靠性。为验证RTAI纯软件硬实时运动控制的实时性,研究了RTAI的实时延时性和抖动性对电机控制的影响。然后以多关节式月球车为研究对象,对月球车多轮独立驱动下的协调控制的实时RTAI模型进行了研究。着重研究了多关节多轮独立驱动月球车协调控制的实时RTAI实现技术。
     针对月球车控制系统平台的要求,以实时多任务为目标,给出了通用性平台提高实时性的实现方法,主要对开源系统Linux下实时多任务平台的中断处理器和任务调度器的设计和实现方法等,并提出了基于驱动程序和软中断通信机制的两种实时通信方法,为基于实时操作系统的多任务开放式平台的实现提供理论依据。
     构建基于RTAI的多关节六圆柱-圆锥轮式月球车运动控制实验平台,对月球车在被动适应地形的运动模式、轮步运动模式、主动越障模式及跨越壕沟运动模式下,基于RTAI的运动控制平台及普通Linux下的运动控制平台的耗时和运动精度进行测试,验证基于RTAI的多关节式月球车运动控制的正确性。结果表明,与普通Linux下多关节式月球车运动控制平台相比,基于RTAI的月球车控制平台耗时得到了较大幅度的较少,且运动精度更高。
Because the multi-task lunar rover motion control system has the requirements of high real-time performance and system reliability, this dissertation carries out the research on the real-time motion control platform of the lunar rover and the related technology based on the RTAI (Real-Time Application Interface), aiming at the characteristics of multi-jointed rover mechanism and multi-wheel coordinated control. And the rover wheel servo characteristics and coordinated control implementation with RTAI are researched to give the foundation for the application of open platform of control system in the aerospace industry with RTAI.
     Taking the multi-jointed lunar rover with six cylinder-conical wheels as the research object, multi-mode motion control strategy is put forward, based on the classification of the unstructured lunar surface attributes and the rover mechanical characteristics. The motion modes can be divided into: passive terrain adaptation motion mode, wheel-walking motion mode, active passing obstacle motion mode and crossing ditch motion mode. The application and planning of these motion modes are analyzed and kinematics models of the rover motion on complicated uneven landform are set up, which lay the solid foundation for the multi-wheel coordinated control.
     To achieve the real-time requirement of the rover motion control system, this dissertation researches the method of improving real-time performance of the general OS, put forward the design and implementation of the interrupt processor and task scheduler of the real-time multi-task platform based on open sourced Linux, and set up the inter-task communication with method of device driver and soft interrupt mechanism, which give the theory guideline and useful reference for the realization of real-time multi-task platform based on the real-time OS.
     To realize the soft motion control which can reduce the hardware design complexity and improve system reliability, this dissertation put forward soft motion control platform based on RTAI, which has hard real-time performance. Based on the characteristics of rover motion control structure and RTAI, the implementation technology of open motion control system platform is researched, its multi-task model is realized with the RTAI real-time thread based on the threads cooperation model. The communication structure of lunar rover motion control is simplified with the command relay-transmit mode, by the analysis of RTAI communication.
     As an application example, open real-time control platform based on RTAI is realized in the motion control of multi-joint six cylinder-conical-wheel lunar rover.
     Effective motor control is import for the motion control system, so for the sake of research of performance evaluation and easy implementation of real-time motion control, a design method of real-time application based on RTAI-Lab is put forward, which can be used to save time spending and improve development reliability. To research the performance of the software hard real-time motion control system, the influence of delay and jitter on motor control is researched. Taking the lunar rover with six cylinder-conical wheels as example, this dissertation researches the coordinated control of multiple independent driven wheels to achieve the optimization of driving efficiency and locomotion accuracy.
     The real-time motion control system of six cylinder-conical-wheel lunar rover prototype based on RTAI is setup, and motion experiments are carried out. These experiments demonstrate the validation of the designed multi-wheeled coordinated motion control system and prove its feasibility.
引文
1 W. C. Feldman, B. L. Barraclough, S. Maurice, et al. Major Compositional Units of the Moon: Lunar Prospector and Clementine Data. Science. 1998 ,281:1489~1493.
    2 B. H. Foing. The Moon as a Platform For Astronomy and Space Science. Advanced Space Research. 1996, 18(11):17~23.
    3杭科.中国开展月球探测工程的重大意义.中国航天. 2007, (11):63~64.
    4 Jet Propulsion Laboratory. Planetary Mission Summaries: Introduction and Overview. JPL SP43-10, Vol.1.NASA-CR-147093
    5邹永廖,欧阳自远,李春来.月球探测与研究进展.空间科学学报. 2000, 20(10):93~103
    6欧阳自远,李春来,邹永廖,李建忠.月球探测的进展与我国的月球探测.中国科学基金. 2005, (4):193~197
    7欧阳自远.月球探测的进展和我国月球探测的科学目标.贵州工业大学学报. 2004, 32(6):1~7.
    8 http://news.xinhuanet.com/newscenter/2007-12/12/content_7235826.htm
    9 M. Maurette. Robots for Lunar Exploration: Present and Future. Advanced Space Research. 1999, 23(11):1894~1855
    10 Sibing He. China’s Moon Project Change: Stratagem and Prospects. Advanced Space Research 2004, 31(11):2353~2358.
    11刘晓川.月球探测关键技术的发展分析.中国航天. 2005, (7):39~44.
    12梁斌,王巍,王存恩.未来我国发展月球车的初步设想.中国航天. 2006, (1):29~33.
    13紫晓.嫦娥工程二、三期研究展望.中国航天. 2007, (11):58~62
    14 B. Bettyeb. Lunar Roving Vehicle: Historical Origins, Development and Deployment. Journal of the British interplanetary Society. 2005, 48(5): 199~212.
    15 J. DeLafongtaine, D. Kassing. Technologies and Concepts for Lunar Surface Exploration. Acta Astronautica. 1996, 38(2):125~129
    16 W. Shields, S. Feteih, P. Hollis. Lunar Rover Trailer, Lunar Surface Operations.Volume IV. NASA-CR-195554
    17 W. L. Whittaker and T. Kanade. Japan Robotics Aims for Unmanned Space Exploration. IEEE Spectrum. 1990, 27(12):297~300.
    18 C. R. Weisbin, D. B. Lavery and G. Rodriguez. Robots in Space: US Missions and Technology Requirements into the Next Century. Autonomous Robots. 1997,4(2):159~173.
    19 Yue Ming, Zongquan Deng, Xinyi Yu, et al. Introducing HIT Spherical Robot: Dynamic Modeling and Analysis Based on Decoupled Subsystem. Proc. of 2006 IEEE International Conference on ROBIO, Kunming, China, 2006. Institute of Electrical and Electronics Engineers Computer Society, Piscataway:181~186
    20 http://nssdc.gsfc.nasa.gov/planetary/lunar/lunarussr.html.
    21 R. J. Laurance. ESA Study for the First Lander/Rover Mission: A Precursor Mission to the Moon. Advanced Space Research. 1996, 18(11):125~127
    22 Andrew H. Mishkin, Jack C. Morrison, Tam T. Nguyen, et. al. Experiences with Operations and Autonomy of the Mars Pathfinder Microrover. Proc. of IEEE Aerospace Conference, Snowmass at Aspen, CO, USA, 1998. Los Alamitos, 2:337~350
    23 P. C. Leger, A. Trebi-Ollennu, J. R. Wright, et. al. Mars Exploration Rover Surface Operations: Driving Spirit at Gusev Crater. Proc. of IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, United States, 2005. New York, 2:1815~1822
    24 J. J. Biesiadecki, E. T. Baumgartner, R. G. Bonitz, et. al. Mars Exploration Rover Surface Operations: Driving Opportunity at Meridiani Planum. Proc. of IEEE International Conference on Systems, Man and Cybernetics, Piscataway, 2005, 2: 1823~1830.
    25 R. Volpe, J. Balaram, T. Ohm, et al. Rocky 7: A Next Generation mars Rover Prototype. Advanced Robotics. Advanced Robotics, 1997,11(4):341~358
    26 G. A. Landis. Robots and humans: synergy in planetary exploration. Acta Astronautica. 2004, 55(12): 985~990
    27 A. Trebi-Ollennu, T. Huntsberger, Y. Cheng, et al. Design and Analysis of a Sun Sensor for Planetary Rover Absolute Heading Detection. IEEE Transactions on Robotics and Automation, 2001, 17(6):939~947
    28 R. Castano, T. Estlin, D. Gaines, et al. Onboard Autonomous Rover Science. Proc of IEEE Aerospace Conference, Big Sky, MT, 2007:1~13
    29 J. Biesiadecki, M. W. Maimone, J. Morrison. The Athena SDM Rover: a Testbed for Mars Rover Mobility. Proc. of 6th International Symposium on Artificial Intelligence, Robotics, and Automation for Space, 2001
    30 A. Kemurdjian, V. Gromov, V. Mishkinyuk, et al. Small Marsokhod Configuration. Proc. of IEEE ICRA , Nice, Fr, 1992, 1:165~168.
    31 D. Bonnafous, S. Lacroix, T. Simeon. Motion Generation for a Rover on Rough Terrains. Proc. of IEEE International Conference on IROS, Maui, HI, 2001, 2:784~789.
    32 T. Peynot, S. Lacroix. Enhanced Locomotion Control for a Planetary Rover. Proc. of IEEE International Conference on IROS, Las Vegas, NV, 2003, 1: 311~316.
    33 Y Kunii, Y. Kuroda, M. Subara, et al. T Command data compensation for real-time tele-driving system on lunar rover: Micro-5. Proc. of IEEE ICRA, Seoul, 2001, 2:1394~1399.
    34 R. Siegwart, P. Lamon, T. Estier, etc. Innovative Design for Wheeled Locomotion in Rough Terrain. Robotics and Autonomous Systems, 2002, 40:151~162.
    35高海波,邓宗全,胡明等.行星越障轮式月球车的设计.哈尔滨工业大学学报. 2003, 35(2):203~207
    36毕贞法,邓宗全,陶建国.变驱动半径两轮并列式月球车德稳定性分析.上海交通大学学报. 2007, 41(7):1204~1208
    37胡明,邓宗全,高海波等.摇臂-转向架式月球探测车越障通过性分析.上海交通大学学报. 2005, 39(6):928~932.
    38陶建国,邓宗全,高海波.六圆柱-圆锥轮式月球车的设计.哈尔滨工业大学学报. 2006, 38(1):4~7.
    39邓宗全,王闯,刘荣强等.空间桁架式着陆器的动力学分析.振动与冲击. 2007, 26(10):169~173
    40孙德金.自动潜入月壤模拟装置德设计及实验.哈尔滨工业大学硕士学位论文. 2002:15~20
    41王巍,梁斌,强文义.基于虚拟样机技术月球机器人运动仿真.高技术通讯. 2004, 2:84~87.
    42王巍,夏玉华,梁斌等.月球漫游车关键技术初探.机器人. 2001, 23(3):280~284.
    43 http://mil.news.sina.com.cn/p/2006-10-31/0903408299.html.
    44樊世超,贾阳,向树红等.月面地形地貌环境模拟初步研究.航天器环境工程. 2007, 24(1): 15~20.
    45徐嬿琳;陆文娟;朱纪洪.六主动轮移动机器人的建模及路径跟踪.清华大学学报(自然科学版). 2003, 43(3): 385~388.
    46李圣怡. KDR-1无人驾驶自由移动探测车.第二届月球探测技术研讨会论文集.北京, 2001: 145~146.
    47刘芳湖,马培荪,陈建平等.五轮铰接式月球机器人德智能模糊控制.上海交通大学学报. 2002, 36(3):297~301.
    48陈学东,李小清.轮/足混合式行星表面探测机器人的运动设计. 2002年深空探测技术与应用国际研讨会. 2002:22~29.
    49 http://www.gov.cn/jrzg/2007-05/16/content_616606.htm
    50 J. V. Wick, J. L. Callas, J. S. Norris, et al. Distributed Operations for the Mars Exploration Rover Mission with the Science Activity Planner. Proc. of IEEE Aerospace Conference, Big Sky, MT, 2005:4162~4173
    51 R. Mak, J. Walton, L. Keely, et al. Reliable Service-Oriented Architecture for NASA’s Mars Exploration Rover Mission. Proc. of IEEE Aerospace Conference, Big Sky, MT, 2005:1~14
    52 R. L. Taylor. Ten Years After: Enduring Lessons Learned from Mars Pathfinder. Proc. of IEEE Aerospace Conference, Big Sky, MT, 2007:1~7
    53 P. G. Backes, J. S. Nonis, M. Powell, et al. Sequence Planning for the FIDO Mars Rover Prototype. Proc of IEEE Aerospace Conference, 2003, 2: 653~670
    54 R. Volpe, I. Nesnas, T. Estlin, et al. The CLARAty architecture for Robotic Autonomy. Proc. of IEEE Aerospace Conference, Big Sky, MT, 2001, 1:10~17
    55 A. Nesnas, M. Wright, M. Bajracharya, et al. CLARAty and Challenges of Developing Interoperable Robotic Software. Proc. of IEEE International Conference on IROS, Las Vegas, NV, 2003, 3:27~31
    56 H. D. Nayar, I. Nesnas. Re-usable Kinematic Models and Algorithms for Manipulators and Vehicles. Proc. of IEEE International Conference on IROS, San Diego, CA, 2007:833~838.
    57 Yoshida, G. Ishigami. Steering Characteristics of a Rigid Wheel for Exploration on Loose Soil. Proc. of IEEE International Conference on IROS, Sendai, Japan, 2004, 4:3995~4000
    58 G. Ishigami, K. Yoshida. Steering Characteristics of an Exploration Rover on Loose Soil based on All-Wheel Dynamics Model. Proc. of IEEE International Conference on IROS, 2005:3099~3104
    59 G. Ishigami, K. Nagatani, K. Yoshida. Path Planning for Planetary Exploration Rovers and its Evaluation based on Wheel Slip Dynamics. Proc of IEEE International Conference on Robotics and Automation, Rome, 2007:2361~2366
    60 P. Lamon, A. Krebs, M. Lauria, et al. Wheel Torque Control for a Rough Terrain Rover. Proc of IEEE International Conference on Robotics and Automation, 2004, 5:4682~4687
    61 P. Lamon, R. Siegwart. Wheel Torque Control in Rough Terrain– Modeling and Simulation. Proc of IEEE International Conference on Robotics and Automation, Barcelona, 2005:867~872
    62 S. Ali, C. A. Vanelli, J. J. Biesiadechi, et al. Attitude and Position Estimation on the Mars Exploration Rovers. Proc. of IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, 2005, 1:20~27
    63祝晓才.轮式移动机器人的运动控制.国防科技大学博士论文. 2006: 35~45
    64 W. Dong, K. Kuhnert. Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties. IEEE Transactions on Robotics. 2005, 21(2):261~266
    65 M. J. Er, T. P. Tan, S. Y. Loh. Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocessors and Microsystems. 2004, 28(9):491~498
    66 T. Das, I. N. Kar. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology. 2006, 14(3):501~510
    67 C. F. Olson, L. H. Matthies, M. Schoppers, et al. Rover navigation using stereo ego-motion. Robotics and Autonomous Systems. 2003, 43(4): 215~229
    68 T. Huntsberger, H. Aghazarian, Yang Cheng, et al. Rover Autonomy For Long Range Navigation and Science Data Acquisition on Planetary Surfaces. Proc. of IEEE International Conference on ICRA 2002, Washington, DC, 2002, 3:3161~3168
    69 Y. Cheng, M. Mainone, L. Matthies. Visual Odometry on the Mars Exploration. Proc. of IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, HI, 2005, 1:903~910
    70 P. I. Corke, D. Strelow, S. Singh. Omnidirectional Visual Odometry for a Planetary Rover. Proc of IEEE International Conference on Robotics and Automation, Sendai, 2004, 4:4007~4012.
    71毕贞法.两轮并列式月球车的群控系统研究.哈尔滨工业大学博士论文. 2006:33~47
    72 M. Timmeman. RTOS evaluations kick off. Real-Time Magazine. 1998(3):7~10
    73 W. Cedeno, P. A. Laplante. An Overview of Real-time Operation Systems. Journal of the Association for Laboratory Automation. 2007, 12(1): 40~45
    74季志均,马文丽,陈虎,郑文岭.四种嵌入式实时操作系统关键技术分析.计算机应用研究. 2005, (9): 4~8
    75郁发新.常用嵌入式实时操作系统比较分析.计算机应用. 2006, 26(4): 761~764
    76 M Barahanov, V Yodaiken. Introducing Real-Time Linux. Linux Journal. 1997, 34(2): 19~23
    77李小群,赵慧斌,叶以民等. RFRTOS:基于Linux的实时操作系统.软件学报. 2003, 14(7): 1203~1205
    78马毅,李霞峰,盛焕烨.基于Linux的实时操作系统设计.计算机工程与应用. 2001, (23): 109~110
    79毛德操,胡希明. Linux内核源代码情景分析.浙江大学出版社, 2001.
    80 J. A. Stankovic. Strategic Directions in Real-time and Embedded Systems. ACM Computing Surveys. 1996, 28(4): 751~763
    81 A. Atlas. Design and Implementation of Statistical Rate Monotonic Scheduling in KURT Linux. Proceedings of the 20th IEEE Real-Time Systems Symposium. Phoenix, 1999: 272~276
    82 M. Humphrey, E. Hilton and P. Allaire. Experiences Using RT-Linux to Implement a Controller for a high speed magnetic bearing system. Proceedings of the 5th IEEE Real-Time Technology and Applications Symposium. Vancouver, 1999: 121~130
    83 A. Terrasa. Flexible Real~Time Linux: A Flexbible Hard Real-Time Enviroment. Real-Time System. 2002, 22:151~173
    84 Yu-Chung Wang, Kwei-Jay Lin. Enhancing the Real-time Capability of the Linux Kernel. Real-Time Computing Systems and Applications. 1998, (12):11~20
    85 B. Srinivasan, R. Hill and S. Pather. A Firm Real-Time System Implementation Using Commercial off-the-shelf Hardware and Free Software. Proceedings of the Real-Time Technology and Applications Symposium. Denver, 1998: 112~119
    86赵明富,李太福,罗松. Linux嵌入式系统实时性分析与实时化改进.计算机应用研究. 2004: 200~203
    87 E. Rollins, J. Luntz, A. Foessel, et al. Nomad: A Demonstration of the Transforming Chasis. Proc. of IEEE International Conference on Robotics and Automation, Leuven, 1998, 1: 611~617
    88尚建中,张新访,罗自荣等.主动自适应悬架机器人概念样机及其配置模型和方法.国防科技大学学报. 2006, 28(2): 93~96
    89张朋.变质心月球车的结构设计与仿真分析.哈尔滨工业大学硕士学位论文. 2005: 19~31
    90欧阳自远.月球探秘.贵州地质. 1999, 16(1):77~79
    91肖福根,庞贺伟.月球地址形貌及其环境概述.航天器环境工程, 2003, 20(2):5~14
    92叶培建,肖福根.月球探测工程中的月球环境问题.航天器环境工程, 2006, 23(1):1~11
    93邓宗全,胡明,高海波等.月球探测车的运动学建模.中国机械工程. 2004, 14(22):1911~1913
    94王佐伟,梁斌,吴宏鑫.六轮月球探测车运动学建模与分析.宇航学报. 2003,24(5):456~461
    95 J. C. Alexander, J. H. Maddocks. On the Kinematics of Wheeled Mobile Robots. Robotics Research. 1989, 8(5):15~27
    96王旭东,潘科炎.当前航天器制导,导航和控制的几个问题.航天控制. 1999, 17(2):
    97曹松,李慧军,惠平.航天嵌入式软件的发展趋势.中国空间科学学会空间探测专业委员会第十六次学术会议论文集(下). 2003: 459~462
    98杨孟飞,郭树玲,孙增圻.航天器控制应用的星载计算机技术.航天控制. 2005, 23(2): 69~73
    99 P. C. Irwin, R. L. Johnson. Real-time control using an open source RTOS. Proceedings of SPIE, 2002, (4848): 560~567
    100周学才,李卫平,李强.开放式机器人通用控制系统.机器人. 1998, 20(1): 25~31
    101王恒,陈恳,刘顺涛.基于软件模式的开放结构控制器平台的研究.计算机集成制造系统. 2006, 12(3): 446~450
    102 F. M. Proctor and W. P. Shackleford. Timing Studies of Real-Time Linux for Control. Proceedings of the ASME DETC 2001, Pittsburgh, PA (2001): 2001
    103李保国,宗光华.未知环境中移动机器人实时导航与避障的分层模糊控制.机器人. 2005, 27(6): 481~485, 501
    104 H. Marref, C. Barret. Sensor-based fuzzy navigation of an autonomous mobile robot in an indoor environment. Control Engineering Practice. 2000, 8(7): 757~768
    105 H. R. Beom, H. S. Cho. Sonar-based navigation experiments onmobile robots in indoor environments. Proceedings of the 15th IEEE International Symposium on Intelligent Control. USA: IEEE, 2000: 395~401
    106 L. LEE,J. WU.Fuzzy motion planning of mobile robots in unknown environments.Journal of Intelligent Robotic Systems. 2003, 37: 177~191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700