用户名: 密码: 验证码:
成年大鼠全脑严重缺血诱导的神经元死亡机制及3-甲基腺嘌呤的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成年大鼠全脑严重缺血诱导的神经元死亡机制及3-甲基腺嘌呤的作用研究
     背景
     目前,心脑血管病位居我国死亡原因的第一位。脑组织对缺血缺氧的敏感性高、耐受性低,损伤往往最为严重,且决定着患者的预后。有研究发现自噬参与脑缺血缺氧损伤,迄今,成年动物全脑缺血复灌损伤中3-MA是否同样具有脑保护作用尚不明确。
     研究目的
     本研究旨在探讨成年大鼠20 min全脑严重缺血诱导的海马CA1区神经元死亡方式及其死亡机制,在此基础上进一步探索3-MA对全脑缺血后海马CA1区神经元死亡的作用,并阐明其作用机制。
     研究方法
     1全脑缺血模型制作:采用四血管法制作成年大鼠全脑缺血模型,缺血20 min后恢复脑血流灌注。
     2实验分组:①模型组(control):全脑缺血20 min;②假手术组(sham):除不夹闭双侧颈总动脉外其他同模型组;③R60组:复灌后60 min侧脑室注射600nmol 3-MA;④I30组:缺血前30 min侧脑室注射600 nmol 3-MA;⑤I60组:缺血前60 min侧脑室注射600 nmol 3-MA。
     3 HE染色:经左心室灌注固定、取脑石蜡包埋、制作海马冠状切片、常规HE染色,光镜下计数海马CA1区每min存活神经元数量。
     4免疫组化染色:海马平面冠状切片,依次经过脱腊、热修复抗原、H2O2孵育、封闭、cathepsin B或cleaved caspase-3一抗孵育、二抗孵育、3,3’-二氨基联苯胺(3,3'-diaminobenzidine, DAB)显色、复染、透明、封片等步骤,光学显微镜下观察。
     5 TUNEL染色:海马切片,依次经过脱蜡、水化、Proteinase K处理、TUNEL反应混合液反应、converter-POD反应、DAB显色、复染、脱水、透明、封片等,最后光学显微镜观察。
     6电镜:海马CA1和齿状回(dentate gyrus, DG)组织依次经过戊二醛固定、锇酸固定、脱水、包埋、固化、超薄切片、3%醋酸铀-枸橼酸铅双染色,透射电镜观察神经元形态学改变。
     7 Western blot:大鼠在缺血20 min复灌不同时间点断头取脑,快速分离海马,匀浆并离心后提取蛋白,蛋白定量后进行Western blot检测。
     实验结果
     1 HE染色结果表明20 min全脑缺血诱导的神经元死亡仍以海马CA1区为主,呈现出迟发性死亡过程,复灌7天后CA1区95.2%神经元死亡。
     2复灌72小时(hour, h)后绝大部分CA1区变性神经元TUNEL染色阳性,表明DNA有规律地断裂,提示海马CA1区神经元死亡为程序性死亡。
     3电镜下观察到细胞器空泡变性、细胞膜、核膜溶解消失、核碎裂、胶质细胞增生等形态学改变,符合坏死的形态学特征。同时可观察到自噬小体和自噬溶酶体的形成,但未观察到凋亡结构,这些形态学改变符合程序性坏死。
     4 Western blot及免疫组化研究结果均提示全脑缺血20 min复灌后海马CA1区神经元无caspase-3表达的增加和激活,说明caspase-3依赖的凋亡不参与海马CA1区神经元程序性坏死。
     5 Western blot结果发现缺血20 min复灌1-48 h LC3-Ⅱ表达增加,提示复灌阶段自噬激活。
     6海马组织中cathepsin B主要以活化形式储存于溶酶体内,全脑缺血复灌损伤时cathepsin B的表达和激活均未出现明显改变。但复灌48 h后可见cathepsin B从溶酶体内释放到细胞质和细胞核中,且与神经元变性死亡密切相关,说明cathepsin B的释放可能是神经元死亡的决定性因素。
     7缺血前侧脑室注射600 nmol 3-MA能显著抑制神经元死亡,且具有时间依赖性,缺血前60 min较缺血前30 min给药更为有效,而复灌后60 min注射3-MA无保护作用。
     8 TUNEL染色表明缺血前侧脑室注射600 nmol 3-MA能显著减少TUNEL阳性神经元数量。
     9缺血前、后侧脑室注射600 nM 3-MA对cathepsin B的表达以及激活均无影响,但缺血前侧脑室注射600 nM 3-MA能显著抑制cathepsin B的释放。
     结论
     1成年大鼠全脑缺血20 min后海马CA1区神经元死亡主要是由溶酶体酶cathepsin B释放所介导的一种程序性坏死。
     2 3-MA对缺血诱导的神经元程序性坏死具有时间依赖性的保护作用,抑制cathepsin B的释放可能是其主要的作用机制。
     3本研究最大发现在于阐明了常用的自噬阻断剂3-MA另一条重要的保护途径,即抑制程序性坏死的发生,这提示某些自噬阻断剂并非完全通过自噬信号通路起作用,因此在进行自噬研究时对某些实验结果的解释需要慎重。
Severe global cerebral ischemia induced programmed necrosis in hippocampal neurons is prevented by 3-methyladenine, a widely used inhibitor of autophagy
     Background
     In clinical emergencies, many accidents lead to global ischemia and the brain is intrinsically more vulnerable to ischemia than other organs. Global cerebral ischemia results in selective neuronal death in the hippocampus and is called programmed cell death (PCD). Autophagic cell death is another type of PCD distinct from caspase-dependent apoptosis. There is also evidence that the extent of neuronal damage and the underlying mechanisms not only depend on the severity of the insult but also on the degree of brain maturation. To date, whether autophagy has beneficial or harmful effects in severe global cerebral ischemia/reperfusion (I/R) injury in adult animals is not well understood.
     Objectives
     In this study we explored the features of neuronal death induced by 20-min severe global ischemia in adult Sprague-Dawley (SD) rats, and the role of apoptosis, autophagy and necrosis in this kind of neuronal death. Then we tested the role of 3-MA, a widely used autophagy inhibitor, in 20-min global cerebral I/R induced neuronal death.
     Methods
     1 Animals and surgical procedures:20 min transient global cerebral ischemia was induced by four-vessel occlusion (4-VO) technique in adult male rats.
     2 Five experiment groups:control, sham,600 nmol 3-MA was administered by intracerebroventricular injection (i.c.v.) at 60 min after reperfusion (R60) and at 30 min (130) or 60 min (160) before ischemia.
     3 Neuron Counts:5μm coronal sections at the level of the bregma were cut and stained with Hematoxylin/Eosin (HE). The number of surviving neurons in the hippocampal CA1 layer per 1 mm length was counted.
     4 Immunohistochemistry:The groups and coronal sections preparation in this study were the same with histological study. Cathepsin B and cleaved caspase-3 immunoreactivity was determined by the two-step methods immunohistochemistry. Negative and positive control was obtained at the same time.
     5 Deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) staining:In situ labeling of DNA fragmentation was carried out with an in situ cell death detection kit followed the manufacturer's instructions.
     6 Transmission electron microscopy:The characteristic changes of neurons in hippocampal CA1 and DG areas were viewed under a transmission electron microscope.
     7 Western blot measurement:The total proteins of hippocampus were isolated, and the level of LC3Ⅰ/Ⅱ, caspase-3, cathepsin B was measured.
     Results
     1 The death of CA1 neurons induced by 20-min global ischemia occurred as a delayed manner, and 95.2% CA1 neurons was destroyed at 7 days of reperfusion.
     2 TUNEL-positive neurons increased markedly from 48 h to 72 h of reperfusion after 20-min global ischemia, which suggested that neuronal death was programmed.
     3 In EM study, no classical apoptotic morphology was observed in the CA1 and DG areas at any time of reperfusion. The number of autophagosomes (APs) and autolysosomes (ALs) in CA1 neurons after reperfusion increased greatly. The morphological changes of swollen organelles, broken organelle membranes, disrupted plasma membrane, as well as clumped chromatin seemed more close to the changes of necrosis.
     4 No significant expression and activation of caspase-3 were observed in the CA1 region from 12 h to 72 h of reperfusion after 20-min ischemia by Western blot and immunohistochemistry.
     5 The level of LC3-Ⅱincreased greatly from 1 h to 48 h of reperfusion after 20-min global ischemia, with a maximal induction at 12 h of reperfusion, which demonstrated the activation of autophagy.
     6 Twenty minutes global ischemia induced the release of cathepsin B from lysosomal into cytoplasm and nuclear after 24 h of reperfusion, but the expression and activation of cathepsin B had no significant change.
     7 Intracerebroventricular administration of 600 nmol 3-MA 30 min or 60 min before ischemia decreased CA1 pyramidal neuronal death significantly, the latter was more effective. While, the administration of 600 nmol 3-MA 60 min after reperfusion had no protective effect.
     8 The number of TUNEL-positive neurons were reduced nearly completely by 3-MA administered 60 min before ischemia, and partly by 3-MA administered 30 min before ischemia, however administration of 3-MA 60 min after reperfusion has no such effect.
     9 The release of cathepsin B was inhibited greatly by 3-MA administered 60 min before ischemia, and partly by 3-MA administered 30 min before ischemia; however the administration 60 min after reperfusion has no significant effect.
     Conclusions
     1 The neuronal death in hippocampal CA1 area induced by 20-min global I/R injury was more likely to be "programmed necrosis", which might be induced by the release of cathepsin B, a lysosomal enzyme.
     2 600 nmol 3-MA had time dependent protective effect on this kind of neuronal death. The protective effect of 3-MA might be not only through autophagy inhibition, but also through inhibition the release of lysosomal enzyme, the latter might be more critical.
     3 Our study demonstrated another important protective mechanism of 3-MA for the first time:protected against "programmed necrosis". The interactions among autophagy, apoptosis, and necrosis are complex with much cross-talk, and their role in ischemia remains worth further study to find effective therapeutic strategies for repair of ischemic cerebrovascular injury.
引文
1. Lee JM, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. J Clin Invest 2000; 106(6):723-31.
    2. Petito CK, Torres-Munoz J, Roberts B, Olarte JP, Nowak TS, Jr., Pulsinelli WA. DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat. J Cereb Blood Flow Metab 1997;17(9):967-76.
    3. Sheldon RA, Hall JJ, Noble LJ, Ferriero DM. Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neurosci Lett 2001;304(3):165-8.
    4. Yamashima T, Tonchev AB, Borlongan CV. Differential response to ischemia in adjacent hippocampal sectors:neuronal death in CA1 versus neurogenesis in dentate gyrus. Biotechnol J 2007;2(5):596-607.
    5. Yuan Y, Wang JY, Xu LY, Cai R, Chen Z, Luo BY. MicroRNA expression changes in hippocampus of rats subjected to global ischemia. J Clin Neurosci 2010 Jan 15. Epub ahead of print.
    6. Uchiyama Y. Autophagic cell death and its execution by lysosomal cathepsins. Arch Histol Cytol 2001;64(3):233-46.
    7. Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 2005;92(5):1228-42.
    8. Uchiyama Y, Koike M, Shibata M. Autophagic neuron death in neonatal brain ischemia/hypoxia. Autophagy 2008;4(4):404-8.
    9. Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007;6(15):1837-49.
    10. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 2008;4(6):762-9.
    11. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008;172(2):454-69.
    12. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008;32(3):329-39.
    13. Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 2009;66(3):378-89.
    14. Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neurosci Bull 2008;24(3):183-94.
    15. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death:a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995;15(4):961-73.
    16. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995;92(16):7162-6.
    17. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 2000;20(21):7994-8004.
    18. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005;12(2):162-76.
    19. Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis 2007;12(5):993-1010.
    20. Shintani T, Klionsky DJ. Autophagy in health and disease:a double-edged sword. Science 2004;306(5698):990-5.
    21. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004;432(7020):1032-6.
    22. Chu CT. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 2006;65(5):423-32.
    23. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, et al. Cell death:apoptosis versus necrosis (review). Int J Oncol 2002;21(1):165-70.
    24. Colbourne F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 1999;19(11):4200-10.
    25. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis:a specific form of programmed cell death? Exp Cell Res 2003;283(1):1-16.
    26. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112-9.
    27. Galluzzi L, Kroemer G. Necroptosis:a specialized pathway of programmed necrosis. Cell 2008;135(7):1161-3.
    28. Henriquez M, Armisen R, Stutzin A, Quest AF. Cell death by necrosis, a regulated way to go. Curr Mol Med 2008;8(3):187-206.
    29. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135(7):1311-23.
    30. MacManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993;164(1-2):89-92.
    31. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995; 15(2):1001-11.
    32. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006;169(2):566-83.
    33. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 2000;20(9):1294-300.
    34. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death:a cautionary note. Hepatology 1995;21(5):1465-8.
    35. Petito CK, Roberts B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 1995;146(5):1121-30.
    36. Yasuda M, Umemura S, Osamura RY, Kenjo T, Tsutsumi Y. Apoptotic cells in the human endometrium and placental villi:pitfalls in applying the TUNEL method. Arch Histol Cytol 1995:58(2):185-90.
    37. Schmidt-Kastner R, Fliss H, Hakim AM. Subtle neuronal death in striatum after short forebrain ischemia in rats detected by in situ end-labeling for DNA damage. Stroke 1997;28(1):163-9; discussion 69-70.
    38. de Torres C, Munell F, Ferrer I, Reventos J, Macaya A. Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci Lett 1997;230(1):1-4.
    39. Nixon RA. Autophagy in neurodegenerative disease:friend, foe or turncoat? Trends Neurosci 2006;29(9):528-35.
    40. Yamashima T, Oikawa S. The role of lysosomal rupture in neuronal death. Prog Neurobiol 2009
    41. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000;97(26):14376-81.
    42. Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC, et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 2009
    43. Hill IE, Preston E, Monette R, MacManus JP. A comparison of cathepsin B processing and distribution during neuronal death in rats following global ischemia or decapitation necrosis. Brain Res 1997;751(2):206-16.
    44. Benchoua A, Braudeau J, Reis A, Couriaud C, Onteniente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 2004;24(11):1272-9.
    45. Kunchithapautham K, Rohrer B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 2007;3(5):433-41.
    46. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005;25(3):1025-40.
    1. Hockenbery D. Defining apoptosis. Am J Pathol 1995;146(1):16-9.
    2. Kanduc D, Mittelman A, Serpico R, Sinigaglia E, Sinha AA, Natale C, et al. Cell death:apoptosis versus necrosis (review). Int J Oncol 2002;21(1):165-70.
    3. Colbourne F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 1999;19(11):4200-10.
    4. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 2000;20(21):7994-8004.
    5. Sheldon RA, Hall JJ, Noble LJ, Ferriero DM. Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neurosci Lett 2001;304(3):165-8.
    6. Yamashima T, Oikawa S. The role of lysosomal rupture in neuronal death. Prog Neurobiol 2009
    7. Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 1979;10(3):267-72.
    8. Li Y, Chopp M, Jiang N, Yao F, Zaloga C. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1995;15(3):389-97.
    9. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia:a role for apoptosis? J Cereb Blood Flow Metab 1996;16(2):195-201.
    10. Ueda N, Shah SV. Apoptosis. J Lab Clin Med 1994;124(2):169-77.
    11. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146(1):3-15.
    12. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119(3):493-501.
    13. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJ, Cornelisse CJ, van Dierendonck JH. A new method to detect apoptosis in paraffin sections:in situ end-labeling of fragmented DNA. J Histochem Cytochem 1993;41(1):7-12.
    14. Wyllie AH, Kerr JF, Currie AR. Cell death:the significance of apoptosis. Int Rev Cytol 1980;68(251-306.
    15. MacManus JP, Hill IE, Preston E, Rasquinha I, Walker T, Buchan AM. Differences in DNA fragmentation following transient cerebral or decapitation ischemia in rats. J Cereb Blood Flow Metab 1995; 15(5):728-37.
    16. Schulz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999;45(4):421-9.
    17. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399(6735):483-7.
    18. Sei Y, Von Lubitz KJ, Basile AS, Borner MM, Lin RC, Skolnick P, et al. Internucleosomal DNA fragmentation in gerbil hippocampus following forebrain ischemia. Neurosci Lett 1994;171(1-2):179-82.
    19. Volpe BT, Wessel TC, Mukherjee B, Federoff HJ. Temporal pattern of internucleosomal DNA fragmentation in the striatum and hippocampus after transient forebrain ischemia. Neurosci Lett 1995;186(2-3):157-60.
    20. Schmidt-Kastner R, Fliss H, Hakim AM. Subtle neuronal death in striatum after short forebrain ischemia in rats detected by in situ end-labeling for DNA damage. Stroke 1997;28(1):163-9; discussion 69-70.
    21. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995;15(2):1001-11.
    22. Iwai T, Hara A, Niwa M, Nozaki M, Uematsu T, Sakai N, et al. Temporal profile of nuclear DNA fragmentation in situ in gerbil hippocampus following transient forebrain ischemia. Brain Res 1995;671(2):305-8.
    23. Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol 1997;23(1):16-25.
    24. Linnik MD, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 1993;24(12):2002-8; discussion 08-9.
    25. Li Y, Chopp M, Jiang N, Zhang ZG, Zaloga C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 1995;26(7):1252-7; discussion 57-8.
    26. Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 1995;146(5):1045-51.
    27. Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007;6(15):1837-49.
    28. Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005;12(2):162-76.
    29. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008;172(2):454-69.
    30. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 2008;4(6):762-9.
    31. Puyal J, Vaslin A. Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol 2009;66(3):378-89.
    32. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008;32(3):329-39.
    33. Chen JJ, Lin F, Qin ZH. The roles of the proteasome pathway in signal transduction and neurodegenerative diseases. Neurosci Bull 2008;24(3):183-94.
    34. Garcia JH, Liu KF, Ho KL. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 1995;26(4):636-42; discussion 43.
    35. Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis:a specific form of programmed cell death? Exp Cell Res 2003;283(1):1-16.
    36. Hitomi J, Christofferson DE, Ng A. Yao J, Degterev A, Xavier RJ, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008;135(7):1311-23.
    37. Galluzzi L, Kroemer G. Necroptosis:a specialized pathway of programmed necrosis. Cell 2008;135(7):1161-3.
    38. Kumaran D, Udayabanu M, Nair RU, R A, Katyal A. Benzamide protects delayed neuronal death and behavioural impairment in a mouse model of global cerebral ischemia. Behav Brain Res 2008; 192(2):178-84.
    39. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000;97(26):14376-81.
    40. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112-9.
    41. Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis 2007;12(5):993-1010.
    42. Dreyer EB, Zhang D, Lipton SA. Transcriptional or translational inhibition blocks low dose NMDA-mediated cell death. Neuroreport 1995;6(6):942-4.
    43. Glazner GW, Chan SL, Lu C, Mattson MP. Caspase-mediated degradation of AMPA receptor subunits:a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 2000;20(10):3641-9.
    44. Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan CY, Rakic P. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 2001;21(13):4752-60.
    45. Sane AT, Bertrand R. Caspase inhibition in camptothecin-treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res 1999;59(15):3565-9.
    46. Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem 2005;92(5):1228-42.
    47. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005;25(3):1025-40.
    48. Kunchithapautham K, Rohrer B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 2007;3(5):433-41.
    49. Severe global cerebral ischemia induced programmed necrosis of hippocampal CAl neurons is prevented by 3-methyladenine, a widely used inhibitor of autophagy. J Neuropathol Exp Neurol Under review
    50. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death:a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995;15(4):961-73.
    51. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995;92(16):7162-6.
    52. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 2000;20(9):1294-300.
    53. Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 2002;22(4):420-30.
    54. Yenari MA, Iwayama S, Cheng D, Sun GH, Fujimura M, Morita-Fujimura Y, et al. Mild hypothermia attenuates cytochrome c release but does not alter Bcl-2 expression or caspase activation after experimental stroke. J Cereb Blood Flow Metab 2002;22(1):29-38.
    55. Yamashima T, Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T, et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 2003;13(7):791-800.
    56. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol 2006;169(2):566-83.
    57. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death:a cautionary note. Hepatology 1995;21(5):1465-8.
    58. Petito CK, Roberts B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 1995;146(5):1121-30.
    59. Yasuda M, Umemura S, Osamura RY, Kenjo T, Tsutsumi Y. Apoptotic cells in the human endometrium and placental villi:pitfalls in applying the TUNEL method. Arch Histol Cytol 1995;58(2):185-90.
    60. de Torres C, Munell F, Ferrer I, Reventos J, Macaya A. Identification of necrotic cell death by the TUNEL assay in the hypoxic-ischemic neonatal rat brain. Neurosci Lett 1997;230(1):1-4.
    61. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 1997;151(5):1205-13.
    62.叶诸榕.脑缺血的细胞死亡:坏死或凋亡?中华神经科杂志1998;(5):302-04.
    63. Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 2000;106(6):773-81.
    64. Turk B, Turk D, Turk V. Lysosomal cysteine proteases:more than scavengers. Biochim Biophys Acta 2000; 1477(1-2):98-111.
    65. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene 2008;27(50):6434-51.
    66. Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 2001;359(Pt 2):335-43.
    67. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 2000;470(1):35-9.
    68. Islekel H, Islekel S, Guner G, Ozdamar N. Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia-reperfusion. Brain Res 1999;843(1-2):18-24.
    69. Kagedal K, Johansson AC, Johansson U, Heimlich G, Roberg K, Wang NS, et al. Lysosomal membrane permeabilization during apoptosis—involvement of Bax? Int J Exp Pathol 2005;86(5):309-21.
    70. Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Hoyer-Hansen M, Elling F, et al. Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol 2006;26(21):7880-91.
    71. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 2006;24(1):1-21.
    72. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004;279(5):3578-87.
    73. Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003;278(33):31401-11.
    74. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death Differ 2004;11(5):550-63.
    75. Benchoua A, Braudeau J, Reis A, Couriaud C, Onteniente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 2004;24(11):1272-9.
    76. Tsubokawa T, Yamaguchi-Okada M, Calvert JW, Solaroglu I, Shimamura N, Yata K, et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 2006;84(4):832-40.
    77. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074:a novel strategy for neuroprotection based on 'calpain-cathepsin hypothesis'. Eur J Neurosci 1998;10(5):1723-33.
    78. Tsuchiya K, Kohda Y, Yoshida M, Zhao L, Ueno T, Yamashita J, et al. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol 1999; 155(2):187-94.
    79. Yoshida M, Yamashima T, Zhao L, Tsuchiya K, Kohda Y, Tonchev AB, et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol 2002;104(3):267-72.
    80. Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S, et al. Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 1997;87(5):716-23.
    81. Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T. Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke 2004;35(9):2189-94.
    82. Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 2006;37(7):1888-94.
    83. Takuma K, Kiriu M, Mori K, Lee E, Enomoto R, Baba A, et al. Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem Int 2003;42(2):153-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700