用户名: 密码: 验证码:
热虹吸管热回收装置传热特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调系统排风能量回收装置中,热虹吸管热回收装置具有优良的特性,即:高效节能;排风与新风不接触,杜绝交叉污染;成本低,无运动部件,可靠性高;安装位置灵活,不需要附属设施。将其应用在不允许新风与排风交叉污染或者通风量要求高的场所回收余热,像医院、商场、游泳馆等,具有良好的应用前景。本论文研究适合空调系统热回收的高效近室温热管技术。通过理论分析和试验研究,分析了热虹吸管与热虹吸管换热器的传热特性,并对其结构参数进行了优化;模拟计算了热虹吸管新型工质的传热物性及性能;研究了热虹吸管热回收机组的适宜工作模式和全年运行效益。主要包括以下四个方面:
     (1)对热虹吸管及其换热器的传热特性进行了分析,并建立了热虹吸管的热阻模型,研究了热虹吸管几何结构、充液率、倾角对热虹吸管传热性能的影响;对热虹吸管换热器采用离散模型模拟计算了其传热过程,研究了新风温度、迎面风速与热虹吸管的充液率、倾角、管排数对热虹吸管换热器传热性能的影响。同时分别进行了热虹吸管及其换热器的传热性能试验,与模拟结果进行了比较,得到了针对空调系统近室温工况热虹吸管换热器的相应尺寸及适宜的充液率、倾角、管排数和迎面风速等参数。
     (2)提出了热虹吸管工质选择原则,在此基础上根据优势互补原则优选出有机低沸点二元混合工质和三元混合工质的配比方案。模拟计算了不同混合工质热虹吸管换热器的传热性能,结果发现二元混合工质R32/R245fa(5/5)和三元混合工质R32/R290/R245fa(3/5/2)的热虹吸管换热器,其传热系数和温度效率较为理想。
     (3)研制出热虹吸管热回收机组样机,通过监测样机在实际应用环境下的运行状况,研究样机与工作环境的动态匹配特性,寻找工况变化时换热器保持高效运行的最佳倾斜状态,最后总结出机组运行的适宜工作模式。设计了以PLC控制器为核心的机组倾斜角度调节机构的控制系统,实现了机组跟随工作环境变化、自动调节其倾斜状态,达到与运行环境工况的动态匹配、自动化高效运行。
     (4)参照评价空调器运行性能的季节能效比评价方法,考虑热回收机组全年运行工况下换热性能的变化,提出了热回收机组的季节温度效率评价方法,它可以更准确地描述热回收机组在冬、夏季节工况变化下运行的换热性能以及回收效益。利用该评价方法分析了机组的实际运行效益,结果表明:热虹吸管热回收机组样机在商场空调系统回收排风能量,全年运行的冬季季节温度效率为66.08%,夏季季节温度效率为55.43%;投资回收年限在两年半左右。
For energy recovery in an air-conditioning system, a thermosyphon heat exchanger is a kind of good heat recovery device with the advantages of high effectiveness , no leakage and cross-contamination between the exhaust and fresh air flows, low cost but high reliability, no moving parts, flexible installation position, and no auxiliary facilities. It has a good prospect for heat recovery to apply in hospitals, shopping mall and natatorium etc, where cross-contamination is not allowed or a high ventilation requirement is necessary. Based on the study of heat transfer performance in atmospheric temperature, the paper is aimed to develop and high effectiveness thermosyphon heat recovery technology suitable to application in air-conditioning system. By theoretical analysis and experimental research, the heat transfer characteristics of thermosyphon and its heat exchanger and their structure parameters optimization have been studied, and the thermophysical properties of the selected thermosyphon refrigerants with zero ozone depeletion potential and the performance of the thermosyphon with different refrigerant have been calculated. Also, the optimal operation mode and the annual running benefit have been analysed for thermosyphon heat recovery unit. The research work mainly includes as follows:
     (1) The thermal resistance model for a thermosyphon was established, and the heat transfer characteristics of thermosyphon were analyzed based on the model. The influences of the geometric construction, filling ratio, inclination of the thermosyphon on its performance were discussed. The heat transfer process of the thermosyphon heat exchanger was numerically calculated by the the discrete model. The influences of the filling ratio, inclination and tube rows of the thermosyphon on the heat transfer of the heat exchanger were presented. The thermosyphon and its heat exchanger were experimented in detail and the measured data were verified by the simulated ones. The favorable parameters of thermosyphon heat exchanger, such as size, filling ratio, inclination, tube rows and face velocity etc, were obtained for the temperature range of air conditioning.
     (2) The optimized principle of the working fluid for the thermosyphon was presented. According to the principle of complementary advantages, the designed projects of the component ratio for binary and ternary mixtures of low boiling point organic refrigerant have been proposed. Through heat transfer simulation of the heat transfer coefficient and temperature effectiveness are favorable for the thermosyphon heat exchanger charged the binary mixture of R32 and R245fa with weight component ratio of 50% and 50% and the ternary mixture of R32, R290 and R245fa with the ratio of 30%, 50% and 20% both in the winter and summer conditions, respectively.
     (3) A prototype of thermosyphon heat recovery unit was developed. By monitoring the operation parameters of the prototype in practical application, the matching relationship between the inclination of the prototype and its outdoor amient temperature were investigated, and the optimal incline angle of the prototype with higher temperature effectiveness was found out under different working conditions. A control system to regulate the inclination mechanism was designed with PLC, makes the prototype run automatically in the reasonable operation mode under different ambient conditions and achieves a maximal energy-saving effect.
     (4) The seasonal temperature effectiveness was proposed in order to evaluate the annual or seasonal heat recovery effect of a thermosyphon heat exchanger, which referred to the calculation method of SEER for the air-conditioner in GB/T7725, Chinese national standard. Its calculation formula was derived. The annual heat recovery effect of the prototype was analyzed by the proposed method of the seasonal temperature effectiveness, while static economic evaluation method is applied in economic benefit analysis of the prototype. The analyzed results demonstrate that the seasonal temperature effectiveness of the prototype is 66.08% in winter, and the seasonal temperature effectiveness is 55.43% in summer. And the payback period of the prototype is about two and a half years.
引文
1王如竹.关于建筑节能及复合能量系统的几点思考.太阳能学报, 2002(03):322-335
    2罗清海,汤广发,唐海兵.建筑节能中的能源回收新技术.低温建筑技术, 2004(1):67
    3康艳兵,李亚平.我国建筑节能的障碍及对策研究.暖通空调, 2006, 36(8):33-34
    4华虹,陈孚江.国外建筑节能与节能技术新发展.华中科技大学学报(城市科学版), 2006(S1):148-152
    5康艳兵.建筑节能关键技术回顾和展望(一)——我国建筑节能技术发展回顾.中国能源, 2003(11):18-25
    6康艳兵.建筑节能关键技术回顾和展望(二)——国内外建筑节能关键技术的发展现状及趋势.中国能源, 2003(12):25-29
    7杨昭,吴志光.热管热回收装置在空调系统中的应用研究.能源研究与利用, 2004(3):16
    8徐小林,李百战.室内热环境对人体热舒适的影响.重庆大学学报(自然科学版), 2005(04):34-36
    9黄文胜,罗清海,汤广发.热管技术与建筑节能(Ⅰ)——热管节能应用.能源工程, 2000(1):60-64
    10钱以明.高层建筑空调与节能.上海:同济大学出版社, 1990:527-528
    11 Ke Zhong, Yanming Kang. Applicability of Air-to-Air Heat Recovery Ventilators in China. Applied Thermal Engineering, 2009, 29(5-6):830-840
    12江亿.我国建筑耗能状况及有效的节能途径.暖通空调, 2005, 35(5):30-40.
    13黄绪镜.百货商场空调设计.北京:中国建筑工业出版社, 1992:80-89
    14高凤龙.热管换热器同转轮式全热交换器节能效果比较.制冷与空调, 2003, 3(01):61-62
    15庄骏,张红.热管技术及其工程应用.北京:化学工业出版社,2000
    16 R. S. Gaugler. Heat Transfer Device. U. S. Patent 2350348, Dec. 21, 1942, June 6, 1944
    17 M. Grover, T. P. Cotter, G. F. Erikson. Structure of Very High Thermal Conductance. Journal of Applied Physics, 1964, 35(6): 1990
    18 T. P. Cotter. Theory of Heat Pipe. Los Alamos Scientific Lab: Report No. LA-3246-MS, 1965
    19 P. Dunn, D. A. Reay. Heat Pipes. Pergamon Press, 1978
    20 C. L. Tien, K. H. Sun, Minimum Meniscus Radius of Heat Pipe with a Wicking Materials. International Journal of Heat and Mass Transfer, 1970, 14:1853-1855
    21 V. H. Gray. The Rotating Heat Pipe-a Wickless Hollow Shaft for Transferring High Heat Fluxes. ASME Paper, No. 69-HT-19,1969
    22 D. A. Littwin, J. Mccurley. Heat Pipe Waste Heat Recovery Boilers. Proceedings 4th International Heat Pipes Conference, London, England, September 7-10, 1981:213-224
    23 T. P. Cotter. Priciples and Prospects of Micro Heat Pipes. Proceedings 5th International Heat Pipe Conference, Tsukuba, Japan, 1984:328-335
    24 H. Cohen, F. J. Bayley. Heat Transfer Problem of Liquid Cooled Gas-turbine Blades.Proceedings of Institution of Mechanical Engineers, London, 1955:1063-1080.
    25 M. Shiraishi,K. Kikuehi and T. Yamareishi. Investigation of Heat Transfer Characteristic of a Two-Phase Closed Thermosyphon. Fourth International Heat Pipe Conference, London, 1981:95-104
    26 Y. Lee,U. Mital. A Two-Phase Closed Thermosyphon. International Journal of Heat and Mass Transfer,1972,15(9):1695-1707
    27 Z. J. Zuo, F. S. Gunnerson. Numerical Modeling of the Steady-State Two-Phase Closed Thermosyphon. International Journal of Heat and Mass Transfer, 1994, 37(17):2715-2722
    28 F. S. Gunnerson, Z. J. Zuo. Modeling of an Inclined Two-Phase Closed Thermosyphon. ASME/JSME Thermal Engineering Conference, 1995, (2):27-34
    29 H. Kusuda, H. Imura. Boiling Heat Transfer in an Open Thermosyphon: Report l, an Experiment with Water. Bulletin of the JSME, 1973, 16(101):1723-1734
    30 H. Kusuda, H. Imura. Boiling Heat Transfer in an Open Thermosyphon: Report 2, the Influence of the Physical Property on a Heat Transfer Coefficient and on a Critical Heat Flux. Bulletin of the JSME, 1973, 16(101):1735-1740
    31 M. S. El-Genk, H. H. Saber. Flooding Limit in Closed Two-Phase Flow Thermosyphons. International Journal of Heat and Mass Transfer, 1997, 40(9):2147-2164
    32 F. Dobran. Steady-State Characteristics and Stability Thresholds of a Closed Two-Phase Thermosyphon. International Journal of Heat and Mass Transfer, 1985, 28(5):949-957
    33 H. Imura, K. Sasaguehi and H. Kozai. Critical Heat Flux in a Closed Two-Phase Thermosyphon. International Journal of Heat and Mass Transfer, 1983, 26(8):1181-1188
    34 E. Hahne, U. Gross. The Influence of the Inclination Angle on the Performance of a Closed Two-Phase Thremosyphon. Proceedings of the 4th International Heat Pipe Conference, London, UK, 1981.9
    35 K. Negishi, T.Sawada. Heat Transfer Performance of an Inclined Two-Phase Closed Thermosyphon. Int. J.Heat and Mass Transfer, 1983, 26(8):1207-1213
    36 M. Amornkitbamrung, S. Wangnippanto and T. Kiatsirirote. Performance Studies on Evaporation and Condensation of a Thermosyphon Heat Pipe. Proc. 6th ASEAN Conf. of Energy Technology, Bangkok, Thailand, 1995
    37 Payakaruk, Terdtoon and Ritthidech. Correlations to Predict Heat Transfer Characteristics of an Inclined Closed Two-Phase Thermosyphon at Normal Opertating Conditions. Applied Thermal Engineering, 2000, 20:781-790
    38 P. Terdtoon, S. Ritthidej and M. Shiraishi. Effect of Aspect Ratio and Bond Number on Heat Transfer Characteristics of an Inclined Closed Two-Phase Thermosyphon at Normal Operating Condition. Proc. the 5th International Heat Pipe Symposium, Melbourne, Australia, 1996
    39 J. C. Y. Wang, Y. Ma. Condensation Heat transfer inside Vertical and Inclined Thermosyphons. Journal of Heat Transfer. 1991,113:777-780
    40 M. Shiraishi, P. Terdtoon and M. Murakami. Correlations to Predict Heat TransferCharacteristics of an Inclined Two-Phase Closed Thermosyphon. Proc. the 5th International Heat Pipe Symposium, Melbourne, Australia, 1996
    41 S. H. Noie. Effect of Inclination Angle and Filling Ratio on Thermal Performance of an Two-Phase Closed Thermosyphon under Normal Operating Conditions. Heat Transfer Engineering .2007, 28 (4):365-371
    42 S. H. Noie, S. Zeinali etal. Heat Transfer Enhancement Using Al2O3/water Nanofluid in a Two-Phase Closed Thermosyphon. International Journal of Heat and Fluid Flow. 2009, 30(4):700-705
    43 B. Jiao, L. M. Qiu etal. Investigation on the Effect of Filling Ratio on the Steady-State Heat Transfer Performance of a Vertical Two-Phase Closed Thermosyphon. Applied Thermal Engineering, 2008, 28:1417-1426.
    44 P. Amatachaya, W. Srimuang. Comparative Heat Transfer Characteristics of a Flat Two-Phase Closed Thermosyphon (FTPCT) and a Conventional Two-Phase Closed Thermosyphon (CTPCT). International Communications in Heat and Mass Transfer, 2010, 37(3):293-296
    45 Masoud Rahimi, Kayvan Asgary and Simin Jesri. Thermal Characteristics of a Resurfaced Condenser and Evaporator Closed Two-Phase Thermosyphon. International Communications in Heat and Mass Transfer, 2010, 37 (6):703-710
    46 Wei Guo, W. N. Darin. An Experimental Study of Axial Conduction through a Thermosyphon Pipe Wall. Applied Thermal Engineering, 2009, 29 (17-18):3536-3541
    47张正芳,霍秀和,赵嘉琪.重力辅助热管的性能及热阻的实验研究.工程热物理学报, 1982,01:67-75
    48丁信伟,陈彦泽,喻建良.热虹吸管传热过程中的熵增分析.太阳能学报, 2005, 04: 482-486
    49陈彦泽.两相闭式热虹吸传热过程及其非线性特征研究.大连理工大学博士论文, 2006
    50 Y. Pan. Condensation Heat Transfer Characteristics and Concept of Sub-flooding Limit in a Two-Phase Closed Thermosyphon. Internal Communications in Heat and Mass Transfer, 2001, 28:311-322
    51潘阳.热管内部的冷凝传热及冷凝恶化.华东交通大学学报, 2003, 20(1):38-41
    52翁锦萍,魏琪,吴志刚.两相闭式热虹吸管换热特性的数值模拟.节能技术, 2000, 18(1):9-13
    53翁锦萍.两相闭式热虹吸管传热特性的数值模拟.江苏理工大学硕士论文, 1999
    54张恒运,葛新石.两相闭式热虹吸管的集总参数模型研究.中国科学技术大学学报, 1997, 27(2):174-180
    55朱威力.热虹吸管传热性能试验研究与理论分析.河北工业大学硕士论文, 2006
    56柯玲,陈远国,谢欢德.低温水热管的特性研究.重庆大学学报, 2007, 18(3):36-37
    57 T. Wadowski, A. Akbarzadeh and P. Johnson. Hysteresis in Thermosyphon-based Heat Exchangers and Introduction of a Novel Triggering System for Low-Temperature Difference Heat-recovery Applications. Heat Recovery & CHP, 1991, 11(6):523-531
    58 M. Zaheer-Uddin, J. C. Y. Wang. Modelling and Control of an Air to Air Heat Recovery System. Heat Revovery & CHP, 1994, 14(2):143-152
    59 X. P. Wu, P. Johnson and A. Akbarzadeh. Application of Heat Pipe Heat Exchangers to Humidity Control in Air-conditioning Systems. Applied Thermal Engineering, 1997, 17(6):561-568
    60 G. D. Mathur. Using Heat Pipe Heat Exchangers for Reducing High Energy Costs of Treating Ventilation Air. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1996
    61 G. D. Mathur. Retrofitting Heat Recovery Systems with Evaporative Cooler. Heating / Piping/ Air Conditioning, 1993, 65(9):47-51
    62 G. D. Mathur. Predicting Yearly Energy Savings Using BIN Weather Data with Heat-Pipe Heat Exchangers. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1997
    63 G. D. Mathur. Indirect Evaporative Cooling Using Two-Phase Thermosyphon Loop Heat Exchangers. ASHRAE Trans. 1990, 96(1):1241-1249
    64 G. D. Mathur. Indirect Evaporative Cooling Using Heat Pipe Heat Exchangers. American Society of Mechanical Engineers, Nuclear Engineering Division, 1990, 5(25):79-85
    65 G. D. Mathur. Direct-Indirect Evaporative Cooling with Heat Pipe Heat Exchangers. American Society of Mechanical Engineers, 1991:1-8
    66 G. D. Mathur. Indirect Evaporative Cooling. Heating/Piping/Air Conditioning, 1992, 64 (4):60-67
    67 S. H. Noie. Investigation of Thermal Performance of an Air-to-Air Thermosyphon Heat Exchanger Usingε-NTU Method. Applied Thermal Engineering, 2006, 26:559-567
    68 A. Mostafa. Abd El-Baky and Mousa M.Mohamed. Heat Pipe Heat Exchanger for Heat Recovery in Air-Conditioning. Applied Thermal Engineering, 2007, 27:795-801
    69 S. B. Riffat, G. Gan. Determination of Effectiveness of Heat-Pipe Heat Recovery for Naturally-Ventilated Buildings. Applied Thermal Engineering, 1998, 18(34): 12l-130
    70 S. H. Noie-Baghban, G. R. Majideian. Waste Heat Recovery Using Heat Pipe Heat Exchanger (HPHE) for Surgery Rooms in Hospitals. Applied Thermal Engineering, 2000, 20(14): 1271-1282.
    71余霞,王文,王如竹.热管在空调中的应用.暖通空调HV&AC, 2004, 34(5):26-29
    72潘峰,宋传学.热管热回收装置在直流式空调系统中的应用.暖通空调HV&AC, 2007, (1):80-82
    73李国庆.热管式热回收机组理论和实验研究.上海海事大学硕士论文, 2007
    74孙世梅.高温热管换热器强化传热及结构优化模拟研究.南京工业大学硕士论文, 2004
    75孙世梅,张红.热管换热器流动与传热的CFD模拟及试验.南京工业大学学报(自然科学版), 2004, 26(02):63-66
    76孙世梅,王彦平,周景民.小型热管换热器在空调系统中应用的设计研究.全国暖通空调制冷2006年学术年会文集[C], 2006
    77袁达忠.热管换热器的两相流模型与耦合传热的研究.大连理工大学博士论文, 2008:50-106
    78罗琳.大型热虹吸管近室温条件下传热性能研究.北京工业大学硕士论文, 2006
    79周峰.建筑物能量回收用热虹吸管换热器的应用研究.北京工业大学硕士论文, 2007
    80周峰,马国远.热虹吸管能量回收设备夏季工作特性的实验研究.暖通空调HV&AC, 2007, 37(12):58-62
    81李准,周峰,刘挺,马国远.商场用热虹吸管热回收机组的运行经济性分析.中国制冷学会2007学术年会论文集[C], 2007
    82汪亮兵,刘挺,周峰,马国远.热虹吸管热回收机组全年运行效益的研究.第九届全国空调器、电冰箱(柜)及压缩机学术交流会论文集[C], 2008
    83郝承明.热管换热器的模拟与设计计算.中国工程热物理学会第一届热管会议,哈尔滨, 1983:52-1550
    84 J. O. Amode, K. T. Feldman. Preliminary Analysis of Heat Pipe Exchangers for Heat Recovery. ASME Paper, No.75-WA/HT-36, 1976
    85 Y. Lee, A. Bedrossian. The Characteristics of Heat Exehangers Using Heat Pipes or Thermosyphons. International Journal of Heat Transfer, 1978, 21: 221-229
    86杨昭,吴志光.热管热回收装置在空调系统中的应用研究.能源研究与利用,2004(3):14-16
    87 R. M. Lazzarin, A. Gasparella. Technical and Economical Analysis of Heat Recovery in Building Ventilation Systems. Applied Thermal Engineering, 1998, 18 (1-2):47-67
    88 C. A. Roulet, F. D. Heidt and F. Foradini. Real Heat Recovery with Air Handling Units. Energy and Buildings. 2001, 33 (5):495-502
    89 M. Fehrm, W. Reiners and M. Ungemach. Exhaust Air Heat Recovery in Buildings. International Journal of Refrigeration, 2002, 25 (4):439-449
    90庄琛,顾平道,李英娜.热管换热器在宾馆排风能量回收中的经济性分析.制冷与空调. 2004, (03):79-82
    91杨肖曦,邸玉静,马玉峰.热管换热器设计计算的线算图法.石油机械, 2005, 33(7):35-36
    92 U. Gross. Falling Film Evaporation inside a Closed Thermosyphon. Proc.8th International Heat Pipe Conference, Beijing, China, 1992, A-15
    93 H. Imura. Heat Transfer. Jap. Res. 1979, (2):42
    94 S. W. Chi.热管理论与实用.蒋章焰译.北京:科学出版社,1981
    95罗清海,汤广发,龚光彩等.热管技术在近室温工况条件下节能应用.建筑热能通风空调, 2003, 22(6):27-28
    96罗清海,汤广发,龚光彩等.热管技术与建筑节能(II)——热管节能设计.能源工程, 2004(2):55-56
    97李亭寒,华诚生等.热管设计与应用.北京:化学工业出版社,1987.8:53-65
    98陈振乾,施明恒.热管热回收空调系统的研究.建筑热能通风空调,2000(4):9-11
    99宣永梅.新型制冷剂的理论和实验研究.浙江大学博士论文,2004
    100 Z. R. Gorbis, G. A. Savchenkov. Low Temperature Two-Phase Closed Thermosyphon Investigation. Proc 2nd Int. Heat Pipe Conf. Bologa, Italy,1976:37~45
    101马一太,高志明等.多元混合工质筛选及配比原则的研究.工程热物理学报, 1997, 18(1):17-20
    102陈洁,曹家枞.空调排风能量回收用热管换热器的优化设计.制冷与空调, 2007(6):44-47
    103全国暖通空调及净化设备标准化技术委员会. GB/T 21087-2007空气—空气能量回收装置.北京:中国标准出版社,2008
    104刘璐璐,卢苇,马国远,周峰.空调热回收用热虹吸管工质的研究.第九届全国空调器、电冰箱(柜)及压缩机学术交流会论文集[C], 2008
    105全国家用电器标准化技术委员会. GB/T 7725-2004房间空调器.北京:中国标准出版社,2004
    106胡健,曾伟平,谷波等.基于多标准的空调系统季节能效比计算分析.流体机械, 2007,35(9):77-81
    107刘圣春,马一太,芦苇.空调能效比和季节能效比的分析.天津大学学报, 2006,39(9):1088-1092
    108中国气象局,清华大学.中国建筑热环境分析专用气象数据集.北京:中国建筑工业出版社,2005
    109李准,周峰,刘挺等.商场用热虹吸管热回收机组的运行经济性分析.中国制冷学会2007学术年会论文集[C], 2007.
    110中国建筑科学研究院,中国建筑业协会建筑节能专业委员会. GB 50189-2005公共建筑节能设计标准.北京:中国建筑工业出版社,2005
    111黄素逸,高伟.能源概论.北京:高等教育出版社,2004
    112殷平.新型板式全热交换器研制经济分析.暖通空调, 2006, 3:53-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700