用户名: 密码: 验证码:
南瓜汁浓缩过程质量评估与三相循环流化床蒸发器蒸发特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将汽-液-固三相循环流化床蒸发器用于南瓜汁的蒸发浓缩,对浓缩过程中的南瓜汁进行了质量评估,并研究了此种蒸发设备的综合性能。对食品品质损失动力学模型分析讨论后,以南瓜汁中的胡萝卜素为营养指标,研究了恒容热过程中温度和溶液浓度对胡萝卜素损失的影响,得出恒容热过程中胡萝卜素损失动力学模型,进而建立了浓缩过程营养损失动力学模型和质量评估准则;以此准则为依据,通过与无粒子操作时的两相流蒸发器性能对比,研究了汽—液—固三相循环流化床蒸发器浓缩南瓜汁时的蒸发浓缩性能与品质保护性能。通过改变蒸发温度、传热温差、料液流量、料液浓度以及惰性粒子的体积分率等操作参数,研究了三相循环流化床蒸发器在不同操作条件下的传热性能,并建立了管内三相流流动沸腾传热模型,模型预测值与实验值吻合较好。文中还对此种蒸发设备的管内汽-液-固三相流流动性能和防、除垢性能进行了初步实验研究。
     实验结果表明,汽—液—固三相循环流化床蒸发器具有良好的传热性能,在本实验范围内,其传热系数是无粒子时的两相流蒸发器的1.35倍左右,在浓缩南瓜汁过程中,胡萝卜素的损失率较无粒子时的两相流低;惰性固体粒子具有良好的防、除垢性能,解决了设备的在线清洗问题。汽—液—固三相循环流化床蒸发器具有良好的综合性能,在食品工业中具有一定的应用前景。
In this paper, we applied the vapor-liquid-solid three-phase circulating fluidized bed evaporator to condense pumpkin juice. We evaluated the quality of pumpkin juice during its concentration process, and studied the synthetic characteristics of this equipment. We studied the carotene loss with the change of temperature and solid content of pumpkin juice during the thermal process. We obtained the kinetics model of carotene loss during this process, and then based on the former we established the kinetics model during the concentration process and the quality evaluation criterion. We studied the characteristics of concentrating and protecting quality comparing with vapor-liquid two-phase evaporator. We changed the parameters such as evaporating temperature, temperature of vapor, liquid flux, liquid thickness and the ratio of inert particles to analyze and study the heat transfer properties of three-phase circulating fluidized bed evaporator in different operational conditions. The heat transfer model was put forward and the experimental value accorded with the theoretic value calculated well. At the same time, we also studied the flow status and the characteristic of preventing and cleaning fouls.
    The results showed that the vapor-liquid-solid three-phase circulating fluidized bed evaporator had good characteristic of heat transfer, and its heat transfer coefficient was 1.35 times of the vapor-liquid two-phase evaporator's. Carotene loss in three-phase circulating fluidized bed evaporator was less than in two-phase evaporator. Inert particles could prevent and clean the fouls. The vapor-liquid-solid three-phase circulating fluidized bed evaporator has good synthetic performance, and it will be used broadly in foodstuff field in the future.
引文
[1] 邹克华,张金钟等。三相流蒸发沸腾换热技术在烧碱蒸发中的应用探讨,中国氯碱,1998(4):23-25。
    [2] 赵晓燕,白术群编,蔬菜汁加工工艺与配方,科技文献出版社。
    [3] 刘志皋,食品营养学,中国轻工业出版社,1996。
    [4] Gerster H er al, Int.J.Vitam.Nutr.Res, 1991,61:277.
    [5] Masushige S et al, Fragrance J., 1992,20:31.
    [6] Louisd M et al, Exp.Biol.Med., 1992,200:260.
    [7] 施跃峰,天然β-胡萝卜素研究开发动态,食品研究与开发,2000,21(2):13-16。
    [8] 梁文珍,丁立群等,蔬菜汁生产中的质量问题及解决方法,饮料工业,2000(5):3-6。
    [9] A. F. Stefanovich and M. Karel, Kinetic of β-carotene degradation at temperatures typical of air drying of foods, J. of Food Processing and Preservation, Vol.6, 227-242,1982.
    [10] S.G.Haralampu, M.Karel, Kinetic model for moisture dependence of Ascorbic acid and β-carotene degradation in dehydrated sweet potato, J.of Food Sci., Vol.48,1872-1873,1993.
    [11] B.H.Chen, T.M.Chen, J.T.Chen, Kinetic model for studying the isomerization of α and β-carotene during heating and illumination, J. Agric. Food Chem, Vol 42, 2391-2397, 1994.
    [12] O.R.菲尼马编,王璋等译,食品化学,中国轻工业出版社,1991。
    [13] 陈广健,郑为东等,胡萝卜汁中胡萝卜素稳定性研究,食品工业科技,1995(1):20-23,73。
    [14] R.O. Teixeira neto, M.Karel, I.Saguy and S.Mizrahi, Oxygen uptake and β-carotene decoloration in a dehydrated food model, J. of Food Sci. Vol. 46, 665-676,1981.
    [15] 毛鑫元,食品加工对营养素的影响(上),国外科技,1998(8):19-22。
    [16] 廖显珍,蔡同一等,胡萝卜汁加工与贮藏过程中胡萝卜素含量稳定性的研究,食品科学,1992,153(9):52-54。
    [17] C.A. Pesek, J.J. Warthesen, Characterization of the photo-degradation of β-carotene in aqueous model systems, J. of Food Sci., Vol. 53, 1517-1520,1988.
    
    
    [18] Gould,W.A.Tomato Production, Processing and Quality Evaluation, 2nd ed., Westport, C. T:AVI Pub. Co.1983.
    [19] C.A.Pesek, J.J.Warthesen, Characterization of the photo-degradation of β-carotene in aqueous model systems, J. of Food Sci., Vol.53, 1517-1520, 1988.
    [20] C.A.Pesek, J.J.Warthesen, Kinetic model for photoisomerization and concomitant photodegradation of β-carotene, J. Agric. Food Chem., Vol.38(6), 1313-1315.
    [21] B.H.Chen, T.M.Chen, J.T.Chen, Kinetic model for studying the isomerization of α and β-carotene during heating and illumination, J. Agric. Food Chem. Vol.42,2391-2397,1994.
    [22] P.Kanasawud, and J.C.Crouzet, Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. 1. β-carotene degradation, J.Agric. Food Chem. Vol.38(1), 237-243,1990.
    [23] EI Tinay, A.H., Chichester, C.O., Oxidation of β-carotene. Site of initial attack, J.Org. Chem., Vol.35,2290-2293,1970.
    [24] 李良学,杨祖英,β-胡萝卜素的稳定性实验,食品与发酵工业,1995(5):52-55。
    [25] 陈广健,吴秀霖等,胡萝卜制汁过程中提高胡萝卜素保存率的研究,食品工业科技,1995(1):24-27。
    [26] 罗红霞,巴吐尔等,提高南瓜乳酸菌饮料保色性的研究,食品工业科技,1997(6):8-10。
    [27] Fraps. GS et al, Losses of V_A in drying carrot, sweet potatoes and canned spinach, Ind, Eng. chem., 1933,25:465.
    [28] Yousef. A. H. Nutritional Value of some canned tomato juice and concentrates, Food chem., 1982,9:303.
    [29] S.H. Lin and J.Agalloco, Degradation kinetics of Ascobic Acid, Process Biochemistry, Vol. 14(9), 22,24,26,32, 1979.
    [30] 胡英,陈学让等,物理化学(中册),北京:高等教育出版社,1986。
    [31] IRAN.LEVINE著,李芝芬,张玉芬等译,物理化学(下册),北京出版社。
    [32] I.Saguy, Computer-aided techniques in food technology, New York and Basel, 1983.
    [33] W.E Kwolek and G.N. Bookwalter, Prediction storage stability from time-temperature data, Food Tech., Vol.25(11), 51, 1971.
    [34] Thcmpson, D.R., The challenge in predicting nutrient changes during food
    
    processing, Food Tech., No.2, 97-99, 115,1982.
    [35] Kozempel, M.F., Sullivan, J.F. et al, Application of leaching model to describe potato nutrient losses in hot water blanching, J. Food Sci., Vol.47,1519-1523, 1982.
    [36] Thompson, D.D., Response surface experimentation, J. Food Proc. and Pres., No.6, 155-188,1982.
    [37] 胡运权,张宗浩著,试验设计基础,哈尔滨工业大学出版社,1997。
    [38] 丁元,吕乃纲等著,回归分析及其试验设计,华中师范大学出版社,1981。
    [39] Jung, H.H., Floros, J., Modeling the change in color of potassium sorbate powder during heating, Int. J. Food Sci. Tech., Vol.33, 199-203, 1998.
    [40] Bayindirli, A., Khalafi, S. et al, Noenzymatic browning in clarified apple juice at high temperatures: a response surface analysis, J. Food Proc. and Pres., Vol.19, 223-227,1995.
    [41] 朱冬生,海湖盐与化工,1993(5):20-50。
    [42] 王军,徐维勤等,池式核沸腾中的“界面汽化热阱”效应,化学工程,2000,28(4):14-17。
    [43] Chen J C, Ind. Eng. Chem., Process Design and Development, 1966, 5 (30): 322—329.
    [44] Liu Z, Winterton R H S. Multiphase Transport and Particulate Phenomena, Washington: Hemisphere, 1988 (1): 419.
    [45] Steiner D, Taborok D. Heat Transfer Engineering, 1992, 13 (2): 43—69.
    [46] 辛明道 编,沸腾传热及其强化,重庆大学出版社,1987。
    [47] Allen C.A. and Grimmett E.S., Heat Exchanger Design Parameter, Under Contract Ⅰ-(322)-15103, 1978,4.
    [48] A.W. Veenman, Desalination, 1977, 22, 49-52.
    [49] R.Rautenbach, C.Erdmann and J.St Kollbach, Desalination, 1991, 81, 285-298.
    [50] Klaren D G, Fluidized Bed Heat Transfer Exchanger: A Major Improvement in Severe Fouling Heat Transfer, Heat Exchanger, 1981: 855-896.
    [51] Kollbach J St, Dahm W, Rautenbach R, Continuous Cleaning of Heat Exchanger with Recirculating Fluidized Bed, Heat Transfer Engineering, 1987(4): 26-32.
    [52] Kollbach J St, Rantenbach R, The Fluidized Bed Technique in the Evaporation of Wasterwater with Severe Fouling/Scaling Potential-Latest Developments, Application, Limitations Desalination, 1991(3):285-298.
    [53] 李修伦,刘绍从等,汽液固三相流化床沸腾传热的研究,化工学报,1993
    
    (2):224-228。
    [54] 李修伦,闻建平,垂直管内三相流化床沸腾传热特性,化学工程,1995(2):50-54。
    [55] 张利斌,李修伦等,三相循环流化床中沸腾传热特性的研究[J],1999,50(2):208-215。
    [56] 任斌,惰性粒子流化床蒸发器传热与流体力学性能研究,学位论文,天津科技大学,2001.12。
    [57] 牛立宏,三相循环流化床蒸发器传热及流体力学性能研究,学位论文,天津科技大学,2003.2。
    [58] 毛中彦,甜菜红水溶液蒸发浓缩动力学及其质量评估准则,学位论文,天津轻工业学院,1998。
    [59] 徐尧润,王贵芳等,胡萝卜汁蒸发浓缩过程质量评估与优化,食品与机械,1999(4),15-17。
    [60] I.Saguy, I.J. Kopelman, and S.Mizrahi, Computer-aided prediction of beet pigment(Betanine and vulgaxanthin-1) retention during air-drying, J. of Food Sci., Vol.45, 230-235, 1980.
    [61] 芝畸 勋[日]著,许有成译,新编食品杀菌工艺学,农业出版社,1990。
    [62] J.H.Shin, H.L.Chung and so on, Degradation kinetics of Capsanthin in Paprika (Capsicum annuum L.) as affected by heating, Journal of Food Science, Vol.66, 15—18, 2001。
    [63] 同济大学数学教研室编,线性代数,高等教育出版社,1991.8。
    [64] Labuza T.P., Riboh D., Theory and application of Arrhenius kinetics to the prediction of nutrient losses in foods. Food Tech., Vol.36, 66-74, 1982。
    [65] U.Jonsson, B.G.Snygg and so on, Testing two models for the temperature dependence of the heat inactivation rate of Bacillus stearothermophilus spores, Journal of Food Science, Vol.42, 1251—1252,1263, 1977。
    [66] 万素英、李琳、王慧君编,食品防腐与食品防腐剂,中国轻工业出版社,1998.3。
    [67] 徐尧润等,红甜菜萃取液蒸发浓缩过程研究(Ⅱ)红甜菜萃取液蒸发浓缩过程质量评估,食品科学,2000,21(3):13—15
    [68] Shah M.M., ASHRAE Trans., 1976, 32(2): 66-86.
    [69] 金涌,祝京旭等编,流态化工程原理,清华大学出版社,2001。
    [70] Lints M C, and Glicksman L R. Parameters Governing Particle-to-Wall Heat Transfer in a Circulating Fluidized Bed Technology Ⅳ, ed. A Avidan, 1994: 297—304.
    [71] Gelperin N I, and Einstein V G. Heat Transfer in Fluidized Beds, In:
    
    Fluidization, eds. J F Davison and D Harrison, 1971: 471—540.
    [72] Wen C Y, and Yu Y H. A Generalized Method for Predicting the Minimum Fluidization Velocity, AIChE J., 1966 (12): 610—612.
    [73] H Martin. Chem. Eng. Comm., 1981 (13): 1—16.
    [74] Basu P, Heat Transfer in Fast Fluidized Bed Combustors, Chem. Eng. Sci., 1990(45): 3123—3136.
    [75] Mahalingan M, and Kolar A K, Emulsion Layer Model for Wall Heat Transfer in a Circulating Fluidized Bed, AIChE. J. 1991 (37): 1139—1150.
    [76] Wu R, Grace J R, and Lim C J., A Model for Heat Transfer in Circulating Fluidized Bed, Chem. Eng. Sci., 1990, 45 (12): 3389—3398.
    [77] Liu Z. and Winterton R.H.S., 5~(th) Miami Int. Symp. Multiphase Transport and Particulate Phenomena, 1988.
    [78] [英]D 巴特沃思,G F休伊特编,陈学俊,陈听宽等译,两相流与传热,原子能出版社,1985:113。
    [79] Y K Chuach, V P Carey. Transaction of the ASME, 1987: 109—196.
    [80] Brailsford A D. and Major K G. British J. of Applied Physical, 1964 (15):313—319.
    [81] 陈健生,李修伦等,汽液固三相循环流化床蒸发器强化传热和防垢研究,化学工业与工程,2000,17(1):15-19。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700