用户名: 密码: 验证码:
无线传感器网络拥塞控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络(WSN, wireless sensor network)节点的计算能力、能量、通信能力都十分有限,而且WSN固有的多到一、多跳通信的模式使得WSN经常发生网络拥塞。对网络拥塞进行有效控制是节省WSN网络能量、改善网络QoS性能的关键手段。尽管在WSN拥塞控制方面已有一些研究成果,但是绝大多数成果都是基于简单的拥塞反馈和速率调节机制的,拥塞控制操作往往能耗过高,拥塞控制机制本身也都很少考虑网络传输的公平性和实时性等重要的网络性能指标。本文致力于WSN拥塞控制中的两个基本课题:WSN拥塞产生原因的研究、拥塞控制技术的研究,主要的研究内容具体如下:
     (1)本文使用了“拥塞阈值”的概念,拥塞阈值是网络节点分组产生率的临界值,超过此值,网络节点的缓存就要溢出而发生拥塞,拥塞阈值的概念把WSN传输能力的分析和拥塞状态的分析联系在一起,拥塞阈值同时表示了WSN最大的传输能力和抵御网络拥塞的最大能力。通过引入“介数”的定义对网络节点负载进行描述,在理论上对拥塞阈值进行了研究,并给出其渐进意义下的上界。在对最大传输能力进行分析的过程中可以看出,无线信道的干扰、网络负载的分布、网络规模等严重影响了网络最大传输能力的上界,同时对如何设计有效的拥塞控制机制提供了启示。
     (2)设计了一个基于速率调节的拥塞控制机制RbCC。其中,提出了一种能有效检测WSN拥塞的能量有效性机制—基于缓存速率变化率的拥塞检测;同时提出了一个新的双向扩展拥塞反馈机制,令拥塞节点局部上、下游节点能同时参与拥塞控制以更有效地的控制拥塞并能快速地向相关的源节点反馈拥塞。RbCC还包含了一个局部速率调节算法和基于网络应用准确性的闭环速率调节算法,使源速率能较快地收敛到一个稳定的水平,保持了网络吞吐量的稳定性,同时降低了网络分组丢弃的数量并改善了网络传输的公平性。
     (3)基于速率调节的拥塞控制比较适合流数据的WSN应用,但很难适应对实时性和可靠性要求较高的WSN应用。本文设计了一个基于发送窗口分配的拥塞控制机制WbCC。WbCC不用检测节点的拥塞与否,它要求上一跳节点只有在下一跳节点具有可用缓存空间时才向其发送数据。为了保证网络实时性的要求和传输公平性的要求,本文根据分组产生的时间设计了一个简单有效的面向实时性的队列调度机制和一个发送窗口分配策略,它不需要为每个源节点维护流的信息并且只需执行简单的计算就能保证网络中早产生的分组被早发送到sink。
     (4)采用拥塞控制机制不是缓解和避免WSN拥塞的唯一手段。针对分组产生率低、网络应用准确性要求不高、偶尔出现短暂突发数据流的WSN应用,提出了一个源流量控制算法STC,根据监测到同一事件的不同源节点的剩余能量水平对这些节点的源流量负载进行分配,使其满足网络应用准确性要求,并且通过均衡使用相关源节点的能量来优化网络生命周期。分组的传输消耗了WSN节点的大部分能量,本文在路由过程中考虑了拥塞控制问题,提出了一个具有拥塞感知特点的节能路由算法CsEeR。借鉴前面对WSN传输能力上界分析的结论,CsEeR以均衡网络负载为初衷,并充分考虑无线通信环境的干扰和剩余能量水平对单个节点传输能力的影响,CsEeR基本能避免网络拥塞的发生,并有效地延长了网络生命周期。
The nodes in WSN(Wireless Sensor Networks) have low computation capacity, con-strained energy and weak communication ability. WSN often experiences congestion dueto these constraints on resources and the communication with the many-to-one and multi-hop pattern. In WSN applications, effective congestion control is the key technique toprolong the network system lifetime and improve the network QoS performances. Al-though some work related to congestion control in WSN have been proposed, they oftenconsume more energy and can not guarantee some QoS metrics, such as transport fairnessand real time. This dissertation devotes to two fundamental problems in congestion issueof WSN, congestion causes and congestion control techniques. To be more specific,
     (1) This dissertation introduces the concept of congestion threshold to describe thecritical phase of packet generation rate, beyond which some nodes will experience bufferover?ow, leading to network congestion. Congestion threshold connects the transport ca-pacity of WSN and the congestion of WSN, and represents both the maximal transportcapacity of WSN and the maximal ability of resisting congestion. By using betweennessto describe the traffic load per node, the author studies the congestion threshold of WSNand presents the asymptotically upper bound, and discusses the impacts of wireless en-vironment, traffic load, and network scale on the transport capacity of WSN, providingsome insights for the designing of congestion control in WSN.
     (2) The author systematically designs a rate-based congestion control scheme forWSN, called RbCC. In RbCC, an energy-efficient congestion detection method is pre-sented, which can effectively detect congestion by referring the buffer change behavior.RbCC also involves a bi-directional congestion feedback to faster transfer the local con-gestion information toward the correlated source nodes. RbCC makes the source ratefaster converge into a stable level by a local rate adjustment scheme and a closed-loopsink-source rate adjustment, decreasing the number of dropped packets and improvingthe transport fairness.
     (3) The rate-based congestion control is more suitable to the WSN application withstreaming data, and not suitable to the applications requiring highly the real-time andreliable performance. The author designs a window-based congestion control scheme WbCC, which lets the upstream nodes send packets in only the case that the related down-stream nodes have some available buffer spaces, instead of detecting node congestion. Forguaranteeing the real time and transport fairness, WbCC involves a simple but effectivereal-time-oriented queue schedule method and a sending window assigning method. InWbCC, the ?ow information corresponding to each source node is not necessary to bemaintained, and only low computation load is needed to guarantee that the packet earlygenerated can reach the sink early.
     (4) The author investigates a general WSN applications in which the packet gener-ation is very low, the application fidelity is small and transient sudden source load occursoccasionally. He presents an algorithm STC to control the source traffic by referring toboth the diversity of remained energy of different source nodes and the fidelity require-ment of WSN application. STC improves the system lifetime. In addition, the authorconsiders the congestion control issue in the routing. He designs a congestion-sensitiveand energy-efficient algorithm CsEeR. With the above analyzing results of the transportcapacity of WSN, CsEeR aims at balancing the energy of network nodes and considersfully the impact of wireless interference and the energy level on the single node. CsEeRalmost avoids the congestion and prolongs effectively the system lifetime.
引文
1 D. Estrin, R. Govindan, J. Heidemann, et al. Next Century Challenges: ScalableCoordinate in Sensor Network. 1999:263–270
    2任丰原,黄海宁,林闯.无线传感器网络.软件学报. 2003, 14(7):1282–1291
    3李建中,李金宝,石胜飞.传感器网络及其数据管理的概念,问题与进展.软件学报. 2003, 14(10):1717–1727
    4 G. J. Pottie. Wireless Sensor Networks. In IEEE Information Theory Workshop.1998:139–140
    5 G. J. Pottie, W. J. Kaiser. Embedding the Internet: Wireless Integrated NetworkSensors. Communications of ACM. 2000, 43(5):51–58
    6 A. Cerpa, J. Elson, M. Hamilton, et al. Habitat Monitoring: Application Driver forWireless Communications Technology. ACM SIGCOMM. 2001
    7 B. Warneke, M. Last, B. Liebowitz, et al. Smart Dust: Communicating with aCubic-millimeter Computer. IEEE Computer Magzine. 2001, 34(1):44–51
    8 I. Akyildiz, W. Su, Y. Sankarasubramaniam, et al. Wireless Sensor Networks: ASurvey. Computer Networks. 2002, 38:393–442
    9何滔,熊斌斌,任丰原,等.无线传感器网络体系结构.中国计算机协会通讯.2006, 2(5):32–42
    10崔莉.无线传感器网络:未来之星.中国计算机协会通讯. 2006, 2(5):16–26
    11 S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman. Infrastructure Tradeoffs for SensorNetworks. Atlanta,USA, 2002:49–58
    12李凌,周兴社,李士宁,等.基于无线传感器网络的拥塞控制算法的研究与比较.计算机应用研究. 2006, 3:11–13
    13 S. Tilak, N. Abu-Ghazaleh, W. Heinzelman. A Taxonomy of Wireless Micro-sensorNetwork Models. Mobile Computing and Communications Review. 2002, 1(2):1–814邱天爽,唐洪,李婷,等.无线传感器网络协议与体系结构.北京:电子工业出版社, 2007
    15罗红.无线传感器网络数据汇聚路由问题的研究.北京邮电大学博士论文.2007:14–15
    16 V. Raghunathan, C. Schurgers, S. Park, et al. Energy-aware Wireless MicrosensorNetworks. IEEE Signal Processing Magazine. 2002, 19:40–50
    17 A. Goldsmith. Wireless Communication.北京:人民邮电出版社, 2007
    18 A. Bogliolo, L. Benini, E. Lattanzi, et al. Specification and Analysis of Power-managed Systems. Proceedings of the IEEE. 2004, 92(8):1308–1346
    19 J. M. Rabaey, M. J. Ammer, J. L. da Silva, et al. Picoradio Supports Ad Hoc Ultra-low Power Wireless Networking. IEEE Computer. 2000, 33(7):42–48
    20 R. X. Gao, P. Hunerberg. Design of a Cdma-based Wireless Data Transmitter forEmbedded Sensors. 18th IEEE Instrumentation and Measurement Technology Con-ference. Budapest, 2001, 3:1778–1783
    21 P. Baldi, L. D. Nardis, M. G. D. Benedetto. Modeling and Optimization of UwbCommunication Networks Through a Flexible Const Function. IEEE Journal onSelected Areas in Communications. 2002, 20(9):1733–1744
    22 M. A. M. Vieira, D. C. da S. Junior. Survey on Sensor Network Devices. IEEE.2003:537–544
    23 S. Haykin, M. Moher. Modern Wireless Communications. Upper Saddle River, NJ,USA: Pearson Prentice Hall, 2005:11–21
    24 J. L. Hill, R. Szewczyk, A. Woo, et al. System Architecture Directions for Net-worked Sensors. Proceedings of the 9th International Conference on ArchitecturalSupport for Programming Languages and Operating Systems. 2000:93–104
    25 J. Yick, B. Mukherjee, D. Ghosal. Wireless Sensor Nnetwork Survey. ComputerNetworks. 2008, 52:2292–2330
    26 K. Akkaya, M. Younis. A Survey of Routing Protocols in Wireless Sensor Net-works. Ad hoc Networks. 2005, 3(3):325–349
    27石高涛.无线传感器网络数据发布技术研究.哈尔滨工业大学博士论文.2006:2–4
    28周珏嘉.无线传感器网络服务质量控制相关问题研究.清华大学博士论文.2007:11–13
    29 A. S. Tanenbaum. Computer Networks. four edn. Upper Saddle River, NJ: PrenticeHall PTR, 2003:384–417
    30 C. Wang, B. Li, K. Sohraby, et al. Upstream Congestion Control in Wireless SensorNetworks Through Cross Layer Optimization. IEEE Journal on Selected Areas inCommunications. 2007, 25(4):786–795
    31孙利民,李波,周新运.无线传感器网络的拥塞控制技术.计算机研究与发展.2008, 45(1):63–72
    32 L. L. Peterson, B. S. Davie.计算机网络系统方法.北京:机械工业出版社,2006
    33杨盘隆,陈贵海.无线网状网容量分析与优化理论.软件学报. 2008,19(3):687–701
    34 S. Das, C. Perkins, E. Royer. Performance Comparison of Two On-demand RoutingProtocols for Ad Hoc Networks. IEEE INFOCOM. 2000
    35 P. Gupta, P. R. Kumar. The Capacity of Wireless Networks. IEEE Transactions onInformation Technology. 2000, 46(2):388–401
    36 J. Li, C. Blake, D. S. J. D. Gouto, et al. Capacity of Ad Hoc Wireless Networks.ACM Mobicom. ACM, 2001:61–69
    37 W. Krause, I. Clauche, R. Sollacher, et al. Impact of Network Structure on the Ca-pacity of Wireless Multihop Ad Hoc Communication. Physica A. 2004, 338:633–658
    38 C. Peraki, S. Servetto. On the Maximum Stable Throughput Problem in RandomNetworks with Directional Antennas. ACM Mobicom. 2003
    39 L. Xie, P. R. Kumar. A Network Information Theory for Wireless Communication:Scaling Laws and Optimal Operation. IEEE Trans. on Information Theory. 2004,50(5):748–767
    40 M. Dohler, A. Gkelias, A. H. Aghvami. Capacity of Distributed Phy-layer SensorNetworks. IEEE Transactions on Vehicular Technology. 2006, 55(2):622–640
    41 M. Gapster, M. Vetterli. On the Capacity of Wireless Networks: A Relay Case.IEEE INFOCOM. 2002:1577–1586
    42 P. Kyasanur, N. Vaidya. Capacity of Multi-channel Wireless Networks: Impact ofNumber of Channels and Interfaces. ACM Mobicom. 2005:43–57
    43 M. Kodialam, T. Nandagopal. Characterizing the Capacity Region in Multi-radioMulti-channel Wireless Mesh Networks. ACM Mobicom. 2005:73–87
    44刘永强,严伟,赵通,等.面向多路径的无线多跳网络端-端吞吐量分析.电子学报. 2007, 35(5):971–975
    45 E. J. Duarte-Melo, M. Liu. Data-gathering Wireless Sensor Network: Organizationand Capacity. Computer Networks. 2003, 43:519–536
    46 H. E. Gamal. On the Scaling Laws of Dense Wireless Sensor Networks. IEEETrans. on Information Theory. 2005, 51(3):1229–1234
    47 A. Chakrabarti, A. Sabharval, B. Aazhang. Multi-hop Communication Is Order-optimal for Homogeneous Sensor Networks. International Workshop on Informa-tion Processing in Sensor Networks(IPSN). Berkeley, CA, USA: ACM, 2004:178–185
    48 D. Marco, E. J. Duarte-Melo, M. Liu, et al. On the Many-to-one Transport Ca-pacity of a Dense Wireless Sensor Network and the Compressibility of its Data.Information Processing in Sensor Networks. 2003
    49柯欣,孙利民.多跳无线传感器网络吞吐量分析.通信学报. 2007, 28(9):78–84
    50 C. Wang, K. Sohraby, B. Li, et al. A Suvery of Transport Protocols for WirelessSensor Networks. IEEE Network. 2006:34–40
    51 Y. Sankarasubramaniam, O. Akan, I. Akyildiz. Esrt: Event-to-sink Reliable Trans-port for Wireless Sensor Networks. Annapolis: ACM MobiHoc, 2003:177–188
    52 C. Wan, S. Eisenman, A. Compbell. Coda: Congestion Detection and Avoidance inSensor Networks. Los Angeles, USA: ACM SenSys, 2003
    53 B. Hull, K. Jamieson, H. Balakrishnan. Mitigating Congestion in Wireless SensorNetworks. ACM SenSys. Baltimore, USA, 2004
    54 C. T. Ee, R. Bajcsy. Congestion Control and Fairness for Many-to-one Routing inSensornetworks. ACM SenSys. Baltimore, USA, 2004
    55 S. Chen, N. Yang. Congestion Avoidance Based on Lightweight Buffer Manage-ment in Sensor Networks. IEEE Trans. on Parallel and Distributed Systems. 2006,17(9):934–946
    56 J.Kang, Y. Zhang, B. Nath, et al. Adaptive Resource Control Scheme to AlleviateCongestion in Sensornetworks. IEEE Workshop on Broadband Advanced SensorNetworks. 2004
    57 K. Karenos, V. Kalogeraki, S. V. Krishnamurthy. Cluster-based Congestion Controlfor Supporting Multiple Classes of Traffic in Sensor Network. 2nd IEEE Workshopon Embedded Networked Sensor. 2005
    58 C. Wang, K. Sohraby, V. Lawrence, et al. Priority-based Congestion Control inWireless Sensor Networks. IEEE International Conference on Sensor Networks,Ubiquitous and Trustworthy Computing. 2006
    59 K. Karenos, V. Kalogeraki. Facilitating Conestion Avoidance in Sensor Networkswith a Mobile Sink. 28th International Real-Time System Symposium. IEEE,2007:321–330
    60柳立峰,邹仕洪,张雷,等.基于定向扩散的传感器网络拥塞与速率控制.北京邮电大学学报. 2006, 29(2):90–94
    61李姗姗,廖湘科,朱培栋,等.传感器网络中一种拥塞避免、检测与缓解策略.计算机研究与发展. 2007, 44(8):1348–1356
    62鞠海玲,崔莉,黄长城. Easicc:一种保证带宽公平性的传感器网络拥塞控制机制.计算机研究与发展. 2008, 45(1):16–25
    63李姗姗,廖湘科,彭绍亮,等.无线传感器网络中一种实用的公平性控制模型.计算机研究与发展. 2008, 45(1):47–54
    64 B. Bollobas. Random Graphs. 2 edn.北京:世界图书出版公司, 2003
    65 B. Krishnamachari. Networking Wireless Sensors. Cambridge, UK: CambridgeUniversity Press, 2005
    66 P. Gupta, P. R. Kumar. Critical Power for Asymptotic Connectivity. Proceedings ofthe 37th IEEE Conference on Decision & Control. Tampa, Florida, USA, 1998
    67 E. J. Duarte-Melo. Field-gathering Wireless Sensor Networks: Throughput ScalingLaws and Network Liftetime. Phd thesis, The University of Michigan
    68 R. Shorey, A. Ananda, M. C. Chan, et al., (Editors) Mobile, Wireless, and SensorNetworks: Technology, Applications and Future Directions. Hoboken, USA: JohnWiley & Sons, 2006
    69 R. Albert, A. Barabasi. Statistical Mechanism of Complex Networks. Rev. Mod.Phy. 2002, 74:47–97
    70 M. Bhardwaj, T. Garnett, A. P. Chandrakasan. Upper Bounds on the Liftetime ofSensor Networks. ICC. 2001:785–790
    71 L. E. Li, P. Sinha. Throughput and Energy Efficiency in Topology-controlled Multi-hop Wireless Sensor Networks. Proceedings of WSNA. 2003:132–140
    72 A. Woo, K. Whitehouse, F. Jiang, et al. The Shadowing Phenomenon: Implica-tions of Receiving During a Collision. Technical Report UCB//CSD-04-1313, UCBerkeley, 2004
    73 T. V. Dam, K. Langendoen. An Adaptive Energy-efficient Mac Protocol for Wire-less Sensor Networks. SenSys. Los Angeles, USA: ACM, 2003:171–180
    74 W. Ye, J. Heidemann, D. Estrin. Medium Access Control with Coordination Adap-tive Sleeping for Wireless Sensor Networks. IEEE/ACM Trans. on Networking.2004, 12:493–506
    75龚海刚,余昌远,刘明,等. Seel:无线传感器网络下自适应、低延迟的节能媒质接入控制协议.计算机研究与发展. 2007, 44(11):1866–1872
    76罗万明,林闯,阎保平. Tcp/ip拥塞控制研究.计算机学报. 2001, 24(1):1–18
    77 C. Wan. A Resilent Transport System for Wireless Sensor Networks. Ph.D. thesis,Columbia University. 2005
    78 Y. Yi, S. Shakkottai. A Hop-by-hop Congestion Conrol Over a Wireless Multi-hopNetworks. IEEE INFOCOM’04. 2004
    79 M. Zawodniok, S. Jagannathan. Predictive Congestion Control Mac Protocol forWireless Sensor Networks. IEEE Transactions on Wireless Communications. 2007,6(11):3955–3963
    80 J. Kang, Y. Zhang, B. Nath. Tara: Thermal-aware Routing Algorithm for ImplantedSensor Networks. IEEE Transactions on Parallel and Distributed Systems. 2007,18(7):919–931
    81陈良均,朱庆棠.随机过程及应用. 2.北京:高等教育出版社, 2003
    82王燕莉,安世全. Wsn的覆盖问题研究.传感器技术学报. 2005, 18(2):307–312
    83任彦,张思东,张宏科. Wsn中覆盖控制理论与算法.软件学报. 2006,17(3):422–433
    84曹峰,刘丽萍,王智.能量有效的无线移动传感器网络部署.信息与控制.2006, 13(2):147–153
    85 M. Cardei, J. Wu. Energy-efficient Coverage Problems in Wireless Ad-hoc SensorNetworks. Computer Communications. 2006, 29:413–420
    86 X. Wang, G. Xing, Y. Zhang, et al. Intergrated Coverage and Connectivity Config-uration in Wireless Sensor Networks. SenSys. ACM, 2003:28–39
    87 J. Wu, S. yang. Smart: A Scan-based Movement-assisted Sensor DeploymentMethod in Wireless Sensor Networks. INFOCOM. 2005
    88 J. Kang. Congestion Control in Wireless Sensor Networks. Ph.D. thesis, the StateUniversity of New Jersey. 2007
    89 D. Estrin, R. Govindan, J. Heidemann, et al. Next Century Challenges: ScalableCoordinate in Sensor Network. Proceedings of 5th ACM/IEEE International Con-ference on Mobile Computing and Networking. Seattle, USA: IEEE, 1999:263–270
    90 W. R. Heinzelman, A. Chandrakasan, H. Baladrishnan. Energy-efficient Communi-cation Protocol for Wireless Microsensor Networks. 33rd International Conferenceon System Sciences. Hawaii, USA: IEEE, 2000:3005–3014
    91 A. Manjeshwar, D. Agrawal. Teen: A Routing Protocol for Enhanced Effeciencyin Wireless Sensor Networks. Proceedings of the 15th Parallel and DistributedProcessing Symposium. San Francisco: IEEE, 2001:2009–2015
    92 S. Lindsey, C. S. Raghavandra. Pegasis: Power-efficient Gathering in Sensor Infor-mation Systems. IEEE Aerospace Conference. Montana, USA: IEEE, 2002:1125–1129
    93 D. Tian, D. G. Nicolar. A Node Scheduling Scheme for Energy Conservation inLarge Wireless Sensor Networks. Wireless Communications and Mobile Comput-ing. 2003, 3:271–290
    94 X. Li, P. Wan, O. Frieder. Coverage in Wireless Ad Hoc Sensor Networks. IEEETrans. on Computers. 2003, 52:753–762
    95 Q. Cao, T. Abdelzaher, T. He, et al. Towards Optimal Sleep Scheduling in SensorNetwork for Rare-event Detection. The 4th International Symposium on Informa-tion Processing in Sensor Networks. 2005
    96 N. Tezcan, W. Wang. Tts: A Two-tiered Scheduling Algorithm for Effective EnergyConservation in Wireless Sensor Networks. IEEE ICC. 2006:3359–3364
    97 S. Bhattachariee, N. Das. Distributed Data Gathering Scheduling in Multihop Wire-less Sensor Networks for Improved Lifetime. The International Conference onComputing: Thoery and Applications. 2007
    98谢政,李建平,汤泽滢.非线性最优化.长沙:国防科技大学出版社, 2003
    99 A. T. Hamdy. Operations Research: An Introduction. 6 edn. Prentice Hall, 1996
    100 S. Ramanatha, M. Steenstrup. A Survey of Routing Techniques for Mobile Com-munications Networks. Mobile Networks and Applications. 1996, 1(2):89–104
    101 F. Ye, H. Luo, J. Cheng, et al. A Two-tier Data Dissemination Model for Large-scaleWireless Sensor Networks. ACM Mobicom. Atlanta, USA: ACM, 2002:148–159
    102 J. H. Chang, L. Tassiulas. Maximum Lifetime Routing in Wireless Sensor Net-works. IEEE/ACM Trans. on Networking. 2004, 12(4):609–619
    103 R. C. Shah, J. M. Rabaey. Energy Aware Routing for Low Energy Ad Hoc SensorNetworks. Wireless Communications and Networks Conference. Orlando, USA:IEEE, 2002, 1:350–355
    104 X. Y. Hong, M. Gerla, H. Wang. Load Balanced, Energy-aware Communicationsfor Mars Sensor Networks. Aerospace Conference. Montana, USA, 2002, 3:1109–1115
    105 S. C. Huang, R. H. Jan. Energy Aware, Load Balanced Routing Schemes for Sen-sor Networks. 10th International Conference on Parallel and Distributed System.Newport Beach, USA, 2004:419–425
    106胡宁,张德运.无线传感器网络的能量平衡路由.西安交通大学学报. 2006,40(6):676–680
    107张重庆,李明禄,伍民友.数据收集传感器网络的负载平衡网络构建方法.软件学报. 2007, 18(5):1110–1121
    108黄刘生,李虹,徐宏力,等.无线传感器网络中基于负载平衡的多路路由.中国科技大学学报. 2006, 36(8):887–892
    109 M. Singh, V. Prasanna. Energy-optimal and Energy-balanced Sorting in a Single-hop Wireless Sensor Network. First IEEE International Conference on PervasiveComputing and Communications. Texas, USA, 2003:5–14
    110 M. A. Youssef, M. F. Younis, K. A. Arisha. A Constrained Shortest-path Energy-aware Routing Algorithm for Wireless Sensor Networks. Wireless Communica-tions and Networking Conference. Orlando, FL, USA, 2002, 2:794–799
    111郑国强,李建东,周志立.无线传感器网络mac协议研究进展.自动化学报.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700