用户名: 密码: 验证码:
时频信号的相位比对与处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周期性信号之间的相位比对是时频测控领域中解决高分辨率测量技术的重要手段,周期性信号之间相位差的变化体现了频率信号之间相位量化步进的规律性现象。周期性信号之间相位差的规律性变化的研究,在时频测量领域中具有良好的应用和发展前景。通过对任意频率信号之间相位关系的分析和研究,完成对频率信号的超高分辨率相位差、相位噪声、频率及频率稳定度测量。温度和频漂是影响原子频标性能的固有特性。通过对原子频标温度和漂移特性的分析,研究通过数字化补偿技术实现原子频标性能的提高。取得的主要研究成果为:
     1.对标称值不同的信号之间相位关系进行了研究,提出了任意信号之间具有相位可比性。提出了标称值呈倍数关系的周期性信号之间具有和标称值相同信号的等效比对关系,而且由于对应的量化相移分辨率更小,体现出来的分辨率更高。通过引入标称最小公倍数周期,解决了标称值不同且不具有倍数关系的信号之间的信号之间的直接比对。实现了任意信号之间的直接相位比对,并推导出相应的比对公式,简化频率变化链中复杂的频率变化。
     2.对高分辨率相位差测量技术进行了研究,提出了通过相位差群同步消除任意周期性信号相位比对测量中的量化误差。在等效鉴相频率、最小公倍数周期和等效比对等概念和理论基础之上,引入公共振荡源,利用相位差群同步和标称值呈倍数关系的周期性信号之间的相位比对关系,实现高分辨率的相位差测量。针对10MHz的比对源,实现10ps相位差测量分辨率测量。
     3.对超高分辨率的频率测量技术进行了研究,利用相位差群同步的概念,在不需要通过复杂的频率变换处理,将相位比对和处理的方法推广到任意频率情况下实现了超高分辨率的频率测。将信号间的量化相移分辨率与频率合成技术相结合,能够在宽范围内获得自校情况下10-15/s的测量分辨率,在互比的测量情况下,测量分辨率则能够达到10-13/s量级。
     4.对高分辨率的线性相位比对技术进行了研究,提出利用线性相位比对技术实现距离的测量。利用了线性比相-单路分频控制鉴相法和比对信号之间的倍数关系,控制鉴相区域,保证比对的高线性度。采用脉冲平均的方法和简单的信号处理电路器件的优化选择,来减小触发误差。采用高精度数字电压表测量,通过对电压表积分时间的控制减小源噪声对测量结果的影响,来实现距离的测量,针对空间距离测量,分辨率能够达到30μm。
     5.对相位噪声测量技术进行了研究。利用标称值呈倍数关系的相位比对的等效性,通过对信号之间相位量化的和相位差群同步现象的分析,提出利用周期性信号的相位量化关系,通过对合适频率关系的相位差群同步现象的高精度捕捉,选择相应的响应时间,利用对闸门时间抖动的测量,实现宽范围的相位噪声测量。
     6.对频率基准铷原子频标的温度和漂移特性进行了研究,针对铷原子频标受温度和漂移的影响,研究铷原子频标温度漂移补偿方案。铷原子钟的温度和漂移均属于系统误差。温度特性具有一定的重复性,对温度特性进行非实时补偿;漂移有一定的离散性,规律性较明显的铷原子频标漂移率相对较大,能够引入数字补偿处理,提高原子频标的特性指标。
The phase comparison and processing between the periodic signals is an importantmethod to solve high-resolution measurement techniques in the measurement andcontrol field. Phase difference between the periodic signals reflects regularity of phasequantization stepping. The regularity shift of phase has a good application anddevelopment prospects in the time-frequency measurement. Frequency and frequencystability measurements, phase difference measurement and phase noise measurementcan be completed by phase difference analysis and research. For the further research,the technology can be used in precision measurement in space for the development ofelectronic devices and effective means of the phase process between the two signals.Temperature and frequency drift is atomic frequency standard inherent characteristicswhich effects atomic frequency standard performance. By the analysis of its temperatureand drift characteristics, the atomic frequency standard performance improvement isstudied though the digital compensation technology. The author’s major contributionsare outlined as follows:
     1. The phase relationship between arbitrary signals has been studied. The phasecomparison between the arbitrary signals is present. The comparison between multiplefrequencies is equivalent to the same nominal frequency. The smaller the quantizationphase shift resolution, the higher the measurement resolution. The comparision can bedone between the periodic signals without the same or multiple nominal frequencies.Arbitrary signals can be directly compared by introducing the nominal the leastcommon multiple period. The corresponding formula is deduced. The complexfrequency conversion is simplified in the frequency change of the chain.
     2. High-resolution phase difference measurement technique has been studied. Thispaper put forward that quantization error can be eliminate by using of groupsynchronization to eliminate in any periodic signal phase comparison. High-resolutionphase difference measurement can be realized by adding the common oscillation sourceand comparison between the multiple nominal frequencies based on the QuantizedPhase Shift Resolution,Least Common Multiple Period, and equivalent comparison andso on. The phase difference measurement resolution can reach to10ps by using of groupsynchronization for10MHz frequency source.
     3. Ultra-high-resolution frequency measurement technique has been study. Phase
     difference group synchronization concept is proposed to process arbitrary frequency
     measurement which does not require complex frequency transformation. The high resolution frequency measurement in different nominal frequency is complete by phasecomparison and processing based on the phase difference group synchronous underwithout complex frequency conversion. The measurement resolution can get10-15/sin self-correction and10-13/s in different frequency standard in wide range accordingto the quantization phase shift resolution and frequency synthesis technique.
     4. High-resolution linear phase comparison has been study. Distance measurementby the linear-phase comparison technology is present. High linearity is ensured bycontrolling the phase comparison region though the single divider controlling phasecomparison and the small multiple frequency relationship. The trigger error can bereduced by plus average method, optimization option of the signal processing circuit.The noise of the source can be reduced by the control of voltmeter integration time andthe measurement of distances can be completed, the resolution can be achieved30μm.
     5. Phase noise measurement technology has been studied. Phase quantization of theperiod signals is put forward by the phase quantization and phase difference groupsynchronization analysis based on phase comparison equivalent between multiplenominal frequencies and the same nominal frequency. The wide range phase noisemeasurement can be realized by the count gate jitter measurement and effectiveresponse time in the appropriate frequency relation and high accurate capture of phasedifference group synchronization.
     6. Temperature and drift of the rubidium atomic frequency standard have beenstudied. The compensation program of temperature and drift characteristic in Rbfrequency standard are designed. The temperature and drift are systematic errors,temperature characteristics has certain repetitive, non-real-time compensation oftemperature characteristic can develop the Rb frequency standard; drift discreterelatively larger, digital compensation can be used in more obvious to the regularity ofclock drift.
引文
[1]黄秉英,周渭等.测试计量技术手册[M].北京:中国计量出版社,1996.73-89,143-150.
    [2]周渭,偶小娟,周晖等.时频测控技术[M].第1版.西安:西安电子科技大学,2006.
    [3] W.J. Riley, C.A. Greenhall. Power law noise identification using the lag1autocorrelation[C]. Proc.18th European Frequency and Time Forum [A].2004.576-580.
    [4] J.Rutman, F. L. Walls. Characterization of Frequency Stability in PrecisionFrequency Sources [J]. Proceedings of the IEEE,1991,79(7):952-960.
    [5]陈永良.相关零拍法相位噪声谱测量系统的研究与实现[J].仪器仪表学报,2000,21(2),215-217.
    [6]李锋林,陈伯孝,张守宏.一种高稳定性频率源的低接近载波相位噪声的测量方法[J].电子学报,2008,36(32):594-598.
    [7]王峰,梁小琴.频谱分析仪相位噪声测量功能的实现[J].国外电子测量技术,2006,11(25):20-23.
    [8]秦迎春.相位噪声测量软件的优化与扩展[J].计量与测试技术,2005,32(1):20-22.
    [9]李炎.相位噪声自动测试方法研究[D].西北工业大学硕士学位论文.2001.
    [10]周渭.基于时空和时相关系的时频处理方法[J].宇航计测技术.2007:72-77.
    [11]周渭,朱根富.频率及时间计量[M].西安:陕西科学技术出版社.1986.
    [12]郑珍.基于比相法的高分辨率频标比对技术的研究[D].西安:西安电子科技大学,2006.
    [13]郭海荣,杨生,何海波.导航卫星原子钟频率漂移特性分析[J].全球定位系统,2007(6),6:5-10.
    [14]翟造成.原子钟基本原理与时频测量技术[M].上海:上海科学技术文献出版社.2009.
    [15] Su W. and Filler R. L. Application of Kalman filtering techniques to theprecision clock with nonconstant aging [A].1992IEEE Frequency ControlSymposium[C].1992.231-237.
    [16] Riley W. J. The basics o f frequency stability analysis [EB/OL]. http://www.wriley.com/paper2ht.htm,2006.
    [17]郭海荣,郭树人,焦文海.原子钟时域频率稳定性影响因素分析[J].测绘科学与工程,2006,26(4):9-13.
    [18] K.Deng, T. Guo, D.W.He, etc. Effect of buffer gas ratio on the relationshipbetween cell temperature and frequency shifts of the coherent populationtrapping resonance [J]. APPLIED PHYSICS LETTERS.2008,92:104-108.
    [19] Michael A. Lombardi, Thomas P. Heavner, and Steven R. Jefferts. NIST Primaryfrequency standards and the realization of the SI second [J]. NCSLINTERNATIONAL MEASURE,2007,2(4): pp74-89.
    [20] Richard Percival, Clive Green Quartzlock (UK), Ltd. On an Improved Methodof Resolving the Frequency Difference between Two Very Accurate and StableFrequency Signals [A].31st Annual Precise Time and Time Interval (PTTI)Meeting[C].1999.637-648.
    [21]周渭.时频测量新技术—相位重合点检测技术[J].宇航计测技术,1993,(3):58-61.
    [22] Proc. of the IEEE-NASA Symposium on the Definition and Measurement ofShort-Term Frequency Stability, NASASP-80,1964.
    [23] D.W. Allan. The Statistics of Atomic Frequency Standards [J]. Proceedings ofIEEE,1966,54(2):221-230.
    [24] R.A. Baugh. Frequency modulation analysis with the Hadamard variance [A].25thAnnual Symposium on Frequency Control[C].1971.222-225.
    [25] Thomas B. McCaskill, Wilson G. Reid, James A. Buisson and Hugh E. Warren.Effect of Broadcast and Precise Ephemerides on Estimates of the FrequencyStability of GPS NAVSTAR Clocks [J]. International Journal of SatelliteCommunication.1994,12(5):435-441.
    [26] Steven T. Hutsell, Wilson G. Reid, Lt Jeffrey D. Crum and Lt H. Shawn Mobbs,James A. Buisson. Operational Use of the Hadamard Variance in GPS [A].Proceedings of the28thAnnual PTTI Meeting[C].1996.201-213.
    [27] Dave Howe, Ron Beard, Chuck Greenhall, Fran cois Vernotte and Bill Riley. ATotal Estimator of the Hadamard Function Used For GPS Operations [A].Proceedings of the32nd PTTI Meeting[C].2000.255-268.
    [28] F. L. Walls, David W. Allan. Measurements of Frequency Stability [J].Proceedings of the IEEE,1986,71(1):162-169.
    [29] D.W. Allan. Picosecond Time Difference Measurement System [A]. Proc.29thAnnual Symposium on Frequency Control[C].1975.404-411.
    [30] Ken Mochizuki, Masaharu Uchino, and Takao Morikawa. Frequency-StabilityMeasurement System Using High-Speed ADCs and Digital Signal [J].Processing IEEE Transactions on Instrumentation and Measurement,2007,56(5):1887-1893.
    [31] Ya Liu, Xiao-Hui Li, Wen-Li Wang. Analysis and comparison of performance offrequency standard measurement systems based on beat-frequency method [A].IEEE Frequency Control Symposium[C].2008.479-483.
    [32] J. Grove, J. Hein, J. Retta, P. Schweiger, W. Solbrig, and S.R. Stein.Direct-Digital Phase-Noise Measurement [A]. IEEE International Ultrasonics,Ferroelectrics, and Frequency Control Joint50th Anniversary Conference[C].2004.287-291.
    [33]阎栋梁.相位噪声测量技术的发展[J].宇航计测技术,2006,26(5):59-61.
    [34]孙素霞.相位噪声测量方法及其研究[D].西安:西安电子科技大学.2005.
    [35]李焕.基于等效鉴相频率的相位处理技术[D].西安:西安电子科技大学.2010.
    [36] Weixin Kong. Low Phase Noise Design Techniques for Phase Locked LoopBased on Integrated RF Frequency synthesizer [D].Dissertation in Maryland,College Park.2005.
    [37] I.I.Rabi, J.RZacharias et al. A new method of measuring nuclear magneticmoment [J]. Phys.Rev.Lett,1938:53.
    [38] H.Lyons. Microwave spectroscopic frequency and time standards [J]. ElectronicEng,1949:68.
    [39] N.F.Ramsey. A molecular beam resonance method with separated oscillatingfield [J]. Phys.Rev.Lett,1950:78.
    [40] K.Shimoda,T.C.Wang and C.H.Townes. Further aspects of theory of the maser[J]. Phys.Rev.Lett,1956:102.
    [41] L.Essen, J.V.L.Parry. The Cs resonator as a standard of frequency and time [J].Phil.Trans.R.Soc, London, SeresA.1957:250.
    [42] P.L.Bender, E.C.Beaty and A.R.Chi. Optical detection of narrow Rb87hyperfineabsorption lines [J]. Phys. Rev. Lett,1958:1.
    [43] I. H. Choi, S. B. Lee, T. Y. Kwon, and S. E. Park. Improvement of Short-TermStability of Pulsed Optically Pumped Rubidium Atomic Clock [J]. Conferenceon Precision Electromagnetic Measurements,2010:432-433.
    [44]王义遒.频率标准在中国的发展[J].宇航计量技术(增刊),2007:1-6.
    [45]张首刚.时间与频率研究领域的现状趋势与发展建议[R].2007-2008天文学学科发展报告.北京:中国科学技术出版社,2008.171.
    [46]刘铁新.原子频标发展的最新动向.第55届国际频率控制年会有关情况简介.2001(4).
    [47]黄秉英.新一代原子钟[M].武汉:武汉大学出版社.2006.73-89,13-20.
    [48] C Audoin, J Vanier. Atomic frequency standards and clocks [J].Journal ofPhysics E: Scientific Instruments,1976,9:697-720.
    [49] Su W, Filler R. L. Anew approach to clock modeling and Kalman filter time andfrequency prediction [A]. IEEE Frequency Control Symposium [C].1993.331-334.
    [50] Weiss M. A., Allan D. W., Howe D. A. Confidence on the second differenceestimation of frequency drift-A study based on simulation [A]. IEEE FrequencyControl Symposium [C].1992.300-305.
    [51] M.A. Weiss, D.W. Allan, D.A. Howe. Confidence on the Second DifferenceEstimation of Frequency Drift [A]. Proc.1992IEEE Frequency ControlSymposium [C].1992.300-305.
    [52]杨林,刘勇军,管良明等.铷原子钟长期老化特性的观测与研究[A].全国时间频率学术会议论文集[C].2009.151-157.
    [53] Wei Zhou. The Greatest Common Factor Frequency and Its Application in theAccurate Measurement of Periodic Signals [A]. Proceedings of the1992IEEEFrequency Control Symposium[C].1992.270–273.
    [54] Wei Zhou, etc. A Precision Frequency Standard Comparison Method andInstrument [A]. Proceedings of the2000IEEE International Frequency ControlSymposium[C].2000.557–560.
    [55]李智奇等,关于超高频率测量技术的研究[J].宇航计测技术,2004,24(3):12-15.
    [56]胡冠章,王殿军.应用近世代数[M].北京:清华大学出版社,2010.8.
    [57] IEEE Standard Definitions of Physical Quantities for Fundamental Frequencyand Time Metrology Random instabilities[S]. IEEE Std P1139/D2,2008.
    [58] Francois Vemotte, Eric Lantz, Jacques Groslambert, J. Gagnepain. OscillatorNoise Analysis: Multivariance measurement [J]. IEEE Transactions onInstrumentation and Measurement,1993,42(2):342-360.
    [59] Ond ej BARAN1, Miroslav KASAL1. Allan variances calculation andsimulation [A]. Proceedings of the IEEE Frequency Control Symposium[C].2009.187-190.
    [60] J.A. Barnes, A.R. Chi, L.S. Cutler etc. Characterization of frequency stability [J].Transactions on Instrumentation and Measurement,1971,20(2):105-120.
    [61] J.A. Barnes. Variances based on data with dead time between the measurements[J]. Natl. Inst. Stand. Technol,1990,1318:1-40.
    [62] M.A.Weiss and C.A.Greenhall. A Simple Algorithm for ApproximatingConfidence on the Modified Allan Variance and the Time Variance [A].Proceedings of the28thAnnual PTTI Meeting[C].1996.215-224.
    [63] D.W. Allan, J.A. Barnes. A modified Allan variance with increased oscillatorcharacterization ability[C].Proceedings of the35th Frequency ControlSymposium [A].1981.470-474.
    [64] C.A. Greenhall. The third-difference approach to modified Allan variance [J].IEEE Transactions on Instrumentation and Measurement,1997,46(3):696-703.
    [65] K. Wan, E. Visr, and J. Roberts. Extended variances and autoregressive movingaverage algorithm for the measurement and synthesis of oscillator phase noise[J]. Proc.43rd Freq. Cont. Symp,1989:331-335.
    [66] R.A. Baugh. Frequency modulation analysis with the Hadamard variance. Proc[J]. Freq. Cont. Symp,1971:222-225.
    [67] S.T.Hutsell. Operational Use of the Hadamard Variance in GPS [A]. Proc.28thPTTI Meeting [C].1996.201-213.
    [68] D. Howe, etc. A Total Estimator of the Hadamard Function Used For GOperations [A]. Proc.32nd PTTI Meeting [C].2000.255-268.
    [69] S.T. Hutsell. Relating the Hadamard variance to MCS Kalman filter clockestimation [A]. Proc.27th PTTI Meeting [C].1995.291-302.
    [70] C.A.Greenhall, D.A. Howe and D.BPercival. Total Variance, an Estimator ofLong-Term Frequency Stability [J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1999.46(5):1183-1191.
    [71] Bregni, S. Clock Stability Characterization and Measurement inTelecommunications [J]. IEEE Transactions on Instrumentation andMeasurement,1997,46(6):1284-1294.
    [72] D. Howe, T. Peppler. Definitions of total estimators of common time-domainvariances. Proc [A]. Frequency Control Symposium and PDA Exhibition,2001,Proceedings of the2001IEEE International[C].2001.127-132.
    [73] W.J. Riley. Confidence Intervals and Bias Corrections for the Stable32VarianceFunctions [J]. Hamilton Technical Services,2000.
    [74] C.A. Greenhall. Oscillator-Stability Analyzer Based on a Time-Tag Counter [J].NASATech Briefs, NPO-20749,2001:48.
    [75] D.A. Howe, D.W. Allan and J.A. Barnes. Properties of Signal Sources andMeasurement Methods [A]. Proceedings of the35th Annual Symposium onFrequency Control[C].1981.1-47.
    [76] L.Sojdr, J. Cermak, and G. Brida. Comparison of high-precisionfrequency-stability measurement systems [A]. Frequency Control Symposiumand PDAExhibition Jointly with the17th European Frequency and Time Forum,Proceedings of the IEEE International[C].2003.317-325.
    [77]刘娅.多通道数字化频率测量方法研究[D].西安:中国科学院国家授时中心博士学位论.2010.
    [78]周渭,李智奇.任意频率信号之间的相位直接比对与控制[C].全国频率控制年会[A].2009.
    [79]陈发喜.高分辨率的时频处理技术[D].西安:西安电子科技大学.2010.
    [80] Li Zhi-qi, Zhou Wei, etc. A Super-High Resolution Frequency StandardMeasuring Approach Based on Phase Coincidence Characteristics BetweenSignals [J]. Chin. Phys.B,2010,19(9):0906601-4.
    [81] The user's manual ofAD9852[S].
    [82]郑胜峰.时频信号的数字化测量方法[D].西安:西安电子科技大学.2009.
    [83]叶树亮,金双明,高平.宽频带相位差测量仪的研制[J].计量技术学报,2010,10:8-10.
    [84]偶晓娟,周渭,李琳等.基于时-空关系的时间间隔与频率测量方法研究[J].仪器仪表学报(增刊II),2006,27(6):1036-1038.
    [85]罗鸣,曹冲,肖雄兵.全球定位系统信号测量与性能[M].北京:电子工业出版社.2008.180.
    [86]周渭,于建国,刘海霞.测试计量技术基础[M].西安:西安电子科技大学出版,2004.132-172.
    [87]马京路,周渭,李智奇.针对长度变化测量的相位差方法[J].宇航计测技术,2008,28(4):1-3.
    [88]梁昌洪,谢拥军,官伯然.简明微波[M].北京:高等教育出版社,2006:14-15.
    [89]王子宇,张肇仪,徐承和.射频电路设计-理论与应用[M].北京:电子工业出版社.2005:46-47.
    [90]李琳.基于时-空关系的时间间隔测量[D].西安:西安电子科技大学.2008.
    [91]唐宗熙,张彪.微波介质介电常数和磁导率测试方法[J].计量学报,2007,28(4):383-387.
    [92]蒋立平.数字逻辑电路与系统设计[M].北京:电子工业出版社.2011.
    [93] The user's manual of MC10H116[S].
    [94]周旭华,许厚泽,吴斌等.用GRACE卫星跟踪数据反演地球重力场[J].地球物理学报,149(3):718-723.
    [95]罗佳.利用卫星跟踪卫星确定地球重力场的理论和方法[D].武汉:武汉大学.2003.
    [96]佘世刚,王锴,周毅等.高精度星间测距与超稳振荡器研究[J].空间电子技术,2011,1:56-63.
    [97] Dunn, Charles, Willy Bertiger, Garth Franklin, Ian Harris, Don Nguyen, TomMeehan, and Jeff Rogstad. The Instrument on NASA’s GRACE mission:Augmentation of GPS to achieve unprecedented Gravity field measurements [A].Proceedings of ION GPS, Portland OR[C].2002.724-730.
    [98]宁津生,罗佳等. GRACE模式确定重力场的关键技术探讨[J].武汉大学学报-信息科学学报,2003,28(5):13-16.
    [99]易冰歆,林钢锤,黄永波. Galileo/GPS组合接收机载波相位定位方法[J].中国惯性技术学报,2007,15(2):193-196.
    [100]滕云龙,师奕兵,郭承军.一种新的GPS载波相位周跳探测与修复方法[J].计量学报,2011,32(3):279-284.
    [101]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社.2008.
    [102] Teunissen, Peter J.G. GPS Carrier Phase Ambiguity Fixing Concepts [J]. GPSfor Geodesy, Lecture Notes in Earth Sciences, Springer-Verlag,1996,60:263-335.
    [103] J.G.Garcia, P.I. Mercader and C.H. Muravchik. Use of GPS Carrier PhaseDouble Differences. Latin American Applied Research.2005,35:115-120
    [104]伊斌.GPS快速定位方法的研究[D].哈尔滨:哈尔滨理工大学.2009.
    [105] Tamara A. Papalias. Standard CMOS Nonvolatile Reprogrammable Switch forLow Phase Noise in LC Oscillators [D]. Stanford University.2002.
    [106] Chi Zhang. A Study of Phase Noise and Jitter in Submicron CMOSPhase-Locked Loop Circuits [D]. The Graduate Faculty of the Louisiana StateUniversity and Agricultural and Mechanical College.2006.
    [107] Hamed Gheidi and Ali Banai. Phase-Noise Measurement of MicrowaveOscillators Using Phase-Shifterless Delay-Line Discriminator [J].IEEETransactions on Microwave theory and techniques,2010,58(2):468-477.
    [108] Walls, F.L. Correlation between upper and lower sidebands [J].IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2000,47(2):407–410.
    [109]陈晓龙,王家礼,孙璐等.脉冲调制信号相位噪声测量中的功率谱估计方法[J].西安电子科技大学学报,2012,39(4):175-181.
    [110] E. J. Baghdady, R. N. Lincoln and B. D. Nelin. Short-term frequency stability:Characterization, theory and measurements [A]. Proceedings of the IEEE[C].1965.704-722.
    [111] Percival, D.B. Characterization of Frequency Stability: Frequency-DomainEstimation of Stability Measures [J]. Proceedings of the IEEE,1991,79(7):961-973.
    [112]陈国龙.相位噪声及其测试技术[J].通信测试专题,2005,4:40-42.
    [113]潘光斌.基于频谱仪的相位噪声测试及不确定度分析[J].仪器仪表学报,2002,123(5):106-108.
    [114]苏航.连续波信号相位噪声测试技术的研究[M].西安:西安电子科技大学,2011.
    [115]杨大豪,郭宝华.自身相位噪声测量的分析[J].中国计量学报.1995,19(1):77-83.
    [116] J. Grove, J. Hein, J. Retta, P. Schweiger, W. Solbrig, and S.R. Stein.Direct-Digital Phase-Noise Measurement [J]. IEEE International Ultrasonic,Ferroelectrics, and Frequency Control Joint50thAnniversary Conference,2004:287-291.
    [117]吴大正,杨林耀,张永瑞,信号与线性系统分析平[M].北京:高等教育出版社,2000.
    [118] James W.Cooley and John W. Tukey. An Algorithm for the Machine Calculationof Complex Fourier Series [J]. Mathematics of Computation,1965,19(20):297-301.
    [119]翟造成,张为群等.量子频标原理[M].上海:上海科学技术文献出版社,2009.17
    [120]王义遒,王庆吉,付济时.量子频标原理[M].北京:科学出版社,1986.241-250,273-289.
    [121]黄秉英.新一代原子钟[M].武汉:武汉大学出版社,2006.13-20,73-89.
    [122]李孝辉,杨旭海等.时间频率信号的精密测量[M].北京:科学出版社,2010.
    [123] Leo A. Mallette, Tom McClelland, Nat Bhaskar. Unique Environmental TestRequirements far Atomic Frequency Standards for Space Applications [A].IEEE Frequency Control Symposium Proceedings[C].1997.503-508.
    [124] William J. Riley. The Physics of the Environmental Sensitivity of Rubidium GasCell Atomic Frequency Standards [J]. IEEE Transactions on Ultrasonics.Ferroelectrics and Frequency Control,1992,31(2):232-241.
    [125]李滚,刘长虹等.外界电磁场对铯原子钟的影响[J].国外电子测量技术,2004,3:48-52.
    [126]曹昱,吕善伟.正弦振动条件下原子钟的频率稳定度分析[J].北京航空航天大学学报,2006,32(4):407-411.
    [127] Stern, A. Hertz. Y. Zarfaty and A. Lepek TFL, Time&Frequency Ltd. P.O.B. Anovel compact rubidium frequency standard with a low sensitivity to magneticand vibrational disturbances [A]. Annual Frequency ControlSymposium[C].1988.519-524.
    [128] Raymond, L. Filler. The Acceleration Sensitivity of Quartz Crystal Oscillators: AReview [J]. IEEE transactions on ultrasonic, ferroelectrics, and frequencycontrol,1988,35(3):297-305.
    [129] John R. Vig, Claude Audoin, etc. Acceleration, vibration and shock effects-IEEE Standards Project P1193[A]. Frequency Control Symposium[C].1992.763-781.
    [130]屈勇晟,刘昶,贺玉玲.西安分院星载铷原子钟研制工作的最新进展[A].全国时间频率学术会议[C].2009.124-128
    [131]刘勇军.浅谈温度对星载铷原子钟长期稳定性的影响[A].全国时间频率学术会议[C].2009.145-150.
    [132]席德雄.计量测试技术手册第8卷电子学[M].北京:中国计量出版社,1997.
    [133]杨世宇,王世伟.阶跃倍频器温度敏感性对铷原子钟频率稳定度的影响[A].全国时间频率学术会议[C].2011.132-135.
    [134]李智奇,白小平等. MSP430系列超低功耗单片机原理与系统设计[M].西安:西安电子科技大学出版社,2008.
    [135] M.Bloch, O.Mancini, etc. PERFORMANCE OF RUBIDIUM AND QUARTZCLOCKS IN SPACE[A]. IEEE International Frequency Control Symposium andPDAExhibition[C].2002.505-509.
    [136] James Camparo. Does the Light Shift Drive Frequency Aging in the RubidiumAtomic Clock [J]. IEEE transactions on ultrasonic, ferroelectrics, and frequencycontrol,2005,52(7):1075-1078.
    [137]郭海荣.导航卫星原子钟时频特性分析理论与方法研究[D].中国人民解放军信息工程大学.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700