用户名: 密码: 验证码:
航天器相对导航中的非线性滤波问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器的相对导航是指利用传感器测量信息估计两个以上航天器相对位置和相对姿态的过程。无论是在轨服务还是航天器编队飞行任务,由于采用相同的模型和传感器,所以相对导航原理具有一致性。为了保证此类任务的顺利实现,高精度的相对导航技术是关键所在。本论文以航天器相对导航技术为研究对象,对航天器的相对姿态、相对位置估计和非合作目标相对位姿估计等方面进行了深入研究,主要内容如下:
     对比分析了贝叶斯框架下几种非线性滤波方法的性能。从本质上来看,粒子滤波、扩展卡尔曼滤波、无迹卡尔曼滤波与容积卡尔曼滤波均属建立在贝叶斯滤波框架的基础上,粒子滤波是一种非线性非高斯滤波方法,随着粒子数目的增加,能够以任意精度逼近状态的最优估计值,而其他三种滤波方法均为次优近似高斯滤波器,论文主要从非线性变换、高斯加权积分与数值稳定等方面对三种高斯滤波方法进行了性能分析。首先,对比了三种滤波器对随机变量非线性变换的一阶矩和二阶矩的逼近精度。其次,从高斯加权积分的近似来对比滤波器精度,分析表明无迹卡尔曼滤波和容积卡尔曼滤波的估计精度要优于扩展卡尔曼滤波,并从另一个角度印证了容积卡尔曼滤波是无迹卡尔曼滤波的一个特例,两种滤波方法的估计精度相当。最后,由数值稳定性分析可知,随着状态维数的增加前者的数值稳定性要明显优于后者。仿真分析表明,容积卡尔曼滤波对高维系统的估计精度要略优于无迹卡尔曼滤波,且不存在滤波器不稳定的现象。
     提出了一种结合四元数与容积卡尔曼滤波的航天器姿态估计方法。在算法迭代过程中利用广义罗德里格参数与误差四元数切换来满足递推中四元数描述的单位模约束。该方法可以有效地避免姿态递推过程中的奇异问题,保证了容积四元数估计器具有精度与数值稳定性方面的优势,同时在滤波器初值设置误差较大的情况下保持较快的收敛速度和良好的估计精度。进一步地,为了减少多传感器矢量测量时的滤波器的计算负担,给出了一种信息容积四元数估计器,其特点是不需要对量测协方差矩阵求逆,因此运算量与系统的状态维数相关而与量测维数无关,且初值设置较为简单。仿真结果验证了所提出的四元数估计器的有效性。
     为了提高姿态估计效率,提出了一种基于改进容积卡尔曼滤波的修正罗德里格参数估计方法。考虑修正罗德里格参数较四元数具有更高的计算效率,但存在无法全局描述姿态的缺点,采用其与自身的影子参数切换的策略,避免大角度机动时出现的姿态奇异现象,同时融合了龙贝格-马尔塔迭代算法进一步提高了修正罗德里格参数的估计精度。最后,将该方法应用于航天器的相对姿态估计中,利用航天器的相对视线方向以及两个航天器的共同矢量测量值作为测量输出,来进行航天器的相对姿态参数解算。与其他方法的仿真对比表明,所提方法实现了无奇异姿态估计,同时具有良好的估计精度。
     针对航天器相对导航模型建模不准确所造成的滤波精度下降问题,提出了一种融合高斯过程回归的高斯粒子滤波算法。利用高斯过程回归模型来预测系统状态输出与模型的不确定性,并结合高斯粒子滤波器得到一种不需要精确已知系统模型的新算法。所提出的改进高斯粒子滤波方法,有效地克服了地球非球形摄动导致的航天器相对运动模型不准确问题,避免了传统方法引起的滤波性能下降。仿真对比验证了改进高斯粒子滤波在航天器相对运动估计方面的优越性。
     对非合作的在轨操控任务中,追踪航天器与目标航天器之间无信息通讯,并且目标航天器的几何特征信息未知,针对该情形下的相对导航问题,提出了一种基于双目视觉的非合作目标相对运动估计方法。将特征点在目标航天器体系下的坐标扩展为系统的状态,并刻画了相机安装在非质心位置时姿态运动对位置运动的影响,通过引入耦合运动模型解决CW方程描述航天器相对运动存在误差的问题。进一步地,为了克服模型的严重非线性以及噪声统计特性时变问题,提出了基于Sage-Husa噪声估计器的自适应容积卡尔曼滤波方法。仿真结果表明,提出的算法能够适应测量噪声统计特性随时间变化的情况,且具有良好的相对运动估计精度。
Spacecraft’s relative navigation involves estimation of the relative position andattitude vectors among two or more spacecraft. For both on-orbit servicing andformation flying, the principle of spacecraft’s relative navigation remains unchangeddue to the employment of the same kinematic model and sensors. To guarantee thesuccess of this type of task, relative navigation with high precision is crucial.Working on spacecraft’s relative navigation, this thesis studies several keytechnologies, including estimation of the relative attitude/position among spacecraftas well as the non-cooperative target. Main contributions of this thesis are asfollows:
     This thesis analyzes the performance of several nonlinear filters. It is know nthat the particle filter, extended Kalman filter (EKF), unscented Kalman filter (UKF)and cubature Kalman filter (CKF) are all based on Bayesian filtering paradigm inessence. Specifically, particle filter is a nonlinear and non-Gaussian filter capable ofapproximating the optimal value along with increasing number of particles. Theother three methods are suboptimal Gaussian filters. In this thesis, performance ofthese Gaussian filters are examined via nonlinear transformations, Gaussianweighted integral and numerical stability. Firstly, the accuracy levels of theseGaussian filters in approximating the1stand2ndorder moments of random variables’nonlinear transformations are compared. Secondly, Gaussian weighted integral’sapproximation is used to compare the accuracy of filters. The analysis shows thatUKF and CKF have better estimation accuracy than EKF. It is also proved that CKFis a special case of UKF and they have equivalent accuracy levels. Numericalanalysis indicates that CKF clearly outperforms UKF as the dimension of statesincreases. Simulation shows that CKF has slightly better estimation accuracy thanUKF and CKF is free of non-stability.
     By combining quaternion and CKF, an attitude estimation method forspacecraft navigation is formulated. It uses generalized Rodrigues parameters tosubstitute quaternion errors to guarantee the unit norm property of the quaternions inattitude estimation, which ensures the accuracy and stability benefits within thismethod. It also bypasses the singularity problem effectively in attitude predictionwhile maintaining fast convergence as well as good approximation accuracy, even ifthe initial error is large. Furthermore, to reduce the computational costs inmulti-sensor measurement, an information cubature quaternion estimator isproposed which eliminates the inversion of the measurement covariance matrix. Therefore, the computational cost depends on the dimension of state variables ratherthan the dimension of the measurement variables. Also its initialization is relativelystraightforward. Simulation results demonstrate the validity of this quaternionestimator.
     To improve the efficiency of attitude estimator, a modified Rodriguesparameter estimator is proposed based on CKF. Although modified Rodriguesparameters have better computational efficiency as compared with quaternion, thereare attitudes that can’t be described. By introducing shadow parameters into theswitching scheme, the singularity problem in large angle maneuvers can be avoided.In addition, an LM algorithm is combined with the CKF to further improve theestimation accuracy of the modified Rodrigues parameters. This method is appliedin spacecraft’s relative attitude estimation by using measurement of mutual sightline and observation vectors to calculate the relative attitude parameters.Comparisons with other methods in simulations illustrate that the proposedalgorithm achieves non-singularity estimation while maintaining high accuracy.
     A modified Gaussian particle filter is formulated to overcome the accuracydeterioration caused by modelling errors in spacecraft’s relative navigation. Byusing Gaussian regression model to predict the system output and the modellinguncertainties while combining Gaussian particle filter, a new algorithm is developedwhich doesn’t need an accurate system model. This modified Gaussian particle filterbased algorithm effectively overcomes the modelling uncertainties in spacecraft’srelative navigation due to the nonspherical perturbation of the earth gravity. It alsosolves the deterioration of filtering performance in the traditional approaches.Simulation confirms the effectiveness of modified Gaussian particle filter inspacecraft’s relative navigation.
     For non-cooperative target spacecraft, there is no communcation link betweenthe chaser and the target while the target’s geometrical characteristics are unknown.A bionocular-vision based relative navigation method is proposed to solve therelative navigation problem in this scenario. By viewing the coordinates of target’sfeature points as state variables, a coupled kinematic model is introduced toovercome the errors of CW equation when the camera is not mounted exactly on thespacecraft’s center of mass. This model also describes the rotational motion’scorrelation with the spacecraft’s translational motion. In addition, to overcome thenonlinearity and the non-stationary noise in modelling, an adaptive CKF based onSage-Husa noise estimator is proposed. Simulation results demonstrate that this newCKF, while achieving a plausible estimator accuracy in the relative navigation, canadapt to the changes of noise statistics as well.
引文
[1] Stoll E,Letschnik J,Walter U,et al. On-orbit servicing [J]. IEEE Robotics andAutomation Magazine.2009,16(4):29-33.
    [2] Coleshill E,Oshinowo L,Rembala R,et al. Dextre: Improving maintenanceoperations on the International Space Station [J]. Acta Astronautica.2009,64(9-10):869-874.
    [3] Gibbs G,Marcotte B,Braithwaite T,et al. Canada and the international spacestation program: Milestones since IAC2004[C]//International AstronauticalFederation-56th International Astronautical Congress. Fukuoka, Japan: IAF,2005:1779-1796.
    [4] Jacobs D V. International Space Station: Overview and current status [J]. ActaAstronautica.1996,38(4-8):621-630.
    [5] Matsue T, Wakabayashi Y. Investigation of on-orbit servicing robot
    [C]//Proceedings of the19965th International Conference on Engineering,Construction, and Operations in Space. Albuquerque, NM, USA: ASCE,1996:533-539.
    [6] Patten L,Dhanji N,Evans L,et al. Innovative enhancements for reducing thecrew time needed for on-orbit robotic maintenance operations on theinternational space station [C]//54th International Astronautical Congress ofthe International Astronautical Federation (IAF). Bremen, Germany: IAF,2003:859-869.
    [7] Rey D,Watson P. Extra-vehicular robotic maintenance for the InternationalSpace Station (ISS) and applications to space exploration [C]//InternationalAstronautical Federation-55th International Astronautical Congress.Vancouver, Canada: IAF,2004:7460-7470.
    [8] Sponder L,Leclerc G,Jean P,et al. Canada and the International Space StationProgram: Overview and status since IAC2009[C]//61st InternationalAstronautical Congress Prague, Czech republic: IAF,2010:318-327.
    [9] Polites M E. Technology of automated rendezvous and capture in space [J].Journal of Spacecraft and Rockets.1999,36(2):280-291.
    [10] Fehse W. Automated rendezvous and docking of spacecraft [M]. New York:Cambridge University Press,2003:218-279.
    [11] Lee D,Pernicka H. Integrated system for autonomous proximity operationsand docking [J]. International Journal of Aeronautical and Space Sciences.2011,12(1):43-56.
    [12] Zimpfer D,Kachmar P,Tuohy S. Autonomous rendezvous, capture andin-space assembly: past, present and future [C]//1st Space ExplorationConference: Continuing the Voyage of Discovery. Orlando, Florida: AIAA,2005: AIAA-2005-2523.
    [13]林来兴.空间交会对接技术[M].长沙:国防工业大学出版社,1995:4~6.
    [14] Hirzinger G,Landzettel K,Brunner B,et al. DLR's robotics technologies foron-orbit servicing [J]. Advanced Robotics.2004,18(2):139-174.
    [15] Huang X Y,Cui H T,Cui P Y. An autonomous optical navigation andguidance for soft landing on asteroids [J]. Acta Astronautica.2004,54(10):763-771.
    [16] Ilyas M,Lee J G,Park C G. Federated hybrid extended Kalman filter designfor multiple satellites formation flying in LEO [C]//International Conferenceon Instrumentation, Control and Information Technology. Tokyo, Japan:Society of Instrument and Control Engineers (SICE),2008:2595-2600.
    [17] Karlgaard C D,Schaub H. Adaptive nonlinear huber-based navigation forrendezvous in elliptical orbit [J]. Journal of Guidance, Control, and Dynamics.2011,34(2):388-402.
    [18] Lee Y G,Bang H. Relative state estimation of satellite formation flying usingKalman filter [C]//17th International Federation of Automatic Control. Seoul,Korea: Elsevier,2008:2111-2116.
    [19] Maessen D,Gill E. Relative state estimation and observability analysis forformation flying satellites [J]. Journal of Guidance, Control, and Dynamics.2012,35(1):321-326.
    [20] Davis T M, Melanson D. XSS-10micro-satellite flight demonstrationprogram results [C]//Spacecraft Platforms and Infrastructure. Orlando, FL:SPIE,2004:16-25.
    [21] Budris G. Integrating secondaries on Delta II (overview of XSS-10)
    [C]//2004IEEE Aerospace Conference Proceedings. Big Sky, MT: Institute ofElectrical and Electronics Engineers Computer Society,2004:2842-2849.
    [22] Rumford T I E. Demonstration of Autonomous Rendezvous Technology(DART) Project Summary [R]. Greenbelt, DC: Center, NASA Marshall SpaceFlight,2003.
    [23] Ruth M,Tracy C. Video-guidance design for the DART rendezvous mission
    [C]//Spacecraft Platforms and Infrastructure. Orlando, FL: SPIE,2004:92-106.
    [24] Weismuller T,Leinz M. GN&C Technology Demonstrated by the OrbitalExpress Autonomous Rendezvous and Capture Sensor System [C]//29thAnnual AAS Guidance and Control Conference. Breckenridge, Colorado:AAS,2006:1-9.
    [25] Sanchez I A,Paris D,Allard F,et al. Navigation and communication systemsfor the automated transfer vehicle [C]//IEEE Vehicular TechnologyConference. Houston, TX: IEEE,1999:1187-1192.
    [26] Cornier D,Berthelier D,Requiston H,et al. Automated Transfer Vehicleproximity flight safety overview [C]//First IAASS Conference-Space Safety,a New Beginning. Nice, France: European Space Agency,2005:89-95.
    [27] Damico S,Ardaens J S,Larsson R. Spaceborne autonomous formation-flyingexperiment on the PRISMA mission [J]. Journal of Guidance, Control, andDynamics.2012,35(3):834-850.
    [28] Damico S,Ardaens J-S,De Florio S. Autonomous formation flying based onGPS-PRISMA flight results [J]. Acta Astronautica.2013,82(1):69-79.
    [29] De Florio S,D'Amico S,Ardaens J S. Flight results from the autonomousnavigation and control of formation flying spacecraft on the PRISMA mission
    [C]//61st International Astronautical Congress2010. Prague, Czech republic:International Astronautical Federation,2010:6042-6052.
    [30] Gill E,Montenbruck O,D'Amico S,et al. Autonomous satellite formationflying for the PRISMA technology demonstration mission [C]//SpaceflightMechanics2006-AAS/AIAA Space Flight Mechnaics Meeting. Tampa, FL:Univelt Inc.,2006:331-342.
    [31] Sellmaier F,Spurmann J,Boge T. On-orbit servicing missions at DLR/GSOC [C]//61st International Astronautical Congress2010. Prague, Czechrepublic: International Astronautical Federation,2010:8376-8382.
    [32] Wahba G. A Least Squares Estimate of Spacecraft Attitude [J]. SIAM Review.1965,7(3):409-409.
    [33] Shuster M D, Oh S D. Three-axis attitude determination from vectorobservations [J]. Journal of Guidance, Control, and Dynamics.1981,4(1):70-77.
    [34] Markley F L. Attitude determination using vector observations and thesingular value decomposition [J]. Journal of the Astronautical Sciences.1988,36(3):245-258.
    [35] Markley F L. Attitude determination using vector observations: A fastoptimal matrix algorithm [J]. Journal of the Astronautical Sciences.1993,41(2):261-280.
    [36] Andrews S F,Bilanow S. Recent flight results of the TRMM Kalman filter
    [C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Greenbelt, MD: American Institute of Aeronautics and Astronautics Inc.,2002: AIAA-2002-5047.
    [37] Markley F L,Crassidis J L,Cheng Y. Nonlinear attitude filtering methods
    [C]//AIAA Guidance, Navigation, and Control Conference2005. SanFrancisco, CA, United states: American Institute of Aeronautics andAstronautics Inc.,2005:753-784.
    [38] Psiaki M L. Global magnetometer-based spacecraft attitude and rateestimation [J]. Journal of Guidance, Control, and Dynamics.2004,27(2):240-250.
    [39] Lefferts E J,Markley F L,Shuster M D. Kalman filtering for spacecraftattitude estimation [J]. Journal of Guidance, Control, and Dynamics.1982,5(5):417-429.
    [40] Bar-Itzhack I Y,Oshman Y. Attitude determination from vector observations:quaternion estimation [J]. IEEE Transactions on Aerospace and ElectronicSystems.1985,21(1):128-136.
    [41] Zanetti R,Bishop R H. Quaternion estimation and norm constrained Kalmanfiltering [C]//AIAA/AAS Astrodynamics Specialist Conference. Keystone,CO, United states: American Institute of Aeronautics and Astronautics Inc.,2006:373-387.
    [42] Majji M,Mortari D. Quaternion constrained Kalman filter [C]//Space FlightMechanics2008-Advances in the Astronautical Sciences, Proceedings of theAAS/AIAA Space Flight Mechanics Meeting. San Diego, CA, United States:Univelt Inc.,2008:1717-1734.
    [43] Zanetti R,Majji M,Bishop R H,et al. Norm-constrained kalman filtering [J].Journal of Guidance, Control, and Dynamics.2009,32(5):1458-1465.
    [44] Simon D,Chia T L. Kalman filtering with state equality constraints [J]. IEEETransactions on Aerospace and Electronic Systems.2002,38(1):128-136.
    [45] Bar-Itzhack I Y,Idan M. Recursive attitude determination from vectorobservations: Euler angle estimation [J]. IEEE Transactions on Aerospace andElectronic Systems.1985,21(1):128-136.
    [46]陈记争,袁建平,方群.基于Rodrigues参数的姿态估计算法[J].航空学报.2008,29(4):960-965.
    [47] Crassidis J, Markley F. Attitude estimation using modified Rodriguesparameters [C]//Proceedings of the American Astronautical Society F. LandisMarkley Astronautics Symposium. Greenbelt, MD, United states: NASA,1996:71-86.
    [48] Idan M. Estimation of Rodrigues parameters from vector observations [J].IEEE Transactions on Aerospace and Electronic Systems.1996,32(2):578-586.
    [49] Philip N K,Ananthasayanam M R. Relative position and attitude estimationand control schemes for the final phase of an autonomous docking mission ofspacecraft [J]. Acta Astronautica.2003,52(7):511-522.
    [50] Alfriend K T,Vadali S R,Gurfil P. Spacecraft formation flying: dynamics,control, and navigation [M]. Kidlington: Butterworth-Heinemann,2009:83-122.
    [51] Carter T,Humi M. Fuel-optimal rendezvous near a point in general Keplerianorbit [J]. Journal of Guidance, Control, and Dynamics.1987,10(6):567-573.
    [52] Kim S-G,Crassidis J L,Cheng Y,et al. Kalman filtering for relativespacecraft attitude and position estimation [J]. Journal of Guidance, Control,and Dynamics.2007,30(1):133-143.
    [53] Goddard J S. Pose and motion estimation using dual quaternion-basedextended Kalman filtering [D]. Tennessee: The University of Tennessee,,1997:189-200.
    [54] Wang J-Y,Liang H-Z,Sun Z-W,et al. Relative motion coupled control basedon dual quaternion [J]. Aerospace Science and Technology.2013,25(1):102-113.
    [55]丁尚文,王惠南,刘海颖等.基于对偶四元数的航天器交会对接位姿视觉测量算法[J].宇航学报.2009,30(6):2145-2150.
    [56]冯国虎,章大勇,吴文启.单目视觉下基于对偶四元数的运动目标位姿确定[J].武汉大学学报(信息科学版).2010,35(10):1147-1150.
    [57]马可锌,王惠南,付世勇.基于对偶四元数的编队飞行卫星相对位姿描述及算法研究[J].宇航学报.2011,32(9):1871-1877.
    [58]王剑颖,梁海朝,孙兆伟等.基于对偶数的航天器多特征融合相对导航算法[J].航空学报.2012,33(10):1881-1892.
    [59] Segal S,Gurfil P. Effect of kinematic rotation-translation coupling on relativespacecraft translational dynamics [J]. Journal of Guidance, Control, andDynamics.2009,32(3):1045-1050.
    [60]梁斌,杜晓东,李成等.空间机器人非合作航天器在轨服务研究进展[J].机器人.2012,34(2):242-256.
    [61] Kelsey J M,Byrne J,Cosgrove M,et al. Vision-based relative poseestimation for autonomous rendezvous and docking [C]//IEEE AerospaceConference. Big Sky, MT: Inst. of Elec. and Elec. Eng. Computer Society,2006:1-20.
    [62] Park C W,Ferguson P,Pohlman N,et al. Decentralized relative navigationfor formation flying spacecraft using augmented CDGPS [C]//Proceedings ofInstitute of Navigation GPS Conference. Salt Lake City, UT: Citeseer,2001:2304-2315.
    [63] Xing Y,Cao X,Zhang S,et al. Relative position and attitude estimation forsatellite formation with coupled translational and rotational dynamics [J].Acta Astronautica.2010,67(3-4):455-467.
    [64]翟光,仇越,梁斌.在轨捕获技术发展综述[J].机器人.2008,30(5):467-480.
    [65]周军,白博,于晓洲.一种非合作目标相对位置和姿态确定方法[J].宇航学报.2011,32(3):516-521.
    [66] Du X,Liang B,Xu W,et al. Pose measurement of large non-cooperativesatellite based on collaborative cameras [J]. Acta Astronautica.2011,68(11-12):2047-2065.
    [67] Segal S, Gurfil P. Stereoscopic vision-based spacecraft relative stateestimation [C]//AIAA Guidance, Navigation, and Control Conference andExhibit. Chicago, IL, United states: American Institute of Aeronautics andAstronautics Inc.,2009: AIAA-2009-6094.
    [68] Anderson B,Moore J B. Optimal filtering [M]. London: Prentice-Hall,1979:193-222.
    [69] Henriksen R. Truncated second-order nonlinear filter revisited [J]. IEEETransactions on Automatic Control.1982,27(1):247-251.
    [70] Jazwinski A H. Stochastic processes and filtering theory [M]. New York:Academic Press,1970:162-193.
    [71] Kalman R E. A new approach to linear filtering and prediction problems [J].Transactions of the ASME–Journal of Basic Engineering.1960,82(D):34-45.
    [72] Lefebvre T,Bruyninckx H,De Schutter J. Kalman filters for non-linearsystems: A comparison of performance [J]. International journal of control.2004,77(7):639-653.
    [73] Simandl M,Dunik J. Derivative-free estimation methods: New results andperformance analysis [J]. Automatica.2009,45(7):1749-1757.
    [74] Zanetti R. Recursive Update Filtering for Nonlinear Estimation [J]. IEEETransactions on Automatic Control.2011,57(6):1481-1490.
    [75] Arasaratnam I,Haykin S,Elliott R J. Discrete-time nonlinear filteringalgorithms using gauss-hermite quadrature [C]//Proceedings of the IEEE.Piscataway, NJ, United States: Institute of Electrical and ElectronicsEngineers Inc.,2007:953-977.
    [76] Ito K,Xiong K. Gaussian filters for nonlinear filtering problems [J]. IEEETransactions on Automatic Control.2000,45(5):910-927.
    [77] Leong P H,Arulampalam S,Lamahewa T A,et al. A Gaussian-sum basedcubature Kalman filter for bearings-only tracking [J]. IEEE Transactions onAerospace and Electronic Systems.2013,49(2):1161-1176.
    [78] Bar-Shalom Y,Li X R,Kirubarajan T. Estimation with applications totracking and navigation: theory algorithms and software [M]. New York:Wiley-Interscience,2001:371-419.
    [79] Julier S,Uhlmann J. A new extension of the Kalman filter to nonlinearsystems [C]//Proceedings of SPIE-The International Society for OpticalEngineering. Orlando, FL: Society of Photo-Optical InstrumentationEngineers,1997:182-193.
    [80] Julier S,Uhlmann J,Durrant-Whyte H F. New method for the nonlineartransformation of means and covariances in filters and estimators [J]. IEEETransactions on Automatic Control.2000,45(3):477-482.
    [81] Julier S J,Uhlmann J K. Unscented filtering and nonlinear estimation
    [C]//Proceedings of the IEEE. Institute of Electrical and ElectronicsEngineers Inc.,2004:401-422.
    [82]潘泉,杨峰,叶亮等.一类非线性滤波器—UKF综述[J].控制与决策.2005,20(5):481-489.
    [83] Van Der Merwe R,Wan E A. The square-root unscented Kalman filter forstate and parameter estimation [C]//IEEE Interntional Conference onAcoustics, Speech, and Signal Processing. Salt Lake, UT: Institute ofElectrical and Electronics Engineers Inc.,2001:3461-3464.
    [84] Xiong K,Zhang H Y,Chan C W. Performance evaluation of UKF-basednonlinear filtering [J]. Automatica.2006,42(2):261-270.
    [85] Gordon N J, Salmond D J, Smith A F M. Novel approach tononlinear/non-gaussian Bayesian state estimation [J]. IEE Proceedings, Part F:Radar and Signal Processing.1993,140(2):107-113.
    [86] Doucet A,Godsill S,Andrieu C. On sequential Monte Carlo samplingmethods for Bayesian filtering [J]. Statistics and computing.2000,10(3):197-208.
    [87] Hu X-L,Schon T B,Ljung L. A general convergence result for particlefiltering [J]. IEEE Transactions on Signal Processing.2011,59(7):3424-3429.
    [88] Kantas N,Doucet A,Singh S S,et al. An overview of Sequential Monte Carlomethods for parameter estimation in general state-space models [C]//15thIFAC Symposium on System Identification. Saint-Malo, France: IFACSecretariat,2009:774-785.
    [89]杨旭程,曹喜滨,杨涤.粒子滤波在卫星轨道确定中的应用[J].控制理论与应用.2005,2005(4):573-577.
    [90] Spall J C. Estimation via Markov chain Monte Carlo [J]. IEEE ControlSystems Magazine.2003,23(2):34-45.
    [91] Arasaratnam I,Haykin S. Cubature kalman filters [J]. IEEE Transactions onAutomatic Control.2009,54(6):1254-1269.
    [92] Arasaratnam I, Haykin S,Hurd T R. Cubature Kalman filtering forcontinuous-discrete systems: Theory and simulations [J]. IEEE Transactionson Signal Processing.2010,58(10):4977-4993.
    [93] Bharani Chandra K P,Gu D-W,Postlethwaite I. Cubature Kalman filterbased Localization and Mapping [C]//18th IFAC World Congress. Milano,Italy: IFAC Secretariat,2011:2121-2125.
    [94] Pesonen H,Piche R. Cubature-based Kalman filters for positioning [C]//20107th Workshop on Positioning, Navigation and Communication. Dresden,Germany: IEEE Computer Society,2010:45-49.
    [95] Machula M F,Sandhoo G S. Rendezvous and docking for space exploration
    [C]//1st Space Exploration Conference: Continuing the Voyage of Discovery.Orlando, FL, United states: American Institute of Aeronautics andAstronautics Inc.,2005:1033-1042.
    [96] Wertz J R,Bell R. Autonomous Rendezvous and Docking Technologies-Status and Prospects [C]//Proceedings of SPIE-The International Society forOptical Engineering: Space Systems Technology and Operations. Orlando, FL,United states: SPIE,2003:20-30.
    [97] Junkins J L,Hughes D C,Wazni K P,et al. Vision-based navigation forrendezvous, docking and proximity operations [C]//Dynamics and Control ofSpace Structures4th International Conference. Cranfield, UK: Advances inthe Astronautical Sciences,1999:203-220.
    [98] Ansar A,Daniilidis K. Linear pose estimation from points or lines [J]. IEEETransactions on Pattern Analysis and Machine Intelligence.2003,25(3):282-296.
    [99] Corke P,Lobo J,Dias J. An introduction to inertial and visual sensing [J].International Journal of Robotics Research.2007,26(6):519-535.
    [100] Lee D,Pernicka H. Vision-based relative state estimation using theunscented kalman filter [J]. International Journal of Aeronautical and SpaceSciences.2011,12(1):24-36.
    [101] Xu W,Liang B,Li C,et al. Autonomous rendezvous and robotic capturingof non-cooperative target in space [J]. Robotica.2010,28(5):705-718.
    [102] Gunnarsson F,Bergman N,Forssell U,et al. Particle filters for positioning,navigation, and tracking [J]. IEEE Transactions on Signal Processing.2002,50(2):425-437.
    [103] Long A M,Richards M G,Hastings D E. On-orbit servicing: A new valueproposition for satellite design and operation [J]. Journal of Spacecraft andRockets.2007,44(4):964-976.
    [104] Murrell J W. Precision attitude determination for multimission spacecraft
    [C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference.Palo, CA: American Institute of Aeronautics and Astronautics Inc,1978:70-87.
    [105] Ho Y C,Lee R C K. A Bayesian Approach to Problems in StochasticEstimation and Control [J]. IEEE Transactions on Automatic Control.1964,AC-9(4):333-339.
    [106] Norgaard M,Poulsen N K,Ravn O. Advances in derivative-free stateestimation for nonlinear systems [R]. Lyngby: Denmark, Technical Universityof,2000.
    [107] Norgaard M,Poulsen N K,Ravn O. New developments in state estimationfor nonlinear systems [J]. Automatica.2000,36(11):1627-1638.
    [108] Van Der Merwe R,Wan E A. Efficient derivative-free Kalman filters foronline learning [C]//European Symposium on Artificial Neural Networks(ESANN). Bruges, Belgium: Citeseer,2001:205-210.
    [109] Van Der Merwe R. Sigma-point Kalman filters for probabilistic inference indynamic state-space models [D]. Portland: Oregon Health&ScienceUniversity,2004:49-126.
    [110] Gustafsson F,Hendeby G. Some relations between extended and unscentedKalman filters [J]. IEEE Transactions on Signal Processing.2012,60(2):545-555.
    [111]武元新.对偶四元数导航算法与非线性高斯滤波研究[D].长沙:国防科学技术大学,2005:58-67.
    [112] Lerner U N. Hybrid Bayesian networks for reasoning about complexsystems [D]. Stanford, CA: Stanford University,2002:115-137.
    [113] Keast P. Moderate-degree tetrahedral quadrature formulas [J]. ComputerMethods in Applied Mechanics and Engineering.1986,55(3):339-348.
    [114] Julier S J,Uhlmann J K,Durrant-Whyte H F. New approach for filteringnonlinear systems [J]. IEEE Transactions on Automatic Control.1995,45(3):477-482.
    [115] Jia B,Xin M,Cheng Y. High-degree cubature Kalman filter [J]. Automatica.2012,49(2):510-518.
    [116] Arulampalam M S,Ristic B,Gordon N,et al. Bearings-only tracking ofmanoeuvring targets using particle filters [J]. Eurasip Journal on AppliedSignal Processing.2004,2004(15):2351-2365.
    [117] Crassidis J L,Markley F L. Unscented filtering for spacecraft attitudeestimation [J]. Journal of Guidance, Control and Dynamics.2003,26(4):536-542.
    [118] Cheng Y,Crassidis J L. Particle filtering for sequential spacecraft attitudeestimation [C]//AIAA Guidance, Navigation, and Control Conference.Providence, RI, United states: American Institute of Aeronautics andAstronautics Inc.,2004:2925-2942.
    [119] Carmi A,Oshman Y. Fast particle filtering for attitude and angular-rateestimation from vector observations [J]. Journal of Guidance, Control, andDynamics.2009,32(1):70-78.
    [120] Gordon N J,Salmond D J,Ewing C M. Bayesian state estimation fortracking and guidance using the bootstrap filter [J]. Journal of GuidanceControl and Dynamics.1993,18(6):1434-1443.
    [121] Arulampalam M S,Maskell S,Gordon N,et al. A tutorial on particle filtersfor online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactionson Signal Processing.2002,50(2):174-188.
    [122] Chen T,Schon T B,Ohlsson H,et al. Decentralized particle filter witharbitrary state decomposition [J]. IEEE Transactions on Signal Processing.2011,59(2):465-478.
    [123] Shuster M D. A survey of attitude representations [J]. Journal of theAstronautical Sciences.1993,41(4):439-517.
    [124] Crassidis J L,Landis Markley F,Cheng Y. Survey of nonlinear attitudeestimation methods [J]. Journal of Guidance, Control, and Dynamics.2007,30(1):12-28.
    [125] Crassidis J L. Sigma-point Kalman filtering for integrated GPS and inertialnavigation [C]//AIAA Guidance, Navigation, and Control Conference. SanFrancisco, CA: American Institute of Aeronautics and Astronautics Inc.,2005:1981-2004.
    [126] Crassidis J,Junkins J. Optimal estimation of dynamic systems [M]. BocaRaton: Chapman&Hall,2004:419-433.
    [127] Lee D-J. Nonlinear estimation and multiple sensor fusion using unscentedinformation filtering [J]. IEEE Signal Processing Letters.2008,15:861-864.
    [128] Lizarralde F, Wen J T. Attitude control without angular velocitymeasurement: a passivity approach [J]. IEEE Transactions on AutomaticControl.1996,41(3):468-472.
    [129] Schaub H,Junkins J L. Stereographic orientation parameters for attitudedynamics: a generalization of the Rodrigues parameters [J]. Journal of theAstronautical Sciences.1996,44(1):1-19.
    [130] Chen J,Yuan J,Fang Q. Flight Vehicle Attitude Determination Using theModified Rodrigues Parameters [J]. Acta Aeronautica et Astronautica Sinica.2008,21(5):433-440.
    [131] Karlgaard C D. Robust adaptive estimation for autonomous rendezvous inelliptical orbit [D]. Blacksburg, Virginia: Virginia Polytechnic Institute andState University,2010:54-69.
    [132] Hurtado J E. Interior parameters, exterior parameters, and a cayley-liketransform [J]. Journal of Guidance, Control, and Dynamics.2009,32(2):653-657.
    [133] Karlgaard C D,Schaub H. Nonsingular attitude filtering using modifiedrodrigues parameters [J]. Journal of the Astronautical Sciences.2009,57(4):777-791.
    [134] Andrle M S,Crassidis J L,Linares R,et al. Deterministic relative attitudedetermination of three-vehicle formations [J]. Journal of Guidance, Control,and Dynamics.2009,32(4):1077-1088.
    [135] Linares R, Crassidis J L, Cheng Y. Constrained relative attitudedetermination for two-vehicle formations [J]. Journal of Guidance, Control,and Dynamics.2011,34(2):543-553.
    [136]梁斌,徐文福,李成.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报.2010,31(1):1-11.
    [137]陈小前,袁建平,姚雯等.航天器在轨服务技术[M].北京:中国宇航出版社,2009:119-168.
    [138]张淑琴.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2005:1-20.
    [139] Gustafsson F. Particle filter theory and practice with positioningapplications [J]. IEEE Aerospace and Electronic Systems Magazine.2010,25(7PART2):53-81.
    [140] Chang C,Ansari R. Kernel particle filter for visual tracking [J]. SignalProcessing Letters, IEEE.2005,12(3):242-245.
    [141] Thrun S,Fox D,Burgard W,et al. Robust Monte Carlo localization formobile robots [J]. Artificial Intelligence.2001,128(1-2):99-141.
    [142] Chen Z. Bayesian filtering: From Kalman filters to particle filters, andbeyond [J]. Statistics.2003,182(1):1-69.
    [143] Kotecha J H,Djuric P M. Gaussian particle filtering [J]. IEEE Transactionson Signal Processing.2003,51(10):2592-2601.
    [144] Baek K,Bang H. Adaptive sparse grid quadrature filter for spacecraftrelative navigation [J]. Acta Astronautica.2013,87(2013):96-106.
    [145] Hartikainen J,Sarkka S. Kalman filtering and smoothing solutions totemporal Gaussian process regression models [C]//IEEE20th InternationalWorkshop on Machine Learning for Signal Processing. Kittila, Finland: IEEEComputer Society,2010:379-384.
    [146] Higuchi T. Monte Carlo filter using the genetic algorithm operators [J].Journal of Statistical Computation and Simulation.1997,59(1):1-24.
    [147] Schneider M,Ertel W. Robot learning by demonstration with local gaussianprocess regression [C]//2010International Conference on Intelligent Robotsand Systems. Taipei, Taiwan: IEEE Computer Society,2010:255-260.
    [148] Liu C K,Hertzmann A,Popovi Z. Learning physics-based motion stylewith nonlinear inverse optimization [J]. ACM Transactions on Graphics2005,24(3):1071-1081.
    [149] Sidi M J. Spacecraft dynamics and control: a practical engineering approach
    [M]. Cambridge: Cambridge University Press,1997:57-62.
    [150] Bevilacqua R,Romano M. Rendezvous maneuvers of multiple spacecraftusing differential drag under J2perturbation [J]. Journal of Guidance, Control,and Dynamics.2008,31(6):1595-1607.
    [151] Del Gaudio G. Analysis of satellite formation flying models including J2effect [C]//AIAA57th International Astronautical Congress. Valencia, Spain:American Institute of Aeronautics and Astronautics Inc.,2006:9269-9278.
    [152] Yamada K,Shima T,Yoshikawa S. Effect of J2perturbations on relativespacecraft position in near-circular orbits [J]. Journal of Guidance, Control,and Dynamics.2010,33(2):584-590.
    [153]张玉锟.卫星编队飞行的动力学与控制技术研究[D].长沙:中国人民解放军国防科学技术大学,2002:49-71.
    [154] Schweighart S, Sedwick R. A perturbative analysis of geopotentialdisturbances for satellite cluster formation flying [C]//2001IEEE AerospaceConference. Big Sky, MT, United states: Institute of Electrical andElectronics Engineers Computer Society,2001:21001-21019.
    [155] Mishne D. Formation control of satellites subject to drag variations and J2perturbations [J]. Journal of Guidance, Control, and Dynamics.2004,27(4):685-692.
    [156]何英姿,谌颖,韩冬.基于交会雷达测量的相对导航滤波器[J].航天控制.2004,22(6):17-20.
    [157]陈根社,文传源,陈新海.航天器相对运动估计的一种并行推广卡尔曼滤波方法[J].航空学报.1996,17(1):43-51.
    [158] Ren W,Beard R W,Kingston D B,et al. Multi-agent Kalman consensuswith relative uncertainty [C]//Proceedings of the2005American ControlConference.2005:1865-1870.
    [159] Reynerson C M. Spacecraft modular architecture design for on-orbitservicing [C]//2000IEEE Aerospace Conference. Big Sky, MT, United states:Institute of Electrical and Electronics Engineers Computer Society,2000:227-237.
    [160] Wang J Y,Liang H Z,Sun Z W,et al. A multi-cue-based relativenavigation algorithm for spacecraftvia dual-number representation [J]. ActaAeronautica et Astronautica Sinica.2012,33(10):1881-1892.
    [161] Sage A P,Husa G W. Adaptive filtering with unknown prior statistics
    [C]//Proceedings of the Joint Automatic Control Conference. Boulder, CO,USA:1969:760-769.
    [162]邓自立.自校正滤波理论及其应用:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2003:161-192.
    [163]石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用[J].自动化学报.2011,37(6):755-759.
    [164] Reif K,Gunther S,Yaz E,et al. Stochastic stability of the discrete-timeextended Kalman filter [J]. IEEE Transactions on Automatic Control.1999,44(4):714-728.
    [165] Xiong K,Zhang H Y,Chan C W. Performance evaluation of UKF-basednonlinear filtering [J]. Automatica.2006,42(2):261-270.
    [166] Fischler M A,Bolles R C. Random sample consensus: A paradigm formodel fitting with applications to image analysis and automated cartography[J]. Communications of the ACM.1981,24(6):381-395.
    [167] Shuster M D. Kalman filtering of spacecraft attitude and the QUEST model[J]. Journal of the Astronautical Sciences.1990,38(3):377-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700