用户名: 密码: 验证码:
反渗透膜有机污染机理及其渗透反洗控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜污染问题是制约反渗透膜广泛应用的瓶颈之一,它导致产水水质降低、产水量减少、操作压力增大,同时污染腐蚀膜材料、增加化学试剂量,从而缩短了膜的使用寿命。而其中有机污染是目前反渗透行业最难解决的问题。
     本实验主要研究以多聚糖类物质(海藻酸钠)为代表的有机污染物对于反渗透膜分离过程的影响,探索其与腐殖酸混合污染的机理。同时,提出了采用商用阻垢剂和反洗的新方法来减缓反渗透膜的有机污染。此外实验还研究了应用Fenton法来处理水溶液中的海藻酸钠。
     研究结果表明海藻酸钠会在反渗透膜表面形成致密的凝胶层,致使膜通量快速衰减,特别是当进水溶液中含有Ca~(2+)时,由于Ca~(2+)的聚合作用以及有机物分子链之间的交联使得膜污染更严重。同时,料液的化学组成(污染物的浓度、离子强度、pH值等)、温度等都会对污染过程产生较强的影响。当海藻酸钠与腐殖酸进行混合污染时,在低盐度条件下,随着海藻酸钠比例增加,通量下降增大;在海水条件下,腐殖酸污染比海藻酸钠污染严重,随着腐殖酸比较增加,通量下降增大。
     本实验将两种方法创新性地应用于缓解有机污染,并取得了良好的效果。同时引入阻滞效率(Inhibition efficiency)来评价不同参数对阻滞效率的影响,由此推测两种方法缓解有机污染的内在机理。
     研究表明阻垢剂在反渗透膜有机污染过程中起到了有效缓解膜通量衰减的作用。通过分析认为这主要与以下三方面的作用有关:首先,阻垢剂与Ca~(2+)的螯合作用使得Ca~(2+)可以稳定地分散在溶液中,从而减少了Ca~(2+)和海藻酸钠通过络合作用形成高聚物的量。其次,阻垢剂、海藻酸钠和Ca~(2+)所形成的亲水性复合物吸附在膜表面会增强其亲水性,从而减缓膜污染。最后,阻垢剂本身对海藻酸钠具有较好的分散作用,可以将海藻酸钠稳定地分散于溶液中。因此,利用阻垢剂减缓膜污染是一种便捷、有效的方法。
     同时,本研究表明在反渗透膜海藻酸钠污染过程中反洗起到了有效缓解膜通量衰减的作用。这主要是因为反洗时瞬间强大的驱动力可以解除和清除膜表面的污染物,随后污染物被水流带走。本实验将阻垢剂和反洗联用,较好地抑制了有机污染,PASP-Ca-SA聚合物的存在使得反渗透膜表面形成的污染层较薄,此时进行反洗,膜表面的污染物容易被冲散,大部分污染物被随即而来的剪切流冲走。
     此外,研究应用Fenton法来处理水溶液中的海藻酸钠,从而减缓反渗透膜污染。实验结果表明Fenton法处理后,海藻酸钠从大分子分解为小分子物质,且该小分子物质不能和Ca~(2+)发生络合反应,从而减轻了膜污染。
Membrane fouling is one of the most serious obstacle to restrict its widespread application. One of the critical issues is organic fouling, which not only reduces the permeate flux of a membrane and requires more frequent cleaning, but also shortens its life .
     Fouling of RO membrane by polysaccharides(alginate) was systematically investigated. Commercial antiscalant and backwash were adopted to alleviate the organic fouling of RO membrane. In addition, Fenton method was used to oxidize alginate so as to alleviate the fouling of RO membrane.
     Pilot study demonstrated that alginate could form compact gel layer on membrane surface, which leads to a severe flux decline. Especially, permeate flux decreased dramatically in the presence of calcium ions. This behavior can be attributed to calcium bridges between adjacent organic matter and the formation of organic macromolecule complexation. In addition, the effects of chemical composition (foulant concentration, ionic strength and solution pH) and temperature on the membrane fouling mechanisms were investigated. Combined fouling by both alginate and humic acid were studied, in the low salinity conditions, with the increase of sodium alginate, flux decline increased; in seawater conditions, with the increase of humic acid, flux decline increased.
     Antiscalant and the way of backwash are mainly used in the field of inorganic scaling control of RO technology. We innovatively use the two methods to decrease the organic fouling, and it turns out to be effective. We define the Inhibition Efficiency to evaluate how different parameters affect the fouling, and then speculate the mechanism of how the two methods alleviate the organic fouling.
     The introduction of antiscalant to feed water was found very effective for relieving organic-fouled RO membrane in the presence of calcium ions. Antiscalant relieves organic fouling by the following three ways. Firstly, it is proposed that Ca~(2+) can be stably dispersed in solution by chelation between Ca~(2+) and antiscalant , which could decrease the quantity of macromolecule complexation. Secondly, antiscalant, organic foulant and calcium ions could form a kind of hydrophilic compound, which could be removed by the shear easily. Thirdly, antiscalant is also a kind of very excellent disperser to organic matters.
     The way of backwash was also found effective for lessening organic-fouled RO membrane in the presence of calcium ions. This is mainly because there can be a powerful driving force to lift and sweept foulants on the membrane surface . The PASP-Ca-SA molecules formed still have relatively high hydrophilia, and hence can be removed by the shear easily. Moreover, while the antiscalant and the way of backwash are combined, the organic fouling is inhibited efficiently. The presence of PASP-Ca-SA complex molecules leads to a thinner foulant layer, and the following backwash process can disperse the foulant in the layer. Then most of the foulant is removed by the shear.
     In addition, Fenton method was used to oxidize alginate. The experiment result showed that the sodium alginate may be decomposed into small molecules, which could not have complex reaction with Ca~(2+).
引文
[1]王浩.中国可持续发展总纲[M].北京:科学出版社, 2007:3.
    [2]苗硕.中国淡水资源现状与保护措施探讨[J].现代商贸工业, 2010,17:19-21.
    [3]冯广军.海水淡化--解决淡水资源短缺的有效方案[J].华北电力技术,2005,3: 41-44.
    [4]解利昕,王世昌等.反渗透海水淡化技术应用[J].膜科学与技术,2004,24(4):66-69.
    [5]高从谐.反渗透膜分离技术的创新性进展[J].膜科学与技术,2006(6):1-5.
    [6]程艳辉,王志红.反渗透膜分离技术中的膜污染及控制[J].中氮肥.2006,2:14-16.
    [7]周军,方少明,张宏忠等.反渗透膜在水处理中的研究进展[J].过滤与分离,2006,16(2):12-15.
    [8]姜忠英,夏明芳.反渗透在水污染控制中的应用[J].污染防治技术, 2003, 16(1):21- 23.
    [9]侯恩娟,袁永俊.反渗透技术及其应用[J].生命科学仪器, 2009,7(4):8-11.
    [10]徐腊梅,毕飞,靖大为等.反渗透系统中浓差极化的影响[J].工业水处理,2004,24(1):63-65.
    [11]杨昆,郭嘉,王宇彤.反渗透系统的性能变化分析及量化评价方法[J].膜科学与技术,2005,25(5):54-58.
    [12]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社,2008:141-144.
    [13]张娜,孙咏红,田妍.反渗透阻垢剂的研究进展[J].天津化工,2006,20(4):22-24.
    [14]杨昆,王宇彤.反渗透系统的结垢污染与清洗维护[J].膜科学与技术, 2002,21(4):61-64.
    [15] Robert Y. Ning, Jeffery P. Netwig. Complete elimination of acid injection in reverse osmosis plants[J]. Desalination, 2002,143(1):29-34.
    [16]尤秀兰.绿色阻垢剂的研究进展[J].化学清洗,2000,16(2):36-38.
    [17]李燕丽,周柏青,王晓伟等.反渗透阻垢剂的研究进展[J].工业水处理,2004,24(3):17-20.
    [18]徐寿昌.工业冷却水处理技术[M].北京:化学工业出版社.1984:247-253.
    [19]秦会敏,郦和生.绿色水处理剂聚环氧琥珀酸的研究进展[J].石化技术,2003,10(4):52-55.
    [20]熊蓉春,魏刚等.绿色阻垢剂聚环氧琥珀酸的合成[J].工业水处理, 1999,19(3):11-13.
    [21]姜红静,刘振法,王丽梅等.环保型反渗透阻垢剂的性能研究[J].河北省科学院学报,2007, 24(4):50-53.
    [22]孙咏红,田妍,单学敏等.反渗透阻垢剂的可生物降解性研究[J].大连铁道学院学报.2006,27(3):86-88.
    [23]杜启云,周伟生.反渗透膜用阻垢剂的研制与应用研究[J].膜科学与技术,2008,28(6):75-78.
    [24]沈悦啸,王利政,莫颖慧.膜污染和膜材料的最新研究进展[J].中国给水排水,2010,26(14):16-22.
    [25] S.S. Madaen, Y. Mansourpanah.Chemical cleaning of reverse osmosis membranes fouled by whey[J]. Desalination,2004,161(1):13–24.
    [26] B. Liberman.Methods of direct osmosis membrane cleaning online for high SDI feed after pretreatment, IDAWorkshop, Tempa-San Diego, 22–26/03/04.
    [27] Abraham Sagiv, Neta Avraham, Raphael Semiat, et al. Osmotic backwash mechanism of reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 332(1): 225-233.
    [28] H. Huiting, J.W.N.M. Kappelhof, Th.G.J. Bossklopper. Operation of NF/RO plants: from reactive to proactive[J]. Desalination,2001,139(1-3):183-189.
    [29] Eun-mi Gwon, Myong-jin Yu,Yong-hun Ylee,et al.Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater[J].Water Research,2003, 37(12):2989–2997.
    [30] J.Palu Chen, S.L.Kim, Y.P.Ting.Optimization of membrane physical and chemical cleaning by statistical design approach[J].Journal of Membrane Science,2003,219(1-2):27-45.
    [31] K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery[J].Desalination,2008,220(1-3):214-227.
    [32] Sangyoup Lee, Menachem Elimelech. Relating organic fouling of revers osmosis membranes to intermolecular adhesion forces[J]. Journal of Environmental Science&Technology,2006,40(3): 980-987.
    [33] Roslyn Higgin, Kerry J. Howe, Thomas M. Mayer. Synergistic behavior between silica and alginate: Novel approach for removing silica scale from RO membranes[J].Desalination, 2010, 250(1):76-81.
    [34] Fang H, Sun D D, Wu M,et al. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process[J]. Water Science and Technology,2005, 51(6-7):373-380.
    [35] Amy E. Childress,Menachem Elimelech. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science,1996,119(2):253-268.
    [36]彭茜,冉德钦,王平等.不同pH值下腐殖酸反渗透膜污染中的界面相互作用解析[J].中国环境科学,2011,31(4):616-621.
    [37]罗美莲,靖大为,马孟等.腐殖酸类物质对反渗透膜的污染研究[J].工业水处理.2011,31(5):87-90.
    [38]陶若虹,姚宏,邢锴.污水回用深度处理中有机物对反渗透膜污染研究.北京交通大学学报,2011, 35(4):125-129.
    [39] Qilin Li, Zhihua Xu, Pinnau Ingo. Fouling of reverse osmosis membrane by biopolymers in wastewater secondary effluent: Role o f membrane surface properties and initial permeate flux [J] . Jour nal o f Membr ane Science, 2007, 290( 1-2) : 173- 181.
    [40]王安辉,姜艳芳.FENTON试剂处理难降解废水[J].科技创新导报,(7):113-114.
    [41]李静.生化处理后的垃圾渗滤液的深度处理试验研究[硕士论文].天津:天津大学, 2004.
    [42]陈传好,谢波,任源,等.Fenton试剂处理废水中各影响因素的作用机制[J].环境科学,2000,21(3):93-96.
    [43] E.Neyens, J.Baeyens.A review of classic Fenton’s peroxidation as an advanced oxidation technique[J].Journal of Hazardous Materials, 2003,98(1-3):33-50.
    [44] V.Kavitha, K.Palanivelu. Destruction of cresols by Fenton oxidation process[J].Water Research,2005,39(13):3062–3072.
    [45] Jiyun Feng, Xijun Hu, Po Lock Yue. Discoloration and mineralization of Orange II by using a bentonite clay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst[J].WaterResearch,2005,39(1):89-96.
    [46] RBoussahela, DHarikb, MMammar. Degradation of obsolete DDT by Fentonoxidation with zero-valentiron[J].Desalination,2007,206(1-3):369–372.
    [47] Jun Liang, Sergey Komarov,Naohito Hayashi,et al.Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents[J].Ultrasonics Sonochemistry, 2007, 14(2):201–207.
    [48]程丽华,黄君礼,王丽,等.Fenton试剂的特性及其在废水处理中的应用[J].化学工程师,2001,84(3):24-25.
    [49]吴彦瑜,覃芳慧,周少奇等.Fenton试剂对垃圾渗滤液中腐殖酸的去除特性[J].环境科学研究, 2010, 23(1):94-99.
    [50]杨开明,张建强,杨小林.混凝沉淀过程中最佳混凝剂投量的研究[J].工业水处理,2005,25(9):49-51.
    [51] XueJin,XiaoFei Huang,EricM.V.Hoek. Role of Specific Ion Interactions in Seawater RO Membrane Fouling by Alginic Acid [J].Environment Science & Technology,2009,43 (10) :3580-3587.
    [52]丁一,梁恒国,刘韬,等.天然有机物在超滤过程中的膜污染和膜清洗[J].西南给排水, 2004,26(3):11-12.
    [53]王津南,李爱民,张波,等.水中腐殖酸的去除[J].水处理技术,2007,33(12):7-10.
    [54] Abdul Ghani I. Dalvi, Radwan A1-Rasheed R, Mohammad A.Javeed. Studies on organic foulants in the seawater feed of reverse osmosis plants of SWCC[J]. Desalination,2000,132(1-3):217-232.
    [55] J.Schwinge, D.E.Wiley, A.G.Fane.Novel spacer design improves observed flux[J].Journal of Membrane Science,2004,229(1-2):53-61.
    [56] F.Li, W.Meindersma,A.B.de Haan,et al. Optimization of commercial net spacers in spiral wound membrane modules[J]. Journal of Membrane Science,2002,208(1-2):289-302.
    [57] K.Katsoufidou, S.G.Yiantsios, A.J.Karabelas. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing[J]. Journal of Membrane Science. 2007,300(1-2):137-146.
    [58] Nicholas E. Simpson,Chery L. Stabler,Ioannis ConstantinidisI, etal. The role of the CaCl2–guluronic acid interaction on alginate encapsulatedβTC3 cells[J].Biomaterials,2004,25(13):2603-2610.
    [59] Yapeng Fang,Al-Assaf Saphwan,Glyn O.Phillips,et al. Binding behavior of calcium to polyuronates:Comparison of pectin with alginate[J].Carbohydrate Polymers,2008,72(2):334–341.
    [60] Yapeng Fang,Al-Assaf Saphwan,Glyn O.Phillips,et al. Multiple steps and critical behaviors of the binding of calcium to alginate[J].The Journal Of Physical Chemistry B,2007,111(10):2456–2462.
    [61]王秀娟,张坤生,姚俊等.海藻酸钠凝胶特性的研究[J].食品工业科技, 2008,2,29.
    [62] Wui Seng Ang, Sangyoup Lee, Menachem Elimelech. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes[J].Journal of Membrane Science,2006,272(1-2): 198–210.
    [63] M.Elimelech,X.Zhu,A.E.Childress,S.Hong.Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes[J]. Journal of Membrane Science,1997,127(1):101-109.
    [64] Ana Rita Costa,Maria Norberta de Pinho. Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions[J]. Journal of Membrane Science,2005,225(1-2):49-56.
    [65] A.I.Schafer,A.Pihlajamaki,A.G.Fane,et al.Natural organic matter removal by nanofiltration:effects of solution chemistry on retention of low mola rmass acids versus bulk organic matter[J].Journal of Membrane Science , 2004,242(1-2):73-85.
    [66] Chuyang Y.Tang,Young-Nam Kwon,James O.Leckie.Fouling of reverse osmosis and nanofiltration membranes by humic acid—effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science,2007,290(1-2):86-94.
    [67] L.Paugam,S.Taha,G.Dorange,el al.Mechanism of nitrate ions transfer in nanofiltration depending on pressure,pH,concentration,and medium composition[J]. Journal of Membrane Science, 2004,231(1-2):37-46.
    [68] Zhi Wang,Yuanyuan Zhao,Jixiao Wang, et al.Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids[J].Desalination, 2005,178(1-3):171-178.
    [69] Sangyoup Lee,Wui Seng Ang,Menachem Elimelech. Fouling of reverse osmosis membranes by hydrophilic organic matter:implications for water reuse[J].Desalination, 2006,187(1-3):313-321.
    [70]张亚琼,俞怡晨,郭圣荣等.钙离子存在下海藻酸盐稀溶液的粘度性质[J].应用化学, 2006,11, 23(11):1259-1263.
    [71] S.G.Yiantsios,A.J.Karabelas.An experimental study of humic acid and powdered activated carbon depositionon UF membranes and their removal by backwashing[J].Desalination,2001,140(2):195-209.
    [72] Arza Seidel,M.Elimelech.Coupling between chemical and physical interactions in natural organic matter(NOM) fouling of nanofiltration membranes:implications for fouling control[J].Jouranl of Membrane Science,2002,203(1-2):245-255.
    [73] K.Katsoufidou, S.G.Yiantsios, A.J.Karabelas.A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing:experiments and modeling[J].Jouranl of Membrane Science, 2005,266(1-2):40-50.
    [74] Sangho Lee,Jun-Seok Choi, Chung-Hak Lee. Behaviors of dissolved organic matter in membrane desalination [J]. Desalination,2009,23(8):109-116.
    [75] Jaeweon Cho,Gary Amy,John Pellegrino.Membrane filtration of natural organic matter:factors and mechanisms affecting rejection and flux decline with charged ultra-filtration(UF) membrane[J]. Jouranl of Membrane Science, 2000,164(1-2):89-110.
    [76] Anne Braghetta,Francis A.DiGiano,William P.Ball.Nanofiltration of natural organic matter:pH and ionic strength effects[J]Joural of Environmetal Engineering, 1997,123(7):628-641.
    [77] Eric M.V.Hoek, Menachem Elimelech.Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes[J].Environmetal Science &Technology,2003,37(24):5581–5588.
    [78] Sangyoup Lee,Jaeweon Cho,Menachem Elimelech.Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes[J].Desalination,2004,160(1):1-12.
    [79] Moshe Herzberg,M.Elimelech.Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure[J].Journal of Membrane Science, 2007,295(1-2):11-20.
    [80] Sangyoup Lee,Jaeweon Cho,Menachem Elimelech.A novel method for investigating the influence of feed water recovery on colloidal and NOM fouling of RO and NF membranes[J].Environmental Engineering Science,2005,22)4):496-509.
    [81] Sangyoup Lee, Menachem Elimelech. Salt cleaning of organic-fouled reverse osmosis membranes[J]. Water Research, 2007, 41(5): 1134-1142.
    [82] Sergey P. Agashichev. Modeling the influence of temperature on gel-enhanced concentration polarization in reverse osmosis[J]. Desalination ,2009,236(1-3): 252–258.
    [83] Xue Jin, Anna Jawor, Suhan Kim, et al .Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes[J].Desalination, 2009, 239(1-3):346-359.
    [84] William B Suratta,Douglas R Andrews,Victor J Pujals, et al. Design considerations for major membrane treatment facility for groundwater[J]. Desalination, 2000, 131(1-3): 37-46.
    [85]何旭辉,邹永辉,王萍.PASP在高钙高碱水质中的阻垢性能研究[J].兰州交通大学学报,2005,24(3):65-67.
    [86]梁志群,李景宁,智霞.改性聚天冬氨酸的合成及阻垢性能研究[J].工业水处理,2008,28(8):38-40.
    [87] Stephen M. Kessler.Method of inhibiting corrosion in aqueous systerns[P].U.S.:5256332,1993.
    [88]张冰如,李风亭.聚环氧琥珀酸的多元阻垢性能[J].工业水处理,2002,22(9):21-24.
    [89]魏刚,许亚男,熊蓉春.阻垢剂的可生物降解性研究[J].北京化工大学学报,2001,28(1):59-62.
    [90] Qilin Li,Menachem Elimelech. Organic fouling and chemical cleaning of nanofiltration membranes:Measurements and mechanisms[J].Environmental Science &Technology,2004,38(17):4683-4693.
    [91]董平.聚天冬氨酸的阻垢性能的综述[J].化工科技市场,2006,29 (11):32 -34.
    [92]杨红健,王芳,侯凯湖.聚天冬氨酸的结构及其阻垢性能研究[J].工业水处理,2005,25(7):26-28.
    [93] Jian-Jun Qin, Boris Liberman, Kiran A Kekre. Direct Osmosis for Reverse Osmosis Fouling Control: Principles, application and recent developments [J]. The Open Chemical Engineering Journal,2009,3(1):8-16.
    [94] Jian-Jun Qin,Maung Htun Oo,Kiran A.Kekre,et al. Development of novel backwash cleaning technique for reverse osmosis reclamation of secondary effluent[J].Journal of Membrane Science, 2010,346(1):8-14.
    [95] Abraham Sagiv, Raphael Semiat. Backwash of RO spiral wound membranes[J].Desalination,2005,79(1-3): 1-9.
    [96] MA.Zazouli,S Nasseri,AH.Mahvi, el al.Determination of hydrophobic and hydrophilic fractions of Natural Organic Matter in raw water Jalalieh and Tehranpars water treatment plants(Tehran)[J].Journal of Applied Science,2007,7(18):2651-2655.
    [97] Mohamed Belkacem,Saida Bekhti,Kenza Bensadok.Groundwater treatment by reverse osmosis[J].Desalination, 2007,206(1-3):100-106.
    [98] Wui Seng Ang, Menachem Elimelech. Fatty acid fouling of reverse osmosis membranes:Implications for wastewater reclamation[J]waterresearch,2008,42(16):4393-4403.
    [98] Mohammad Ali Zazouli,Simin Nasseri,MathiasUlbricht. Fouling effects of humic and alginic acids in nanofiltration and influence of solution composition[J].Desalination, 250(2):688-692.
    [100] K.S.Katsoufidou,D.C.Sioutopoulos,S.G.Yiantsios,et al.Uf membrane fouling by mixtures of humic acids and sodium alginate:Fouling echanisms and reversibility[J].Desalination, 264(3) :220-227.
    [101]王学奎.植物生理生化实验原理和技术[M].高等教育出版社.2006,202-205.
    [102]李娟,张盼月,曾光明等.Fenton氧化破解剩余污泥中的胞外聚合物[J].环境科学, 2009, 30(2):475-479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700