用户名: 密码: 验证码:
未来宽带无线通信系统资源分配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无线通信系统中,由于无线资源的紧缺,如何有效地调度和分配资源以满足通信业务需求成为下一代无线通信系统的核心问题之一。无线资源的分配和调度是一种进一步扩大信道容量、改善通信质量关键技术,对于优化和提高通信系统性能具有优越和不可替代的意义。本论文以未来无线通信的两项关键技术——协作传输和认知无线电为课题思路,以提高网络容量,增加网络资源利用率,考虑系统公平性及满足不同用户的QoS业务需求等为目标,以最优化理论、博弈论以及市场理论等为理论雏形,重点、深入地展开未来宽带无线通信系统资源分配技术的研究。
     本论文蒙多项国家863、国家自然科学基金及国际科技合作等项目的支持,围绕协作通信系统和认知无线电系统切景分析,深入地研究未来宽带无线通信中的资源分配技术,积极探索新的解决方案,取得了如下研究成果:
     (1)针对OFDM两跳中继协作系统,提出了一种适合多业务QoS的资源分配算法。综合考虑多种业务模型的QoS要求及差异业务调度公平性,设计一种自适应累积效用函数(AU-函数,Aggregated Utility Function)的优化目标;通过联合中继选择及子载波、功率分配,从而在保证业务QoS、用户公平性的基础上提高系统性能。仿真结果表明,所提算法在系统吞吐量、时延、丢包率、缓存状态等方面性能得到了改善,且AU函数累积的形式有利于针对不同的QoS指标进行优化。
     (2)针对多用户协作中继网络,设计用户协作传输模型,并提出一种分布式的分层博弈(HG, Hierachical Game)算法分析用户协作上行传输的资源分配算法。首先,通过用户配对将多用户网络分解成多个两用户协作传输网络,采用HG算法来解决协作资源分配问题。分层博弈模型包括两层博弈:在用户层面,采用两用户判决的纳什博弈来分布式地解决协作策略选择问题,即“是否协作”;在基站层面,使用合作博弈联合解决资源分配问题,即“怎样协作”。在所提HG算法中,相互协作是互惠的且总的效用可转移,证明了存在一个唯一的纳什均衡解。另外,进一步讨论了奖惩因子,证明如果用户更关心下一个时隙的传输并且进行适当的功率控制的话,用户会选择协作策略。因此,如果通过价格激励措施(如功率,带宽等),用户的自私行为可以得到更好的引导。仿真结果表明所提算法能够通过鼓励用户相互协作提高传输效率,并且在系统容量和改善不良单用户传输方面有很好的性能表现。
     (3)为了提高协作系统的吞吐量,提出一种基于网络编码(NC, Network Coding)的OFDMA全双工协作中继传输方案,分析该方案下的两个经典的性能评价指标——系统容量和中断概率,并给出了闭式的表达式。相比于直接传输(DT, Direct Transmission)和普通的协作传输(CT, Cooperation Transmission)模式,基于网络编码的协作传输(CT NC,Netwrok Coding based Cooperative Transmission)可以取得比CT模式高11.8%的链路容量增益,比DT模式提高32.5%(SNR=20左右),同时中断概率比CT降低50%,比DT降低达100%(SNR=5左右)。可见,由于网络编码增益,CT_NC在系统容量和稳健性比DT和CT都有所提高。
     同时,进一步提出一种双层纳什议价均衡(DL_NBS, Double Layer_Nash Bargaining Solution)算法以解决基于网络编码的全双工协作中继传输方案的资源分配问题,考虑协作用户吞吐量均衡,分别通过子载波议价均衡和功率议价均衡来协调用户对之间的子载波和功率分配。仿真结果表明,所提DL NBS博弈资源分配方案与传统资源分配算法相比,不仅更适用于分布式用户协作场景,且能取得公平性和有效性的折中。
     (4)针对频谱共享和竞争问题,引进OODA认知环构建一种新型认知无线电网络频谱共享行为分析模型。并在此基础上,借鉴经济学理论,提出了一种基于效用函数设计的双重拍卖理论的频谱竞争方案,基于主、次网络用户在频谱管理问题的行为特征不同,考虑到无线信道的时变性,传输预测及频谱交易历史等问题,在判决过程适当中引入一定的预测和学习因素,分别设计主、次用户的决策效用函数,巧妙地解决了主次网络之间的频谱共享问题。基于主用户和次用户之间的频谱供求关系,考虑了两种场景:供过于求,即主用户较多(MPLS, More Primary Users Less Secondary User)和供不应求,即次用户较多(LPMS, Less Primary Users More Secondary User)情况下的主次用户交互具体过程。同时,在解决了主次网络之间的频谱共享问题之后,提出了四种拍卖出价指标解决次网络内部的频谱竞争问题。仿真结果表明,在两种供求关系下,所提算法能有效地解决主次网络之间的频谱共享问题,四种出价拍卖策略各有侧重的解决了次网络内部的频谱竞争问题,并较之传统集中式认知接入方式性能取得可比拟的频谱效率,且降低了网络部署成本,便于利用分布式自主交易的方式来达到频谱共享接入的目的。
     此外,考虑认知无线电网络的动态智能特性,建模多个自治次用户策略性地接入可用机会频谱的认知无线电网络,提出一种基于增强型学习策略的双重拍卖机制来处理主次用户频谱接入竞争问题。考虑到用户的自私性、机会频谱接入的有限性和时变性,环境变化及多用户不同的传输需求,基于增强型学习策略分别设计次用户的出价机制和主用户保护价格机制。该机制可以影响主次用户之间频谱接入,所有用户的当前收益及回报。基于观察已分配历史资源情况、行为及状态现状及预测未来收益,增强型学习方法可以逐步改进次用户的出价策略和主用户的保护价格策略,达到最佳的信道接入策略,从而有效地来竞争频谱机会。仿真结果表明,所提基于增强型学习策略的双重拍卖算法能大大改善用户的竞价策略,用户丢包、出价效率、传输速率等性能都得到极大的提高。
     综上所述,本论文针对无线资源分配,针对未来无线通信中协作通信和认知无线电两项关键技术,在物理层基于OFDM传输方式,并结合最优化理论、博弈论等数学理论,以提高网络容量、网络资源利用率及满足用户公平性、不同QoS业务需求等为目标,考虑跨层设计思想,深入地研究了信道、功率、传输时隙、频率等多重资源分配。为协作通信及认知无线电技术在未来无线移动通信中的应用和优化从理论上进行了探索性的研究。
With the increasing requirements of service and rate, how to make use of the limited wireless resource effectively to enlarge channel capacity and improve system quality has become a critical question to solve for the future wireless broadband communications. In this paper, we focus on two promising wireless communication technologies, i.e. cooperative transmission and cognitive radio, aiming at improving system capacity, increasing the network resource utilization, guarantee QoS requirement of different users and etc. to study on the resource allocation of them. Meanwhile, The optimization theory, game theory, and other marketing methods are employed as academic rudiment to make wide research deeply and intensively.
     Supported by several project of National Natural Science Foundation of China, National High-Tech Research and Development Plan of China, National International Science and Technology Cooperation Project under Granted of Sweden and Canada, we aim at the resource allocation research in the future broadband wireless communications in the dissertation, by deep analysis of cooperative transmission and cognitive radio technologies, exploiting new solving methods to gurateen the QoS of users and provide high frequency efficiency through optimizing the resource from the aspect of system-level and user level. The main contributions of the dissertation are as follows:
     (1) We investigate a multi-user multi-service scheduling scheme in the OFDMA based two-hop cooperative relay network, which aims at the cooperative resource allocation in this paper. We propose an adaptive Aggregated Utility Function (AU-Function) as the optimization objective, which simultaneously takes various multi-service QoS requirement and fairness among different services into consideration. We format the utility function into a several QoS parameters captured form, including rate, delay, jitter and Packet Loss Ratio (PLR) of services, which combines the QoS requirement well. Then, the complex resource allocation is decoupled into a joint relay-subcarrier selection and power allocation problem. Simulation results confirm that the proposed algorithm achieves an efficient balance among rate, delay, PLR, etc., and show that the users'QoS can be evaluated adaptively by the full dimensional utility consideration.
     (2) Cooperation allows wireless network users to benefit from various gains such as an increase in the achieved rate or an improvement in the bit error rate. In the paper, we propose a distributed Hierarchical Game (HG) theoretic framework over multi-user cooperative communication networks to stimulate cooperation and improve the network performance. First, we study a two-user decision making game in the OFDMA based subscriber cooperative relaying network, in which subscribers transmit their own data in the first phase, while helping to retransmit their partner's or choosing to freeride in the second phase. Instead of consulting to a global optimal solution, we decouple the cooperation resource allocation into two level subproblems:a user level Nash game for distributed cooperation decision and a Base Station (BS) level coalition game for centralized resource allocation. In the proposed HG algorithm, where mutual cooperation is preferred and total payoff is transferable, we prove it converges to a unique optimal equilibrium and resolve the subcarrier assignment and power allocation among the couples. Besides, we discuss the existence of the publishing and rewarding coefficients in order to encourage cooperation. Then, we extend the HG to multi-user cases by coupling among subscribers according to the location information. The simulation results show that the proposed scheme with the distributed HG game achieves a well tradeoff between fairness and efficiency by improving the transmission efficiency of adverse users and outperforms those employing centralized schemes.
     (3) In this paper, we analyze two classical performance metrics for user cooperation with network coding scheme. Two closed formulation of capacity and outage probability for OFDMA based two users cooperation are presented. Compared with the DT and conventional CT, simulation results show the advantages of CT_NC. It provides 11.8% higher link capacity than CT cases averagely; meanwhile, it obtains 50% lower outage probability. Therefore, CT_NC is much more powerful in both the system throughput and robustness due to the network coding diversity than the direct transmission scheme and conventional user cooperative protocol.
     Besides, a network coding based two-subscriber-cooperation scheme in a full-duplex transmission mode of OFDMA system is proposed to further improve the network throughput. Besides, a double level Nash Bargaining Solution (DL_NBS) game is adopted to resolve the inter-user resource bargaining problem. In the inter-user pair, the pairwise capacity based NBS is utilized to allocate subcarrier and distribute power between the cooperative subscribers. The simulation results show that the proposed CoNC achieves system capacity 49.1% higher than the normal cooperative transmission, and 46.4% higher than the direct transmission. Meanwhile, compared with the traditional resource allocation algorithms, the two-level NBS solution achieves a well tradeoff between fairness and efficiency, as well as perfectly suits the distributed subscriber cooperation scenario.
     (4) Cognitive networks are designed based on the concept of dynamic and intellectual network management, characterizing the feature of self-sensing, self-configuration, self-learning, self-consciousness, and such. In this paper, focusing on the spectrum sharing and competition, we propose a novel behavior modeling methodology basing on a paradigmatic cognitive radio network. We first discuss the preponderance and challenges of cognitive network, and explore the special behavior features basing on a modeling prototype for spectrum competition in a multi-radio cognitive network. Meanwhile, a rounded OODA cognitive behavior is explicitly given, within which the decision process is mathematically illustrated. We present a behavior model from the economical theoretical perspective, and introduce a double auction decision making algorithm which resolves the spectrum sharing between the primary network and secondary networks subtly. Two different utility functions for primary users and secondary users are designed basing on a supply-and-demand relationship between them. Also, we adopt expectation and learning process in the decide module, which takes consideration of the variance of channels, transmission forecasting, afore trading histories and etc. Numerical results with four bidding strategies are presented to reinforce the effectiveness of the two proposed utility evaluation based decision modules under two scenarios. Besides, we prove the proposed behavior model based spectrum access method maintains comparable frequency efficiency with traditional centralized CR access approaches.
     In order to fully utilize scarce spectrum resources dynamically and intelligently, we model a cognitive radio network with various selfish autonomous secondary users who strategically interact to acquire dynamically available spectrum opportunities. Our main focus is on developing solutions for cognitive users to make full utilization of the spectrum with each other, given the selfish nature of users in the wireless network and complete for the limited and time-varying spectrum opportunities. To analyze the interactions among users given the environment disturbance, various transmission requirements, we propose a double auction framework to tackle the competition among users for spectrum opportunities over time. The double bidding actions affect the resource allocation and, hence, the rewards and future strategies of all users. Based on the observed resource allocations and corresponding rewards, reinforcement Learning methodology is deployed by wireless users to improve their bidding policy, building on which we formulate bidding prices for the secondary users and asking prices for the primary users. Simulation results show that the proposed Q-learning based double auction algorithm can significantly improve users'own bidding strategies and, hence, their performance in terms of packet loss, bidding efficiency and transmission rate is improved progressively.
     Summarily, the dissertation do hard work on wireless resource allocation problem in cooperative transmission and cognitive radio network to improve system capacity, increase the network resource utilization, guarantee QoS requirement of different users and etc. The OFDM transmission is included in the physical layer, many mathematical methord are employed, and the cross-layer theory are taken as a methodology, this dissertation studies on allocation of the multiple network resource, i.e. channel, power, time, frequency etc. Therefore, it provides a deep and wide research theoretically for the implement and optimization of cooperation transmission and cognitive rado technologies in the future wireless communication.
引文
[1]H. Moiin. Next Generation Mobile Networks Beyond HSPA & EVDO,5 December 2006, http://www.ngmn.org/technology/whatisngmn.html#c 121
    [2]Recommendation ITU-R M.1645 2003-06
    [3]Narula, A, Trott, M.D., Wornell, G.W. Performance limits of coded diversity methods for transmitter antenna arrays, IEEE Transactions on Information Theory. Vol.45, no.7, Nov.1999 pp.2418-2433.
    [4]Ahmed K. Sadek, Weifeng Su, and K. J. Ray Liu. Multinode Cooperative Communications in Wireless Network. IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol.55, no.1, Jan.2007, pp.341-355.
    [5]Chang R. W. Sythesis of band-limited orthogonal signals for mutichannel data transmission. Bell system Technology,1966, pp.1775-1796.
    [6]Weinstein S. B., Ebert P. M. Data transmission by frequency-division multiplexing using th discrete Fourier transimission. IEEE Transaction on Communications, vol.19, no.5,1971, pp.628-634.
    [7]Wang Zhendao, Giannakis, G.B. Wireless multicarrier communications. IEEE Signal Processing Magazine. Vol.17, no.3, May 2000, pp.29-48
    [8]杨大成等.现代移动通信中的先进技术.机械工业出版社,北京,2005,pp.39-41.
    [9]吴伟陵等.移动通信原理.电子工业出版社,北京,2006,pp.205-206.
    [10]Sendonaris A., Erkip E., and Aazhang B. User cooperation diversity Part Ⅰ—ystem descriion, IEEE Trans. Commun., Vol.51, no.11, Nov.2003, pp.1927-1938.
    [11]Sendonaris A., Erkip E., and Aazhang B. User cooperation diversity Part Ⅱ—Implementation aspects and performance analysis, IEEE Trans.Commun., Vol.51, no.11, Nov.2003, pp.1939-1948.
    [12]Ikki, S.S., Ahmed, M.H. Performance analysis of incremental-relaying cooperative-diversity networks over Rayleigh fading channels. IET Communications. Vol.5, No.3,2011, pp.337-349.
    [13]J. Nicholas Laneman, Cooperative Diversity in Wireless Networks:Algorithms and Architectures. Sep.2002, pp.19-20.
    [14]Tse D. Multiuser diversity in the wireless networks, Wireless communication seminar, Standford University,2001.
    [15]Tse D. and Viswanath D. Fundamentals of Wireless Communication, Cambridge University Press, 2005.
    [16]Hee-jin Joung, Cheol Mun. Capacity of Multiuser Diversity with Cooperative Relaying in Wireless Networks, IEEE Communications Letters, Vol.12, No.10,2008, pp.752-754.
    [17]GUAN Y F, HU A Q. Traffic diversity based recourse allocation fo OFDMA system. Electronics Letters.2007, vol.43, no.15, pp.11-12.
    [18]关艳峰,胡爱群.基于业务分集的OFDMA资源调度方法.第十二届全国青年通信学术会议论文集,2007.
    [19]郑吉妮等.基于用户公平性的OFDMA业务分集资源调度算法.中山大学学报,2010.
    [20]Yang Ruizhe, Yuan Chaowei, Yang, Kui. Cross Layer Resource Allocation of Delay Sensitive Service in OFDMA Wireless Systems, IEEE ICCSC, May 2008, pp.862-866.
    [21]Yinglei Teng, Mei Song Yu DONG, Niu Fang, Guang-quan Chen, Jun-de SONG" Cooperative OFDMA Resource Allocation for Multi-QoS Guarantee:A Cross-Layer Utility Scheduling Approach", Joint Conferences on Pervasive Computing (JCPA 2009), pp.267-272, Nov.2009.
    [22]秦琳,王亚峰,杨大成.中继技术在LTE-Advanced中的最新进展,现代电信科技,2010,pp.33-37.
    [23]Aria Nosratinia, Todd E. Hunter Ahmadreza Hedayat. Cooperative Communication in Wireless Networks. IEEE Communications Magazine, Oct.2004, pp.74-80
    [24]R. Pabst, B.H. Walke, et al. Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Buyer/Seller Game, IEEE Commun. Mag., vol.42, no.5, Sep.2004,pp.80-89
    [25]滕颖蕾,宋梅,刘媛媛等.一种基于网络编码的用户协作博弈资源分配.北京邮电大学学报,vol-3,no.34,Jul.2011.
    [26]Yinglei Teng, Mei Song, Yi-jia Xu, Jun-de SONG. Hierarchical Game Theory Analysis in Subscriber Cooperative Relaying Network with OFDMA Orthogonal Channels. ICCTA2009, Oct.2009, pp.664-670.
    [27]Mei Song, Yinglei Teng, Fang Niu, Yong Zhang, Li Wang. Couple Subscriber Cooperative Relaying Networks for Uplink Transmission Using Hierarchical Game Approach, China Communications, Vol.7, no2, Apr.2010. pp 17-31.
    [28]沈嘉,B3G无线通信技术的发展趋势.现代电信科技.2007,pp.5-10.
    [29]王大健,基于中继技术的802.16j标准展望.中兴通讯技术.2007,pp.39-41.
    [30]雷俊等,多天线蜂窝系统中基站协作机会调度.北京邮电大学学报.2009,pp.30-35.
    [31]张靖,黎海涛OFDMA上行多基站协作分组分集方法.中国电子科学研究院学报.2007,pp.258-263.
    [32]Minghai Feng, Xiaoming She, Lan Chen, Kishiyama, Y. Enhanced Dynamic Cell Selection with Muting Scheme for DL CoMP in LTE-A,Vehicular Technology Conference (VTC 2010-Spring), 2010, pp.1-5
    [33]Marsch, P., Grieger, M., Fettweis, G.. Field Trial Results on Different Uplink Coordinated Multi-Point (CoMP) Concepts in Cellular Systems, GLOBECOM 2010,2010, pp.1-6
    [34]Hunter T E, Coded Cooperation:A New Framework for User Cooperation in Wireless Network, PhD. dissertation, Univ.Texaas at Dallas, Richaardson,2004.
    [35]J.N.Laneman, D.N.C.Tse, and G.W.Wornell, Cooperative Diversity in Wireless Networks Efficient Protocols and Outage Behavior, IEEE Trans.Inf.Theory, Vol.50,No.12,, Dec.2004, pp.3062-3080
    [36]A.Stefanov, E.Erkip, Cooperative Coding for Wireless Networks, IEEE Trans.Commun., Vol.52, No.9, Sep.2004, pp.1470-11476
    [37]A.Stefanov and E.Erkip, Cooperative Space-Time Coding for Wireless Networks, IEEE Trans.Commun., Vol.53, No.11, Nov.2005, pp.1804-1809.
    [38]Chin-Liang Wang, Syue-Ju Syue, An Efficient Relay Selection Protocol for Cooperative Wireless Sensor Networks, IEEE WCNC,2009, pp.1-5.
    [39]Tannious, R., Nosratinia, A., Spectrally-Efficient Relay Selection with Limited Feedback, IEEE Journal on Selected Areas in Communications, vol.26, no.82008,pp 1419-1428.
    [40]Lin Xiao, Cuthbert, L., Load Based Relay Selection Algorithm for Fairness in Relay Based OFDMA Cellular Systems, IEEE WCNC,2009, pp.1-6.
    [41]Beibei Wang, Zhu Han, Liu, K.J.R.. Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Stackelberg Game, IEEE Infocom,2007, pp.544-552.
    [42]Lei You, Mei Song,;JunDe Song, Adaptive resource allocation in OFDMA-based cooperative cellular network, IET Conference on Wireless, Mobile and Sensor Networks,2007. (CCWMSN07). Dec.2007 pp.333-336
    [43]Bletsas, A. Lippnian, A. Reed, D.P. A simple distributed method for relay selection in cooperative diversity wireless networks, based on reciprocity and channel measurements, Vehicular Technology Conference,2005. VTC 2005-Spring, Jun.2005, pp.1484-1488.
    [44]Salavati, Amir Hesam, Khalaj, Babak Hosein, Aref, Mohammad Reza, A novel approach for providing QoS with network coding.IST 2008. International Symposium on Telecommunications, 2008, pp.446-451
    [45]http://www.fcc.gov/
    [46]http://www.itu.int/ITU-R
    [47]http://www.3gpp.org/article/release-6
    [48]https://www.ict-e3.eu/
    [49]Zhao Youping, Mao Shiwen, J.O.Neel, J.H. Reed, Performance Evaluation of Cognitive Radios: Metrics, Utility Functions and Methodology, Proceedings of the IEEE, Vol.97, no.4, pp.642-659, 2009.
    [50]Haykin, S., Cognitive Radio:Brain-Empowered Wireless Communications, IEEE Journal on Selected Areas in Communications, Vol.23, No.2, pp.201-220.
    [51]Andrea G, Analysis and Performance Comparison of Different Cognitive Radio Algorithms, CogART2009, pp.127-131.
    [52]Yinglei Teng, Yong Zhang, Fang Niu, Chao Dai, Mei Song. Reinforcement Learning Based Auction Algorithm for Dynamic Spectrum Access in Cognitive Radio Networks, VTC2010-fall, pp.1-5, Sep.2010.
    [53]Yinglei Teng, Yong Zhang, Chao Dai, Fan Yang, Mei Song. "Dynamic Spectrum Sharing through Double Auction Mechanism in Cognitive Radio Networks", WCNC2011, Mar.2011.
    [54]丁乐,殷勤业,邓科,等.一种无线OFDM系统中的高效功率和比特分配算法.电子与信息学报,vol.29,no.7,2007,pp.1537-1541.
    [55]Wong C Y, Cheng R S, Letaief K B, et al. Multiuser OFDM with adaptive subcarrier bit and power allocation. IEEE Journal on Selected Areas in Communications, vol.17, no.10,1999, pp. 1747-1758.
    [56]Wong C Y, Cheng R S, Letaief K B, et al. Multiuser subcarrier allocation for OFDM transmission using adaptive modulation. IEEE VTC,1999, pp.479-483.
    [57]Zhou Kainan, Chew Yong Huat. Heuristic algorithms to adaptive subcarrier-and-bit allocation in multiclass multiuser OFDM systems. IEEE VTC,2006, pp.1416-1420.
    [58]Zhang Guodong. Subcarrier and bit allocation for real-time services in multiuser OFDM systems. IEEE ICC,2004, pp.2985-2989.
    [59]Yu Guanding, Zhang Zhaoyang, Chen Yan. A novel resource allocation algorithm for real-time Services in multiuser OFDM systems, IEEE VTC,2006, pp.1156-1160.
    [60]杨睿哲,袁超伟,丁义等.多用户OFDM系统子载波比特分配算法,北京邮电大学学报,vol.31,no.4,2008,pp.112-116.
    [61]Jang Jiho, Lee Kang Bok. Transmit power adaptation for multiuser OFDM systems. IEEE Journal on Selected Areas in Communications, vol.21, no.2, Feb.2003, pp.171-178.
    [62]Yu Guanding, Zhang Zhaoyang, Chen Yan, et al. Subcarrier and bit allocation for OFDMA systems with proportional fairness. IEEE WCNC,2006, pp.1717-1722.
    [63]王晏君,陈前斌,邝育军.基于RA准则的多用户OFDM自适应资源分配算法改进.应用科学学报,vol.25,no.1,2007,pp.21-25.
    [64]Sun Zhishui, Yin Changchuan and Yue Guangxin. Reduced-complexity proportional fair scheduling for OFDMA Systems. IEEE ICCSP, Jun.2006, pp.1221-1225.
    [65]Yu G. D., Zhang Z Y., Chen Y., et al. Subcarrier and bit allocation for OFDMA systems with proportional fairness. IEEE WCNC, Apr.2006, pp.1717-1722.
    [66]Fischer R., Hber J. New loading algorithm for discrete multitone transmission. IEEE Global Telecommunications Conference,1996,724-728.
    [67]Nguyen T. D. and Han Y. A proportional fairness algorithm with QoS provision in downlink OFDMA systems. IEEE Communications Letters, Nov.2006, pp.760-762.
    [68]Wong C Y, Cheng R S, Letaief K B, et al. Multiuser OFDM with adaptive subcarrier bit and power allocation. IEEE Journal on Selected Areas in Communications, vol.17, no.10,1999, pp. 1747-1758.
    [69]Wong C Y, Cheng R S, Letaief K B, et al. Multiuser subcarrier allocation for OFDM transmission using adaptive modulation. IEEE VTC,1999, pp.479-483.
    [70]Zhou Kainan, Chew Yong Huat. Heuristic algorithms to adaptive subcarrier-and-bit allocation in multiclass multiuser OFDM systems. IEEE VTC,2006, pp.1416-1420.
    [71]Jang Jiho, Lee Kang Bok. Transmit power adaptation for multiuser OFDM systems. IEEE Journal on Selected Areas in Communications, vol.21, no.2, Feb.2003, pp.171-178.
    [72]Yu Guanding, Zhang Zhaoyang, Chen Yan, et al. Subcarrier and bit allocation for OFDMA systems with proportional fairness. IEEE WCNC,2006, pp.1717-1722.
    [73]Fischer R., Hber J. New loading algorithm for discrete multitone transmission. IEEE Global Telecommunications Conference,1996, pp.724-728.
    [74]车小林,何晨,蒋铃鸽.多用户多输入多输出系统下行链路的线性预编码和功率分配.上海交通大学学报,vol.41,no.8,2007,pp.1370-1373.
    [75]Mung Chiang; Low, S.H.; Calderbank, A.R.; Doyle, J.C., Layering as Optimization Decomposition: A Mathematical Theory of Network Architectures, Proceedings of the IEEE, vol.95, no.1,2006, pp. 255-312.
    [76]Palomar, D.P., Convex Primal Decomposition for Multicarrier Linear MIMO Transceivers, IEEE Transactions on Signal Processing, vol.53, no.12,2005, pp.4661-4674.
    [77]Johansson, B. Soldati, P. Johansson, M.; Mathematical Decomposition Techniques for Distributed Cross-Layer Optimization of Data Networks, IEEE Journal on Selected Areas in Communications, Vol.24, no.8,2006, pp.1535-1547.
    [78]Bertsekas D.P., Constrained Optimization and Lagrange Multiplier Methods, by Academic Press. Inc.,1982.
    [79]V. Kawadia, P. R. Kumar. A Cautionary Perspective on Cross Layer Design, IEEE Wireless Commun., vol.12, no.1, Feb.2005, pp.3-11.
    [80]Jiang Yu, Yueming Cai, Yuehuai Ma, Dongmei Zhang, Youyun Xu. A Cross-layer Design of Packet Scheduling and Resource Allocation for Multiuser MIMO-OFDM Systems Information, the 6th International Conference on Communications & Signal Processing,2007, pp.1-5.
    [81]Yuehuai Ma, Dongmei Zhang, Yueming Cai, Youyun Xu. A MAC-PHY Cross-layer Scheduling Algorithm for Multiuser OFDM System, International Conference on Communication Technology, 2006, pp.1-5.
    [82]Wong, I.C., Evans, B. Optimal Resource Allocation in the OFDMA Downlink with Imperfect Channel Knowledge, IEEE Transactions on Communications, vol.57, nol,2009, pp.232-241.
    [83]Yun Li, Anthony Ephremides. A joint scheduling, power control, and routing algorithm for Ad-Hoc wireless networks. in Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Jan.2005, pp.322b-322b.
    [84]R. L. Cruz, A. V. Santhanam. Optimal routing, link scheduling and power control in multi-hop wireless networks. In Proc. of INFOCOM 2003. IEEE. San Francisco, USA, Apr.2003. pp. 702-711
    [85]Ghasemi, A., Faez, K. Power-Aware MAC for MultiHop Wireless Networks:A Cross Layer Approach, IEEE Transactions on Wireless Communications, vol.7, no.10,2008, pp.3917-3929.
    [86]Lei You, Mei Song, Junde Song, Qingyu Miao, Yong Zhang, "Adaptive Resource Allocation in OFDMA Relay-Aided Cooperative Cellular Networks", VTC-Spring,2008. pp.1925-1929.
    [87]Katoozian. M, Navaie. K, Yanikomeroglu. H. Optimal utility-based resource allocation for OFDM networks with multiple types of traffic, IEEE VTC, May 2008, pp.2223-2227.
    [88]孙锴,王莹等.”一种多用户MIMO/OFDMA系统的资源分配和调度方案”,31(5),2008,pp.131-134.
    [89]Chao Yang, Wenbo Wang, Xing Zhang, Multi-service transmission in multiuser cooperative network, IEEE WCNC 2009, pp.1-5, Apr.2009.
    [90]Wei Yu, Lui, R., Dual methods for nonconvex spectrum optimization of multicarrier systems, IEEE Trans. Wireless Commun., Vol.54, no.7, July 2006, pp.1310-1322.
    [91]Yinglei Teng, Mei Song, Yong Zhang, Yuanyuan Liu, Guangquan Chen, Capacity and Outage Probability Analysis of Network Coding based User Cooperation Transmission, Chinacom2010, pp.1-4.
    [1]Seunghoon Nam, Mai Vu,Tarokh. V, Relay selection methods for wireless cooperative communications Information Sciences and Systems,42nd Annual Conference CISS, March 2008, pp.859-864.
    [2]Beres. E, Adve. R, Selection Cooperation in multi-source cooperative networks, IEEE Trans. Vol 7, Jan.2008, pp.118-127.
    [3]Zhao B, Valenti M C. Cooperative diversity using distributed Turbo Codes [J] Proc.Virginia Tech Symp. On Wireless Personal Comm.,(Blacksburg, VA),2003. Shenker. S, Fundamental design issues for the future Internet, IEEE Journal Vol 13, Sept.1995, pp.1176-1188.
    [4]Seungwan Ryu, Byunghan Ryu, Hyunhwa Seo, Mooyong Shin, Urgency and Efficiency based Packet Scheduling Algorithm for OFDMA wireless system, Vol.4, ICC 2005. pp.2779-2785.
    [5]Katoozian, M., Navaie, K.; Yanikomeroglu, H., Optimal utility-based resource allocation for OFDM networks with multiple types of traffic, VTC Spring 2008, pp.2223-2227.
    [6]Yinglei Teng, Yong Zhang, Mei Song, Yu Dong, Li Wang, Genetic Algorithm based Adaptive Resource Allocation in OFDMA System for Heterogeneous Traffic,2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC 2009), Sep.2009, pp. 2060-2064.
    [7]Zheng Sun, Wenjun Xu, Zhiqiang He, Kai Niu, Criteria on Utility Designing of Convex Optimization in FDMA Network, IEEE Inter.Conf.Commun.(ICC), May 2008, pp.42-46.
    [8]Lau, V.K.N., Optimal Downlink Space-Time Scheduling Design With Convex Utility Functions—Multiple-Antenna Systems With Orthogonal Spatial Multiplexing, IEEE Transactions on Vehicular Technology, Vol.54, no.4,2005, pp.1322-1333.
    [9]Chao Yang, Wenbo Wang, Xing Zhang, Multi-service transmission in multiuser cooperative network, IEEE WCNC 2009, April 2009, pp.1-5.
    [10]Zixiong Chen, Kai Xu, Feng Jiang, Ying Wang, Ping Zhang, Utility based scheduling algorithm for multiple services per user in MIMO OFDM system, IEEE Inter.Conf.Commun.(ICC), May 2008, pp.4734-4738.
    [11]Katoozian. M, Navaie. K, Yanikomeroglu. H, Optimal utility-based resource allocation for OFDM networks with multiple types of traffic, IEEE VTC, May 2008, pp.2223-2227.
    [12]Song.G, Li. Y, Cimini. L.J, Jr, Zheng. H, Joint channel-aware and queue-aware data scheduling in multiple shared wireless channels, IEEE WCNC Vol 3, Mar.2004, pp.1939-1944.
    [13]Harju. J.I.K., Mu Mu, Colu. G.D, Application-level fairness, International Conf. (ICOIN), Jan. 2008, pp.1-5.
    [14]Ramjee. R, Kurose. J, Towsley. D, Schulzrinne. H, Adaptive playout mechanisms for packetized audio applications in wide-area networks, in Proc. IEEE INFCOM, Jun.1994, pp.680-688.
    [1]Guopeng Zhang, Hailin Zhang, Liqiang Zhao, Wei Wang, Li Cong, Fair Resource Sharing for Cooperative Relay Networks Using Nash Bargaining Solutions, IEEE Communications Letters, Vol.13, no,6, Jun.2009, pp.381-383.
    [2]Saad W., Han, Z., Debbah, M., Hjorungnes, A Distributed Coalition Formation Framework for Fair User Cooperation in Wireless Networks, IEEE Transactions on wireless communications, Vol.8, no.9, Sep.2009, pp.4580-4593.
    [3]Lei You, Mei Song, Junde Song, Qingyu Miao, Yong Zhang, Adaptive Resource Allocation in OFDM A Relay-Aided Cooperative Cellular Networks, VTC-2008, May 2008, pp.1925-1929.
    [4]Yingda Chen, Kishore. S, A Game-Theoretic Analysis of Decode-and-Forward Cooperation in Rayleigh Fading Channels, CISS-2007, Mar.2007, pp.306-311.
    [5]Zhaoyang Zhang, Jing Shi, Hsiao-Hwa Chen, Guizani, M, Peiliang Qiu, A Cooperation Strategy Based on Nash Bargaining Solution in Cooperative Relay Networks, IEEE Transasitions on Vehicular Technology, Vol.57, July 2008, pp.2570-2577.
    [6]Ji, J, Adve. R.S, Evaluation of Game Theoretic Approaches to Cooperative Wireless Network Design,23rd Biennial Symposium on Communications,2006, pp.75-79.
    [7]Lei Huang, Mengtian Rong, Lan Wang, Yisheng Xue, Schulz, E., "Resource Allocation for OFDMA Based Relay Enhanced Cellular Networks,"VTC-2009, Apr.2007, pp.3160-3164.
    [8]Zhu Han, Poor, H.V, Coalition Games with Cooperative Transmission:A Cure for the Curse of Boundary Nodes in Selfish Packet-Forwarding Wireless Networks, IEEE Transations on Communicaitons, Vol.57, Jan.2009, pp.203-213.
    [9]Marina, N., Game Theoretic Analysis of a Cooperative Communication System, Wireless Conference, EW 2008,14th European, Jun.2008, pp.1-6.
    [10]Beibei Wang, Zhu Han, Liu. K.J.R., Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Buyer/Seller Game, IEEE INFOCOM, May 2007. pp.544-552.
    [11]Beibei Wang, Zhu Han, Liu. K.J.R., Distributed Relay Selection and Power Control for Multiuser Cooperative Communication Networks Using Stackelberg Game, IEEE Transactions on Mobile Computing Vol.8, no.7, Jul.2009, pp.975-990.
    [12]Rad, A, Wong, V, Leung, V, Two-Fold Pricing to Guarantee Individual Profits and Maximum Social Welfare in Wireless Access Networks, IEEE GLOBECOM, Dec.2008, pp.1-6
    [13]Wei S., "Cooperative Diversity in Wireless Networks:Efficient Protocols and Outage Behavior," IEEE Transations on Information Theory, Vol.53, Nov.2007, pp.4150-4172.
    [14]Pischella, M., Belfiore, J.-C., "Power Control in Distributed Cooperative OFDMA Cellular Networks," IEEE Transactions on Wireless Communications, Vol.7, no.5, Part 2, pp.1900-1906, May 2008.
    [15]Mehrjoo, M,Moazeni, S.,Xuemin Shen, A New Modeling Approach for Utility-Based Resource Allocation in OFDM Networks, ICC, May 2008, pp.337-342.
    [16]Keunyoung Kim, Youngnam Han, Seong-Lyun Kim, Joint Subcarrier and Power Allocation in Uplink OFDMA Systems, IEEE Communications Letters, Vol.9, Jun.2005, pp.526-528.
    [17]Saraydar, C.U., Mandayam, N.B., Goodman, D.J., Efficient power control via pricing in wireless data networks, IEEE Transations on Communications, Vol.50, Apr.2009, pp.47-51.
    [1]Larsson, P., Johansson, N., Sunell, K.-E. Coded bi-directional relaying, VTC 2006-Spring,2006, pp.851-855.
    [2]Minghai Feng, Xiaoming She, Lan Chen. Enhanced bidirectional relaying schemes for multi-hop communications, IEEE GLOBECOM 2008,2008, pp.1-6.
    [3]R.AhiSwede, NingCai, W.YeungRaymond, etal. Network Information flow. IEEETrans.inform Theory,2000,46(4), pp.1204—1216.
    [4]D.Budimir, B.N. Shelkovnikov, CAD for broadband wireless access design, TELSIKS 2001.5th International Conference on Teleconmmunications in Modern Satellite, Cable and Broadcasting Service, vol.2,2001. pp.525-528.
    [5]Bin Lin, Pin-Han Ho, Optimal Relay Station Placement in IEEE 802.16j Networks, IWCMC07, August 2007, pp.12-16.
    [6]Lei Xiao, T. Fuja, J. Kliewer. D. Costello, A network coding approach to cooperative diversity, IEEE Transactions on Information Theory, vol.53,2007, pp.3714-3722.
    [7]Zhiguo Ding, K.K. Leung, D.L. Goeckel, D. Towsley, On the Study of Network Coding with Diversity, IEEE Transactions on Wireless Communications, vol.8,2009, pp.1247-1259.
    [8]G.D. Menghwar, C.F. Mecklenbrauker, Outage Performance of Two Users Cooperative Network Coding,9th International Symposium on Communications and Information Technology,2009, pp. 1180-1184.
    [9]Cong Peng, Qian Zhang, Ming Zhao, Yan Yao, Weijia Jia, On the Performance Analysis of Network-Coded Cooperation in Wireless Networks, IEEE Transactions on Wireless Communications, vol.7,2008, pp.3090-3097.
    [10]P. Larsson, N. Johansson, K.-E. Sunell, Coded Bi-directional Relaying," IEEE 63rd Vehicular Technology Conference, vol.2,2006, pp.851-855.
    [11]D.H. Woldegebreal, S. Valentin, H. Karl, Incremental network coding in cooperative transmission wireless networks, IEEE 68th Vehicular Technology Conference,2008, pp.1-5.
    [12]A. Nosratinia, T.E. Hunter, A. Hedayat, Cooperative communication in wireless networks, IEEE Communications Magazine, vol.42,2004, pp.74-80.
    [13]Truman Chiu-Yam Ng, Wei Yu, Joint optimization of relay strategies and resource allocations in cooperative cellular networks, IEEE Journal on Selected Areas in Communication, vol.25,2007, pp.328-339.
    [14]Bo Bai, Wei Chen, Zhigang Cao, K. Ben Letaief, High-Order Analysis of Outage Probability in OFDMA Wireless Networks, IEEE Global Telecommunications Conference,2009, pp.1-6.
    [15]Bo Bai, Wei Chen, Zhigang Cao, K. Ben Letaief, Max-Matching Diversity in OFDMA Systems, IEEE Transactions on Communications, vol 58,2010, pp.1161-1171.
    [16]Zhaoyang Zhang, Jing Shi, Hsiao-Hwa Chen, et al. A Cooperation Strategy Based on Nash Bargaining Solution in Cooperative Relay Networks, IEEE Transactions on Vehicular Technology, 2008,57 (4), pp.2570-2577.
    [17]Zhu Han, Poor, H.V.. Coalition Game with Cooperative Transmission:A Cure for the curse of Boundary Nodes in Selfish Packet-Forwarding Wireless Newtworks, IEEE Transactions on Communications,2009,54(1), pp.203-213.
    [18]Yingda Chen, Kishore. S. A Game-Theoretic Analysis of Decode-and-Forward Cooperation, IEEE Transactions on wireless communications,2008,7(5), pp.1941-1951.
    [19]E. Rasmusen, Games and Information:An Introduction to Game Theory, Oxford, U.K.: Wiley-Blackwell,1995.
    [20]Song Xinghua, He Zhiqiang, Niu Kai, et al. A Hierarchical Resource Allocation for OFDMA Distributed Wireless Communication Systems, IEEE GLOBECOM 2007,2007, pp.5195-5199.
    [21]Mei Song, Yinglei Teng, Fang Niu, et al. Couple Subscriber Cooperative Relaying Networks for Uplink Transmission Using Hierarchical Game Approach, China Communications,2010,7(2): pp.17-31.
    [1]J. Mitola Ⅲ, G.Q. Maguire Jr., Cognitive radio:Making software radios more personal, IEEE Personal Communications, Vol.6, no.4, Aug.1999, pp.13-18.
    [2]K. Ben Letaief, Wei Zhang, Cooperative Communications for Cognitive Radio Networks, Proceedings of the IEEE, Vol.97, no.5, May 2009, pp.878-893.
    [3]T. Yucek, H. Arslan, A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications, IEEE Communications Surveys & Tutorials, Vol.11, no.1,2009, pp.116-130.
    [4]S. Haykin, D.J. Thomson, J.H. Reed, Spectrum Sensing for Cognitive Radio, Proceedings of the IEEE, Vol.97, no.5,2009, pp.849-877.
    [5]F. R. Yu, M. Huang, and H. Tang, Biologically inspired consensus-based spectrum sensing in mobile ad hoc networks with cognitive radios, IEEE Networks, vol.24,, May 2010, pp.26-30.
    [6]Y. Xing, R. Chandramouli, S. Mangold, and S. S. N, Dynamic spectrum access in open spectrum wireless networks, IEEE J. Sel.Areas Commun., vol.24, Mar.2006,. pp.626-637.
    [7]S.Haykin, Cognitive radio:brain-empowered wireless communications, IEEE Journal on Seleted Areas in Communications, Vol.23, no.2, Feb.2005, pp.201-220.
    [8]I.F. Akyildiz, Won-Yeol Lee, M.C. Vuran, S. Mohanty, A Survey on Spectrum Management in Cognitive Radio Networks, IEEE Communications Magazine, Vol 46, no.4,2008, pp.40-48.
    [9]廖楚林.认知无线电系统的频谱分配算法研究.成都:电子科技大学,2007.
    [10]Wang W, Liu X. List-coloring Based Channel Allocation for Open-spectrum Wireless Networks. In:Proc. of the IEEE Int'l Conf. on Vehicular Technology (VTC2005-Fall). Dallas: IEEE Communications Society Press,2005, pp.690-694.
    [11]Musku, M R, Cotae P. Cognitive Radio:Time Domain Spectrum Allocation Using Game Theory. In:System of Systems Engineering, IEEE International Conference on, April,2007, pp.1-6.
    [12]Niyato D, Hossain E. Competitive Spectrum Sharing in Cognitive Radio Networks:a Dynamic Game Approach. Wireless Communications, IEEE Transactions on wireless communications,2008,7(7), pp.2651-2660.
    [13]Cao L, Zheng H. Distributed Spectrum Allocation via Local Bargaining, the 2nd Annual IEEE Communications Society Conf. on Sensor and Ad Hoc Communications and Networks. Santa Clara:IEEE Communication Society Press,2005, pp.475-486.
    [14]Gandhi S, Buragohain C, Cao L, Zheng H. A General Framework for Wireless Spectrum Auctions, IEEE DySPAN,2007.
    [15]Acharya J, Yates R D. A Price Based Dynamic Spectrum Allocation Scheme, ACSSC,2007.
    [16]A.Attar, M.R.Nakhai, A.H.Aghvami, Cognitive Radio game for secondary spectrum access problem, IEEE Transactions on Wireless Communications, Vol.8, no.4,2009, pp.2121 2131.
    [17]D.Niyato, E. Hossain, Competitive Spectrum Sharing in Cognitive Radio Networks:A Dynamic Game Approach, IEEE Transactions on Wireless Communications, Vol.7, no.7, Jul.2008, pp.1-5.
    [18]Zhu Ji, K.J.R. Liu, Multi-stage pricing game for collusion-resistant dynamic spectrum allocation, IEEE Journal on Seleted Areas in Communications, Vol.26, no.1, Jan.2008, pp.182-191.
    [19]D. Niyato, E. Hossain, Spectrum trading in cognitive radio networks:a market-equilibrium-based approach, IEEE Wireless Communications, Vol.15, no.6, Dec.2008, pp.71-80.
    [20]Ji Zhu, K.J.R. Liu, Cognitive Radios for Dynamic Spectrum Access-Dynamic Spectrum Sharing:A Game Theoretical Overview, IEEE Communications Magazine, Vol.45, no.5, 2007, pp.88-94.
    [21]Beibei Wang, Yongle Wu, Zhu Ji, K.J. Liu, T. Clancy, Game theoretical mechanism design methods, IEEE Signal Processing Magazine, Vol.25, no.6, Nov.2008, pp.74-84.
    [22]D.Niyato, E. Hossain, Market-Equilibrium, Competitive, and Cooperative Pricing for Spectrum Sharing in Cognitive Radio Networks:Analysis and Comparison, IEEE Transactions on Wireless Communication, Vol.7, no.11,2008, pp.4273-4283.
    [23]M. Plehn. Control warfare:Inside the OODA loop. Unpublished Master's Thesis, Air University, School of Advanced Airpower Studies, Maxwell AFB, AL,2000.
    [24]Moon, T. Kruzins, E. Calbert, G. Analyzing the OODA cycle PHALANZ Online 35(2), 34-35,2002, pp.9-13.
    [25]Chunhua Sun, Wei Zhang, K. Ben, Cluster-based cooperative spectrum sensing in cognitive radio systems, Proc. IEEE ICC'07,2007, pp.2511-2515.
    [26]Chen Guo, Tao Peng, Yuan Qi, Wenbo Wang, Adaptive Channel Searching Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks, Proc. IEEE WCNC'09,2009, pp.1-6.
    [27]Yiping Xing, R. Chandramouli, Human behavior inspired cognitive radio network design, IEEE Communications Magazine, Vol.46, no.12, Dec.2008, pp:122-127.
    [28]Youping Zhao, Shiwen Mao, James O. Neel, Performance Evaluation of Cognitive Radios: Metrics, Utility Functions and Methodologies, IEEE PROCEEDINGS, Vol.97, no.4,2009 pp. 642-659.
    [29]D.Niyato, E. Hossain, Competitive Spectrum Sharing in Cognitive Radio Networks:A Dynamic Game Approach, IEEE Transactions on Wireless Communications, Vol.7, no.7, pp.1-5, Jul.2008.
    [30]Fu Fangwen, M.van der Schaar, Learning to Compete for Resources in Wireless Stochastic Games, IEEE Transactions on Vehicular Technology, Vol.58, no.4, pp.1904-1919,2009.
    [31]Y. Xing, R. Chandramouli, and C. M. Cordeiro, Price dynamics in competitive agile spectrum access markets, IEEE Journal on Selected Areas in Communications, vol.25, no.3, Apr. 2007, pp.613-621.
    [32]S. Shankar, C. T. Chou, K. Challapali, and S. Mangold, Spectrum agile radio:Capacity and QoS implications of dynamic spectrum assignment, Proc. IEEE Globecom'05, Nov.2005, pp. 2510-2516.
    [33]R.A. Corlett, Features of artificial intelligence languages and their environments, Software Engineering Journal, Vol.1, no.4,1986, pp.159-164.
    [34]R. S. Sutton and A. G. Barto, Reinforcement Learning, Cambridge,MA:MIT Press,1998.
    [35]G. Iosifidis, I. Koutsopoulos, Double auction mechanisms for resource allocation in autonomous networks, IEEE Journal on Selected Areas in Communications, Vol.28, no.1, 2010, pp.95-102.
    [36]D.Niyato, E. Hossain, Zhu Han, Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks:a game-theoretic modeling approach, IEEE Transactions on Mobile Computing, Vol.8, no.8, Aug.2009, pp.1009-1022.
    [37]S. Shankar, C. T. Chou, K. Challapali, and S. Mangold, Spectrum agile radio:Capacity and QoS implications of dynamic spectrum assignment, in Proc. Global Telecommun. Conf., Nov. 2005, pp.2510-2516.
    [38]Fu Fangwen, M.van der Schaar, Learning to Compete for Resources in Wireless Stochastic Games, IEEE Transactions on Vehicular Technology, Vol.58, no.4,2009, pp.1904-1919.
    [39]D.Niyato, E. Hossain, Zhu Han, Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks:a game-theoretic modeling approach, IEEE Journal on Mobile Computing, Vol.8, no.8, Aug.2009, pp.1009-1022.
    [40]T.Venkatesh, Y.V. Kiran, C.S.R. Murthy, Joint Path and Wavelength Selection using Q-learning in Optical Burst Switching Networks, in Proc. IEEE Globecom,2009, pp.1-5.
    [41]N. Roy, A. Roy, S.K. Das, A Cooperative Learning Framework for Mobility-Aware Resource Management in Multi-Inhabitant Smart Homes, IEEE MObiQuitous'05,2005, pp. 393-403.
    [42]T. Jakkola and S. P. Singh, On the convergence of stochastic iterative dynamic programming algorithms, Neural Computation, vol.6, no.6, Jun.1994, pp.1185-1201.
    [43]T.Venkatesh, Y.V. Kiran, C.S.R. Murthy, Joint Path and Wavelength Selection using Q-learning in Optical Burst Switching Networks, IEEE Globecom,2009, pp.1-5..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700