用户名: 密码: 验证码:
生态园林城市评价指标体系优化与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统总结了生态园林城市建设与发展过程,生态园林城市评价方法和3S技术在生态园林城市评价中应用等相关研究进展;以常州市为例,在已有国家生态园林城市评价体系的基础上,采用统计方法构建并优化生态园林城市评价指标体系。以该指标体系为指导,借助于3S技术,拓展和深化城市绿地的空间分析与定量评价方法,形成了一套生态园林城市综合评价理论和方法;应用该指标体系对常州市生态园林城市建设水平进行综合评价,并提出绿地建设的规划对策。主要研究结果如下:
     (1)在已有国家生态园林城市评价标准(试行)的基础上,采取主观与客观、定性与定量相结合的指标筛选方法初选出72个生态园林城市的评价指标,并应用聚类分析、主成分分析和相关性分析等方法分别对初选指标进行筛选与优化,最终选取了25个指标,并运用层次分析法赋予每个指标相应的权重,构建了一套生态园林城市评价指标体系。
     (2)对2005年常州市建成区1:10000的航片影像进行目视解译,提取建成区绿地空间信息。由斑块面积分析可知,建成区内绿地斑块较为破碎,中、小型斑块占绿地斑块总数的98.25%,占总面积的72.17%;由绿地类型分析可知,居住绿地、其他附属绿地和生产绿地的斑块数较多,占总斑块数的87.81%,占总面积的81.41%;从植被组成角度看,乔木和灌木数量占绿地总数的92.54%,面积占绿地总面积的83.24%。同时,利用2005年TM影像,采用Isodata无监督分类方法提取市域范围内城市绿地、农田和建设用地等5类地物信息,分类精度为91.12%,kappa系数为0.88,其中市域范围内较大面积的绿地斑块主要分布在武进区西部和南部以及新北区西部。
     (3)采用城市绿地连通性指标对绿地斑块的敏感度进行空间分析与评价,以此来确定城市敏感区的范围和等级。分别选择10hm2、5hm2、20hm2和25hm2四个最小斑块面积等级和200m、400m、800m、1200m和1600m五个连通阈值,计算不同参数组合下9个连通指数的重要值,并利用Spearman秩相关系数和PIOP值优选AWF (Area-weighted flux)作为分析景观连通敏感度指数,同时确定了400m连通阈值和10 hm2最小斑块面积的最优组合。分析表明,胡家山-中大湾和西湾里-丁家坞区均为连通高敏感区域。
     (4)着重对工业污染指数、路网布局状况和人口密度分布等指标进行空间扩展,确定了道路交通、水系分布、古树名木等7个生态因子,采用层次分析法AHP(Analytic Hierarchy Process)模型和频率比FR (Frequency Ratio)模型对研究区绿地进行适宜性分析,引入ROC (Receiver Operating Characteristic Curve)曲线对两种模型的计算结果进行检验和优选。3组AHP模型和FR模型所计算的ROC曲线面积分别为:0.604、0.612、0.597和0.724,其中FR模型预测精度较高;利用该模型对常州市绿地适宜性进行分析评价,高适宜区主要分布在城市的西部以及北部,不适宜区主要分布城市中心城区以及周边地带;根据面积统计,高适宜区占总面积的13.14%,不适宜区占总面积的17.75%。
     (5)根据常州生态园林城市建设的特点和已构建的指标体系中每个指标的加权评价值获得常州生态园林城市建设综合得分,其中2005年常州生态园林城市建设水平综合评分为0.6741,按照生态园林城市建设分级表,常州市的城市生态园林建设水平等级为:Ⅳ级,处于生态园林城市建设中下等水平,与2008(0.7216)、2009(0.7224)年进行比较,确定指标体系的可行性;由绿地斑块空间布局综合分析可知,研究区内高适宜地区的绿地斑块聚集度较高,斑块面积较大、破碎化程度较低,其最大斑块指数(LPI)、聚集度指数(AI)和平均斑块面积指数(MPS)明显高于低适宜地区;大于10 hm2以上的高敏感和较高敏感的绿地斑块主要分布在高适宜区域,而低适宜区域受干扰较为严重,绿地斑块的连通敏感度较低,是城市绿地系统规划中需重点关注的问题之一。
In this thesis, the author systematically summarizes the research progress of ecological garden city's construction and development, evaluation method for ecological garden city and 3S methodology's application in evaluating the ecological garden city, etc. Based on the existing evaluation system of the national ecological garden city, the statistic approach has been used to build and optimize the evaluation index system of the ecological garden city. This index system is applied as the guidance along with the 3S methodology to explore and deepen the space evaluation system of the urban green space, which forms a set of theories and methods to comprehensively evaluate the ecological garden city. Furthermore, the index evaluation system mentioned above is used to comprehensively assess the construction of Changzhou city, and some strategic recommendations are also suggested for the green space construction. The main results were described as follows:
     (1) Based on the characteristic of Changzhou's ecological garden city construction and the evaluation standard for existing national ecological garden city, it uses the index selection method by means of combining subjective and objective, qualitative and quantitative models, to edit, reinforce and optimize 72 ecological garden city evaluation indices, and uses the principal component analysis, factorial analysis and cluster methods respectively to optimize the original indices and choose 25 indices derived by the principal component analysis, and then uses the AHP method to establish the ecological garden city evaluation index system and assign corresponding weight to each index. This index system consists of 3 first level indices and 25 second level indices (Including landscape connectivity, distribution status of road network and distribution status of population density, etc).
     (2) Using some indices from the index system constructed by the space data collection, such as remote sensing images, the author conducts visual interpretation for the 1:10000 aerial images of the built-up area in Changzhou city in 2005 and selects the green space information of the built-up areas. According to the patch areas, green space patch of Built-up areas is relatively fragmentized, the total number of medium and small size green space patches accounts for 98.25% of the total number of green space patches, but their total area only takes up 72.17% of the total green space area. According to the green space type, occupancy green space, other afflicted green space and manufactured green space which accounts for 87.81% of the total number of green space patches, but their total areas only takes up 81.84% of the total green space area; According to the composition of vegetation, the number of trees and shrubs account for 92.54% of the total number of the green space and their areas occupy 83.24% of the total area of green space; meanwhile using the TM images from 2005, the thesis adopts the Isodata unsupervised classification to select 5 ground feature information from the area of the city, namely urban green space, farmland, construction area, water body and other sites. The total precision degree after classification is 91.12%; the kappa coefficient is 0.88. The green space patches that have relatively large areas in the studied area mainly are located in the western and southern areas of Wujin district, western areas of Xinbei district.
     (3)City green space connectivity indice are used to analyze and evaluate sensitivity of green space patches, and identify city sensitivity areas and levels. Selecting 4 minimum levels of patch areas including 10,15,20 and 25 hm2, and also 5 connectivity thresholds including 200,400,800,1200 and 1600 meters, the node importance of 9 connectivity indices as calculated, and Spearman Rank Correlation Coefficient and PIOP value are used to optimize AWF index (Area-weighted flux) as the index of analyzing the connectivity sensitivity of landscape. Meanwhile, the best combination of the 400m connectivity threshold and the 10hm2 smallest patch area is determined. The results show that Hujia Mountain-Zhong Da Wan and Xi Wan Li-Dingjiawu District are the most sensitive areas, the green space sensitive areas with relatively high sensitivity are mainly located at the Northwestern area of the city, and that the green space patches in the northern and eastern areas of the city are relatively scattered and have the lowest connectivity sensitivity.
     (4) In this paper ten levels of single factor analysis are conducted for the seven factors such as traffic condition, water body distribution, old and rare trees in the research area. According to the grading forms from 3 groups of specialists, the author constructs green space suitability distribution pattern based on AHP model and FR model by 3 Scoring tables, uses ROC curve to test the result of 4 types of suitability. The results show that 3 groups ROC linear areas calculated by the AHP model and FR model are:0.604,0.612,0.597 and 0.724. Among them, the FR model's prediction accuracy has a relatively high reliability. The research uses this model to analyze and evaluate the suitability of Changzhou's green space. Highly suitable districts are mainly located at the western and northern areas of the city and unsuitable districts mainly located at the central and surrounding areas of the city. According to the area statistics, the highly suitable districts account for 13.14% of the total studied area and the unsuitable districts take up 17.75% of the total area.
     (5) According to the characteristics of Changzhou ecological garden city construction and the weighted evaluation value of each indicator the comprehensive score of Changzhou ecological garden city construction is obtained. The composite score of Changzhou's construction level of ecological garden city in 2005 was 0.6684. According to the classification table of ecological garden city construction, Changzhou's construction level of ecological garden city is at levelⅣ, which is the middle level of the ecological garden construction, compared to the data of 2008 (0.7160) and 2009 (0.7168) in order to determine the feasibility of the index system. Among them, the evaluation values of the urban ecological environment, urban living environment and urban infrastructure are 0.6297,0.7212 and 0.7115 respectively. The index of the urban ecological environment takes the largest weight and has a relatively large impact on the index system. In this index level, several factors, such as the green coverage in the built-up area, landscape's connectivity, public green space area per capita in the built-up area and native plants index, have relatively large impacts on it. According to the comprehensive analysis of the green space distribution, the green_space patch density of highly suitable districts in the studied area is relatively high, and the patch area is relatively large with the relatively low level of fragmentation. Its largest patch index (LPI), aggregation degree index (AI) and mean patch area (MPS) are clearly higher than those of the low suitable districts. The green space patches with high sensitivity and relatively high sensitivity greater than 10hm2 are mainly located at highly suitable areas, but low suitable districts are seriously interfered and the connectivity sensitivity of the green_space patches are relatively low, which would become one of the mainly focused regions in the urban green space system planning.
引文
[1]United Nations. State of World Population 2009:Facing a Changing World:Women, Population and Climate[R]. New York: United Nations Population Fund,2009.
    [2]Lynn NA, Brown R D. Effects of recreational use impacts on hiking experiences in natural areas[J]. Landscape and Urban Planning,2003,64(1-2):77-87.
    [3]建城[2004]98,《关于创建“生态园林城市”的实施意见》[S].北京,建设部,2004.
    [4]王浩,王亚军.生态园林城市规划[M].北京:中国林业出版社.2008.
    [5]杨根辉.南昌市生态城市评价指标体系的研究[D].新疆农业大学,2007.
    [6]陈自新.城市园林绿化与城市可持续发展[J].中国园林,1998,14(5):4-5.
    [7]房城,王成,郭二果,等.城市绿地与城市居民健康的关系[J].东北林业大学学报,2010,38(4):114-116.
    [8]邹宇.“生态城市”规划与建设整合策略[J].天津建设科技,2006,(05):56-58.
    [9]王如松.高效·和谐——城市生态调控原则与方法[M].长沙:湖南教育出版社.1988.
    []0]黄光宇,陈勇.论城市生态化与生态城市[J].环境与城市生态,1999(6):25-31.
    [11]沈清基.城市生态与城市环境[M].上海:同济大学出版社,1998.
    [12]殷京生.绿色城市[M].南京:东南大学出版社,2004.
    [13]吴人韦.国外城市绿地的发展历程[J].城市规划,1998,22(6):39-43.
    [14]杨贵丽.城市园林绿地规划[M].北京:中国林业出版社,2003.
    [15]冯彩云.我国城市绿化的现状与发展方向[J].科技建议,2002,(2):15-18.
    [16]俞孔坚,李迪华,刘海龙.“反规划”途径[M].北京:中国建筑工业出版社,2005.
    [17]Song Y C, Qi R H, You W H, et al. Index and assessment method of ecocity [J]. Urban Environment & Urban Ecology,1999, 12(5):16-19.
    [18]何艺.重庆生态城市的发展模式、综合评价与对策研究[D].重庆西南农业大学,2005.
    [19]Register R. The Eco-city Movements Deep History, Movement of Opportunity. Village Wisdomo Future Cities[C]. The Third International Eco-city and Eco-village Conference, Ecocity Builders, Oakland, CA, USA,1996:26-29.
    [20]Register R. Ecocity Berkeley:Building Cities for A Healthier Future[M]. CA:North Atlantic Books,1987.
    [21]Bao S X, Gu M C. City science and mountains water city[M]. Beijing:China Construction Industry Press,1994:285-295.
    [22]Qian Y. The principle and exploration of ecocity[J]. Architectural Journal,1994,4:12-15.
    [23]Shen Q J. Exploration of ecocity and its planning methods a review of Franco Archibugrs book:ecocity and city influence[J]. Journal of Urban Planning Collection,2001,132:(2):76-80.
    [24]刘则渊.生态城市前沿探索—可持续发展的大连模式[M]科学出版社有限责任公司,2010.
    [25]王清芬,王伯铎,马俊杰,等.咸阳市生态市建设的区域可持续发展水平研究[J].环境科学研究,2008,21(3):195-200.
    [26]谌丽,张文忠,李业锦.大连居民的城市宜居性评价[J].地理学报,2008,63(10):1022-1032.
    [27]王文彤.我国生态城市建设探索[J].城市规划汇刊,1993,5:12-23.
    [28]宋永昌,戚仁海,由文辉,等.生态城市的指标体系与评价方案[J].城市环境和城市生态,1999,12(5):18-8.
    [29]盛学良,彭补拙,王华,等.生态城市建设的基本思路及其指标体系的评价标准[J].环境导报,2001,(1):5-8.
    [30]黄光宇,陈勇.生态城市理论与规划设计方法[M].北京:科学出版社,2002.
    [31]顾传辉,陈桂珠.生态城市评价指标体系研究[J].环境保护,2001,11:24-26.
    [32]张坤民,温宗国,杜斌,等.生态城市评估与指标体系[M].北京:化学工业出版社,2003.
    [33]黄鹃,陈森发,孙燕.生态城市智能综合评价决策系统研究与实现[J].信息与控制,2003,32(4):377-380.
    [34]常克艺,王祥荣.全面小康社会下生态型城市指标体系实证研究[J].复旦大学(自然科学版),2003,42(6):1044-1048.
    [35]焦胜,曾光明,何理,等.生态城市指标体系的不确定性研究[J].湖南大学学报(自然科学版),2004,31(1):75-78.
    [36]吴琼,王如松,李宏卿,等.生态城市指标体系与评价方法[J].生态学报,2005,25(8):2090-2095.
    [37]Kellomaki S, Pukkala T. Forest landscape:a method of menity evaluation based on computer simulation[J].Landscape Architecture,1989(2):117-125.
    [38]Sorvig K. Global Positioning:A Revolution[J]. Lanscape Architecture,1995(12):28-31.
    [39]Maccormack S. Interactive Graphics:An Added Di-mensionin Site Desing[J]. Landscape Architecture,1987(2):71-73.
    [40]黄宏业,刘侠.CBERS-1卫星IRMSS数据在城市绿地系统规划的应用[J].航天返回与遥感,2001,22(3)65-68.
    [41]董仁才,赵景柱,邓红兵,等.3S技术在城市绿地系统中的应用探讨——以园林绿地信息采集与管理中的应用为例[J].林业资源管理,2006(2):83-87.
    [42]刘琳,舒文,张正勇,等.基于GIS的城市绿地管理信息系统设计研究[J].测绘与空间地理信息,2009,32(2):16-18,21.
    [43]常州统计局.常州统计年鉴[M].北京:中国统计出版社,2006.
    [44]徐惠,罗超,刘志刚.层次分析法评价指标筛选方法探讨[J].中国海上油气,2007,19(6):415-418.
    [45]沈珍瑶,杨志峰.黄河流域水资源可再生性评价指标体系与评价方法[J].自然资源学报,2002,17(2):189-197.
    [46]赵多,卢剑波,闵怀.浙江省生态环境可持续发展评价指标体系的建立[J].环境污染与防治,2003,25(6):380-382.
    [47]任军号,林波,薛惠锋,等.大城市周边地带城市化水平评价指标体系[J].西北大学学报(自然科学版),2005,35(1):113-116.
    [48]徐映梅,丁俊君.宏观经济运行质量评价指标的选择方法[J].中南财经政法大学学报,2007,(4):3-8.
    [49]向来生,郭亚军.孙磊,等.循环经济评价指标体系分析[J].中国人口资源与环境,2007,17(2):76-78.
    [50]刘颜,方积乾,翟祖唐.初级卫生保健乡镇级评价标准[J].中国卫生统计,1996,13(6):15-18.
    [51]陈家鼎.孙山泽,李东风.数理统计学讲义[M].北京:高等教育出版社,1993.
    [52]李蓉,李宇.基于主成分分析与聚类分析方法的我国西部区域划分问题的研究[J].科技广场,2006,3:66-67.
    [53]白慧强.主成分分析法在SPSS中的应用——以文峪河河岸带林下草本群落为例[J].科技情报开发与经济,2009,19(9):172-175.
    [54]胡永宏,贺思辉,综合评价方法[M].北京:科学出版社,2000.
    [55]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002.
    [56]李朝峰,杨中宝.SPSS主成分分析中的特征向量计算问题[J].统计教育,2007(3):10-11.
    [57]徐雁南,陈红光.我国城市森林建设现状分析[J].林业科技开发,2004,18(1):65-67.
    [58]黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报.2004,8(1):68-74
    [59]车生泉.城市绿地景观结构分析与生态规划——以上海市为例[M].南京:东南大学出版社,2003.
    [60]海军,包玉海.快鸟高分辨率遥感数据在呼和浩特市赛罕区绿地调查中的应用[J].内蒙古师范大学学报(自然科学汉文版).2007,36(2):208-211.
    [61]徐新良,庄大方,张树文,等.运用RS和G1S技术进行城市绿地覆盖调查[J].科技大学学报,2000(2):31.
    [62]高俊,杨名静,陶康华.上海城市绿地景观格局分析研究[J].中国园林,2000(1):53-56.
    [63]廖文峰.基于数据融合的土地遥感分类技术研究[D].乌鲁木齐:新疆农业大学,2004.
    [64]Waekernagel M, Onisto L, Bello P, et al. Ecological Footprints of Nations:How Much Nature Do They Use? How Much Nature Do they Have? Commissioned by the Earth Council for the Rio+5 Forum[C].International Council for Local Environmental Initiatives, Toronto,1997.
    [65]房庆方,杨细平,蔡瀛.区域协调和可持续发展—珠江三角洲经济区城市群规划及其实施[J].城市规划,1997,22(1):7-10.
    [66]邢忠.“边缘效应”与城市生态规划[J].城市规划,2001,25(6):44-49.
    [67]李团胜,石铁矛,肖笃宁.大城市区域的景观生态规划理论与方法[J].地理学与国土研究,1999,15(2):52-55.
    [68]陈闽齐.城镇体系规划的可持续发展战略[J].城市发展研究,1998,(1):40-43.
    [69]达良俊,李丽娜,李万莲,等.城市生态敏感区定义、类型与应用实例[J].华东师范大学学报(自然科学版),2004,(2):97-103.
    [70]熊春梅.西南生态敏感区与生态承载力理论及其应用研究[D].成都:西南交通大学,2008.
    [71]Merriam G Connectivity:a fundamental ecological characteristic of landscape pattern[C]. In Proceedings of the First international Seminar of the International Association of Landscape Ecology. Dmmark:Roskilde,1984:5-15.
    [72]Forman, R.T.T., Godron, M. Landscape ecology [M]. New York:John Wiley,1986.
    [73]With K A,Gardner R H, Turner M G. Landscape connectivity and population distribution in heterogeneous environments[J]. Oikos,1997,78:151-169.
    [74]Saura S, Pascual-Horta L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study[J]. Landscape Urban Planning,2007,83:91-103.
    [75]Saura S. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices[JJ. Landscape Ecology,2004,19(6):197-209.
    [76]Wu, J G Effects of changing scale on landscape pattern analysis:scaling relations[J]. Landscape Ecology,2004, 19(2):125-138.
    [77]Saura S, Castro S.Scaling functions for landscape pattern metrics derived from remotely sensed data:are their subpixel estimates really accurate?[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62:201-216.
    [78]Pascual-Hortal L, Saura S. Impact of spatial scale on the identification of critical habitat patches for the maintenance of landscape connectivity[J]. Landscape and Urban Planning,2007,83:176-186.
    [79]Mcharg I. Design with Nature[M]. New York:Natural History Press,1969
    [80]Hopkins, L, Methods for generating land suitability maps:a comparative evaluation[J]. Journal for American Institute of Planners,1997,34(1):19-29.
    [81]Collins, M.G, Steiner, F.R., Rushman, M.J., et al. Land-use suitability analysis in the United States:historicaldevelopment and promising technological achievements[J]. Environmental Management,2001,28 (5):611-621.
    [82]Xu Y N, Jia D P, Wang X. The study of green space system planning based on AHP and G1S in Changzhou city, China.[C]. In:2009 2nd International Conference on Information and Computing Science (volume 3), Manchester, United kingdom, 2009,405-408.
    [83]Cambell J C, Radke J, Gless J T, et al. An application of linear programming and geographic information systems:cropland allocation in antigue[J]. Environment and Planning,1992,24:535-549.
    [84]Kalogiron S. Expert systems and G1S:an application of land suitability evaluation [J]. Computers Environment and Urban Systems,2002,26(2/3):89-112.
    [85]Geneletti D, Duren I V. Protected area zoning for conservation and use:A combination of spatial multicriteria and multiobjective evaluation[J]. Landscape and Urban Planning,2008(85):97-110.
    [86]Moreno D, Seigel M. A GIS approach for corridor siting and environmental impact analysis[C]. Texas:San Antonio,1988.
    [87]沈虹,肖青,周正明,等.区域环评中生态适宜度分析指标体系的探讨[J].安全与环境学报,2005,5(2):30-33.
    [88]程吉宏,王晶日.区域环境影响评价中的土地使用生态适宜性分析[J].环境保护科学,2002,28(12):52-54.
    [89]刘孝富,舒俭民,张林波.最小累积阻力模型在城市土地生态适宜性评价中的应用——以厦门为例[J].生态学报,2010,30(2):421-428.
    [90]宗跃光,王蓉,汪成刚,等.城市建设用地生态适宜性评价的潜力—限制性分析——以大连城市化区为例[J].地理研究,2007,26(6):1117-1126.
    [91]李海防,周志翔,郑文俊,等.基于GIS的武钢工业区绿地景观适宜度评价[J].华南农业大学学报,2007,28(4):51-55.
    [92]申世广,王浩,荚德平,等.基于GIS的常州市绿地适宜性评价方法研究[J].南京林业大学学报:自然科学版,2009,33(4):72-76.
    [93]Swets, J.A. Measuring the accuracy of diagnostic systems[J]. Science 240,1988:1285-1293.
    [94]McFadden, D., Conditional logit analysis of quantitative choice behavior[M]. In:Zarembka, P. (Ed.), Frontiers in Econometrics. Academic Press, New York, USA,1973.
    [95]洪楠.SPSS for Windows统计产品和服务解决防方案教程[M].清华大学出版社,2003.
    [96]Landis, J.D., Zang, M.. Modeling land use change:the next generation of the California urban future model, submitted to the land use modeling workshop[R]. South Dakota:USGS EROS Data Center,1997.
    [97]Kim, J.I., Hwang, G.W., Yeo, C.H., Chung, H.W.,2007. Modeling future urban growth and its application:the integrated approach[J]. Journal of the Korea Planners Association 42 (2):31-48.
    [98]Yesilnacar, E., Topal, T. Landslide susceptibility mapping:a comparison of logistic regression and neural networks methods in a medium scale study Hendek region (Turkey)[J]. Engineering Geology 2005(7):251-266.
    [99]Parka S, Jeonb S W. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea[J]. Landscape and Urban Planning,2011(5):104-114
    [100]Lee, S., Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models[J]. Landslides,2007(4):33-41.
    [101]Lee, S., Sambath, T. Landslide susceptibility mapping in the DamreiRomel area, Cambodia using frequency ratio and logistic regression models[J]. Environmental Geology,2006(50):847-855.
    [102]Angillieri, M.Y. Application of frequency ration and logistic regression to active rock glacier occurrence in the Andes of San Juan, Argentina[J]. Geomorphology,2010(114):396-405
    [103]Lee, S., Kim, Y.J., Min, J.D. Development of spatial landslide information system and application of spatial landslide information[J]. The Journal of GIS Association of Korea 2000(8):141-153.
    [104]Lee,S.,Ryu,J.H.,Lee,M.J.,Won,J.S.Use of an artificial neural network for analysis of the susceptibility to landslides at Boun,Korea[J]. Environmental Geology,2003(44):820-833.
    [105]吴人韦.国外城市绿地的发展历程[J].城市规划,1998,22(6):39-43.
    [106]同济大学,重庆建筑工程学院,武汉城建学院合编.城市园林绿地规划[M].北京:中国建筑工业出版社,1982.
    [107]周廷刚,罗红霞,郭达志.基于遥感影像的城市空间三维绿量定量研究[J].生态学报,2005,25(3):415-420.
    [108]LPAC(London Planning Advisory Committee) Advice on Strategic Planning Guidance for London,1994,93-106.
    [109]徐雁南.城市绿地系统布局多元化与城市特色[J].南京林业大学学报(人文社会科学版),2004,4(4):64-68.
    [110]徐雁南,陈红光,李崇福.城市绿地系统规划理性化之认识[J].城市林业,2004,2(2):8-12.
    [111]张浩,王祥荣.面向21世纪的上海城市绿地建设与管理对策研究[J].中国园林,2000,(6):30-32.
    [112]刘常富,周彬,何兴元,等.沈阳城市森林景观连接度距离阈值选择[J].应用生态学报,2010,21(10):2508-2516.
    [113]侍昊,徐雁南.基于景观连通性的城市绿地核心区规划方法研究[J].南京林业大学学报(自然科学版),2011,35(1):51-56.
    [114]熊春妮,魏虹,兰明娟.重庆市都市区绿地景观的连通性[J].生态学报,2008,28(5):2237-2244.
    [115]孙贤斌,刘红玉.土地利用变化对湿地景观连通性的影响及连通性优化效应—以江苏盐城海滨湿地为例[J].自然资源学报,2010,25(6):892-903.
    [116]苏为华.多指标综合评价理论与方法研究[D].厦门:厦门大学,2000.
    [117]胡习英,陈南祥.城市生态环境需水量计算方法与应用[J].人民黄河,2006(2):68-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700