用户名: 密码: 验证码:
小样本工程造价数据的智能学习方法及其在输变电工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场经济的发展,尤其是招投标制度的推行,传统定额概预算制度已经无法完全满足工程建设的需要,有必要引进在国外广泛应用历史数据估算工程造价的做法来解决这一问题。由于工程项目建设的历史数据收集比较困难,具有数量小、属性多的特点,基于历史数据的造价估算实质上是小样本数据的学习问题,比海量数据的学习更困难,不能采用基于样本无穷大假设的经典统计方法进行处理。近二十年来,模糊数学、灰色关联度以及神经网络等理论技术应用于造价估算的研究较多,但是应用模糊数学和灰色关联度理论设计的算法和模型过于简单,神经网络学习算法的收敛性、鲁棒性以及泛化性较差,都还无法满足实际应用的要求。支持向量机的出现为小样本学习问题的解决提供了最佳的理论技术平台,论文融合粒子群算法、聚类技术等人工智能技术,对支持向量机进行改进研究,论文研究的目的是提出一种基于参数优化回归支持向量机的小样本数据智能学习改进算法,同时把该算法应用于工程造价快速估算。
     论文首先对小样本数据预处理技术进行研究,结合工程造价历史数据的具体特点,提出包括数据清洗、数据转换和数据约简等内容的小样本数据预处理方法,并且以电力输电工程为案例进行仿真,验证数据预处理方法的有效性。其次,在粒子群算法引入排斥速度和时变领域等概念,提出自适应多种群粒子群优化改进算法(Self Adopt Multiple Particle Swarm Optimization,简称SAMPSO),给出改进算法的数学模型和工作流程,仿真表明改进算法可以解决多峰函数优化问题,在多峰函数寻优时既可以全局寻优,也可以找到所有局部最优点,多峰函数寻优效率更高。然后,应用粒子群改进算法对小样本数据的分割聚类进行优化,提出一种基于SAMPSO的两阶段聚类改进算法,给出改进算法的数学模型和基本工作流程,并且以电力输电工程为案例,对改进算法进行仿真,与模糊聚类算法和粒子群优化算法的聚类效果进行比较,仿真结果表明,该算法分类效果明显优于模糊聚类算法等普通聚类算法。接下来,应用SAMPSO算法、遗传算法对支持向量机的参数寻优进行了对比分析,仿真结果表明,基于SAMPSO算法的参数寻优效果更好,应用SAMPSO算法对小样本数据的非线性核主元分析( Kernel Principal Component Analysis,简称KPCA)进行优化,基于参数寻优的支持向量机和非线性主元分析方法,提出参数寻优的支持向量机智能学习改进算法(Prameters Optimization Support Vector Machine Algorithm,简称POSVMA),给出其数学模型和工作流程,并且以电力输电工程为案例,对改进算法进行仿真,和标准支持向量机算法的仿真预测结果进行比较分析,验证改进算法的合理性和有效性。最后应用上述理论分析研究成果,基于POSVMA改进算法,提出一种基于小样本历史数据的工程造价快速估算方法,给出其具体工作流程,以电力输电工程和变电工程为案例进行仿真,仿真结果表明,该造价快速估算方法基本能够满足工程造价管理和控制的实际应用需要。
With the development of market economy, especially implementation of bidding system, traditional budget making system mainly based on quotas can not meet the need of project construction, in order to solve such question, it is necessary to introduce estimation method of project cost based on history project datas which is widely used in foreign contries. Because history datas are difficult to be collected, in most case, they are small samples, so cost estimation based on history project datas is essentially the question of small samples learning which is more difficult than massive datas learning, classical statistical methods based on hyposesis of infinite samples can not be used to solve such question. In the recent twenty years, theories such as fuzzy mathematics, grey correlation and neural network were widely used for research on cost estimation, but algorithms and models according to fuzzy mathematics and grey correlation theory were too simple, meawhile convergence,robust and generalization ability of neural network theory was poor, they can not meet the need of practical application. Support vector machine (SVM) technique is the best choice for research on small samples learning. In this paper, other artificial intelligence theories such as particle swarm optimization algorithm and clustering technique are used to improve regression SVM , a kind of intellegent learning modified algorithms of small sample based on parameter optimization regression SVM is proposed, meanwhile such modified learning algorithms is used for rapid estimation of project cost.
     Firstly, per-processing technique of small sample data is studied, combined with specific characteristics of history project data, a kind of specific small sample data per-processing method which include data cleaning, data conversion and data reduction is proposed, moreover, an illustrative example of transimission line projects proving the efficiency of the method is given. Secondly, new concepts named repulsive velocity and auto-tuning territory are introduced to improve particle swarm optimization algorithm, Self-adaptive multi-grouped PSO (abbr. SAMPSO) is proposed, its mathematical model and work flow are given, which successfully solve optimization problem of multi-modal function, optimization efficiency of SAMPSO is higher than standard PSO for multi-modal function, specially all local optimal points of multi-modal functions can be founded out by SAMPSO. Thirdly, SAMPSO is used to improve the performance of clustering of small sample data, two stages clustering modified algorithm is proposed, its mathematical model , work flow and an illustrative example of transimission line projects proving the efficiency of modified algorithm are given, Simulation results show that efficiency of such modified algorithm is better than conventional clustering algorithm such as FCM. New modified algorithm powerfully improve the performance of SVM clustering and regression on convergence , robust and exactness. Fourthly, SAMPSO and GA algorithms are used for parameter optimization of SVM at the same time, simulation results show that SAMPSO has better performance than GA, meanwhile nonlinear kernel principal component analysis (abbr. KPCA) is used to process small sample data, based on SVM and KPCA, a regression SVM modified algorithm(Prameters Optimization Support Vector Machine Algorithm, abbr. POSVMA) is proposed, its mathematical model and work flow are given, simulation results of transimission line projects by POSVM and SVM are compared to verify the efficiency of modified algorithm . At last, using above research achievements, based on POSVMA, a rapid estimation method of project cost is presented, its work flow is given. Simulation results of transimission line projects and power transformation projects show that such method can basically meet the practical need of management and control of project cost.
引文
[1]易涛主编.工程造价综合知识[M].北京:中国电力出版社,2002.05.
    [2]谭德精,杜晓玲主编.工程造价确定与控制[M].重庆:重庆大学出版社,2004.02.
    [3]戚安邦,孙贤伟.国际工程造价管理体系的比较研究[J] .南开管理评论,2000(3) :56-60.
    [4]曾繁伟.我国工程造价管理模式与国际惯例的对比分析[J].建筑经济,2001(230) :35-36.
    [5]刘芳,黄忠.固定资产投资估算国内外比较分析[J] .北京基建,2003.24(4) :26-29.
    [6]朱卫华,夏绍模.中美工程造价管理模式的对比研究[J],浙江建筑,2004.6(21):55-57.
    [7]潘业斌.输变电工程施工阶段造价管理现状、原因分析即建议[J].电力标准化与技术经济,2008(65):31-33.
    [8]张恒喜等著.小样本多元数据分析方法及应用[M].西安:西北工业大学出版社,2002.09.
    [9] Mangasarian,D.R.Musicant.Lagrangian Support Vector Machines[J].Journal of Machine Learning Research,2001,1:161~177.
    [10] V.Vapnik.An Overview of Statistical Learning Theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
    [11] V.Vapnik,A.Y.Chervoknenkis.The Necessary and Sufficient Conditions for the Uniform Convergence of Averages to their Expected Values[J].Teoriya Veroyatnostei I EE Primeniniya,1981,26(3):543~564.
    [12] V.Vapnik,A.Y.Chervoknenkis.Theory of Pattern Recognition[M].Nauka,Moscow,1974.
    [13] V.Vapnik.Estimation of Dependencies Based on Empirical Data[M].New York: Springer -Verlag,1982.
    [14] V.Vapnik,A.Y.Chervoknenkis.The Necessary and Sufficient Conditions for Consistency of the Method of Empirical Risk Minimization[J].Pattern Recognition And Image Analysis, 1991,1(3):284-305 .
    [15] V.Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
    [16] V.Vapnik.Statistical Learning Theory[M].New York:John Wiley&Sons,1998.
    [17] C.Cortes,V.Vapnik.The Soft Margin Classifier[M].Technical memorandum 11359-931209- 18TM, AT&T Bell Labs,1993.
    [18] V.Vapnik,S.Golowich,A.Smola.Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing[C].In:Advances in Neural Information Processing Systems 9,Cambridge,MA,MIT Press,1997:281-287.
    [19] J.Weston.Leave-One-Out Support Vector Machines[M].IJCAI 1999:727-733.
    [20] F.F.Rosenblatt.The Perceptron:A Probabilistic Model for Information Storage andOrganization in the Brain[J].Cornell Aeronautical Laboratory,Psychological Review, 1998(65):386-408.
    [21] Olivier chapelle,Vladimir Vapnik,Choosing Multiple Parameters for Support Vector Machines[M],March 16,2001.
    [22] J.-P. VERT,Support vector machine predicition of signal peptide cleavage site using a new class of kenenels for strings[C],Pacific Symposium on Biocomputing 7:649-660 (2002).
    [23] E.Osuna,R.Freund,F.Girosi.Support Vector Machines:Training and Application[M]. Cambridge, MA:Massachusetts Institute of Technology,AILab,1997.
    [24] Mangasarian,D.R.Musicant.Successive Overrelaxation for Support Vector Machines[J].IEEE Transactions on Neural Networks,1999,10(5):1032-1037.
    [25] Chih-Chung Chang,Chih-Jen Lin.Training v-Support Vector Classifiers:Theory and Algorithms[J].Neural Computation,2001,13(9):2119-2147.
    [26] Takuya Inoue,Shigeo Abe.Fuzzy Support Vector Machines for Pattern Classification[C].In Proceedings of International Joint Conference on Neural Networks,2001,2:1449-1454.
    [27] Chun-Fu Lin,Sheng-De Wang.Fuzzy Support Vector Machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
    [28] J.A.K.Suykens,J.Vandewalle.Least Squares Support Vector Machines Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
    [29] Yuh-Jye Lee,O.L.Mangasarian.SSVM:A Smooth Support Vector Machines[J]. Computational Optimization and Applications,2001,20(1):5-22.
    [30] Yuh-Jye Lee,O.L.Mangasarian.RSVM:Reduced Support Vector Machines[C].In Proceedings of the First SIAM International Conference on Data Mining,2001.
    [31] Kuan-Ming Lin,Chih-Jen Lin.A Study on Reduced Support Vector Machines[J]. IEEE Transactions on Neural Networks,2003,14(6):1449-1459.
    [32] Li Zhang,Weida Zhou,Licheng Jiao.Wavelet Support Vector Machine[J].IEEE Transactions on Systems,Man and Cybernetics,Part B,2004,34(1):34~39.
    [33] Kouslous Vasily,Koehn Edward.Predesign Cost-Estimation Function for Buildings[J]. Journal of the Construction Division ASCE.Dec,1974:589-604.
    [34] Karshenas, saeed.Predesign Cost-Estimation Method for Multistory Buildings[J]. Journal of the Construction Engineering and Management ASCE.March,1984:79-86.
    [35] Wall DM.Distributions and Correlations in Monte-Carlo Simulation[J]. Construct Manage Economic. 1997(15):241-258.
    [36] Wang WC.Simulation-facilitated Model for Assesing Cost Correlations[J]. Journal of Company Aided Civil Infrastructure Engineering.2002(5):368-380.
    [37] Tummala VMR,Burchett JF.Applying a Risk Management Process(RMP) to Manage Cost Risk for an EHV Transmission Line Project[J]. International Journal of Project Management.1999(4):223-235.
    [38] Buchanan J.S.,cost models for estimating. Royal Institution of charted Surveys.1992.
    [39] An, S. H., Kim, G. H., & Kang, K. I. A case-based reasoning cost estimating model using experience by analytic hierarchy process[J]. Building and Environment, 2007,42(7): 2573–2579.
    [40] Wilmot, C. G., & Mei, B. Neural network modeling of highway construction Costs[J]. Journal of Construction Engineering and Management, 2005,124(3):210–218.
    [41]王祯显.土木建筑工程管理中的模糊数学方法[M].长沙:湖南大学出版社,1988.
    [42]唐晓阳等.工程项目投资费用的随机-模糊估算方法研究[J].清华大学学报(自然科学版),1996.36(4):13-18.
    [43]宋红宾等.模糊数学在建筑工程估价中的应用研究[J].河北建筑工程学院学报,1999,17(4):11-14.
    [44]姜德华等.模糊数学在水电工程造价估算中的应用[J].水力发电学报,2000(2):87-94.
    [45]黎诚.模糊数学在建筑工程造价测算中的应用[J].有色金属设计.2002,29(3):40-43.
    [46]龙丽.模糊类比法在工程造价估算中的应用[J].价值工程,2008(7):153-155.
    [47]毕星.基于项目管理理论的工程项目成本管理系统研究[D].天津大学博士学位论文,2006.12.
    [48]钱永峰.基于灰色关联度的建筑工程成本模糊估算[J].南京建筑工程学院学报,1993.
    [49]张协奎,钱永峰.基于灰色关联分析的建筑工程费用估算[J].建筑经济,2000(6):41-42.
    [50]荀志远,于彩华.加权灰色关联度法在工程投资估算中的应用[J].建筑技术开发,2001(9):26-29.
    [51]张传友.灰色系统理论在建筑工程快速估价中的应用[J].福建工程学院学报,2006.4(1):64-67.
    [52]黄宝珍.基于灰色理论的模糊估算模型的建立[J].山西建筑,2007,33(7):251-252.
    [53]廖启祥.基于灰色系统理论在建筑工程招投标快速报价中的应用[J].铁道科学与工程学报,2008,5(2):88-91.
    [54]邵良彬,高树林.工程造价人工神经网络估算模型[J] .煤矿设计,1996.
    [55]苏振民.基于BP神经网络的工程造价估测方法[J] .基建优化,2000.21(4):40-42.
    [56]强茂山,宋旭升.神经元网络在水电项目快速估价系统中的应用[J] .水力发电学报,2002(1):54-62.
    [57]申金山,杜晓文等.基于BP神经网络的建筑工程造价快速估算方法[J].河南科学,2003.21(4):479-482.
    [58]赵欣.基于BP神经网络的地铁土建工程造价估算方法研究[D].北京交通大学硕士学位论文,2007.12.
    [59]杨毅.基于人工神经网络的快速建筑工程估算方法的研究[D].重庆大学硕士学位论文,2007.11.
    [60]傅鸿源,杨毅.BP神经网络在建筑工程估算中的应用分析[J].重庆大学学报,2008,31(9):1078-1082.
    [61]余建星.基于神经网络数据挖掘方法的政府投资项目投资估算方法[J].中国农机化,2006(5):36-39.
    [62]银涛.工程项目概算评审方法的研究[D].重庆大学硕士学位论文,2006.5.
    [63]银涛,俞集辉.基于人工神经网络送电线路工程造价的快速估算[J].重庆大学学报(自然科学版),2007.30(1):36-41.
    [64]邓焕彬等.基于神经网络的公路工程造价快速估算方法[J].中南公路工程,2006,31(3):127-131.
    [65]李驰宇.高速公路造价快速估算模型与方法的研究[D].西南交通大学硕士学位论文.2006.01.
    [66]王颖.数据挖掘技术在电力线路工程造价管理中的应用研究[D].重庆大学硕士学位论文,2008.05.
    [67]王颖等.基于软计算的电力线路工程造价预测模型[J].计算机仿真.2008.25(8):246-250.
    [68]熊燕.基于人工智能技术的建筑工程造价估算研究[D].华东交通大学硕士学位论文,2008.10.
    [69]韦俊涛.小样本学习及其改进算法在电力工程造价管理中的应用研究[D].重庆大学硕士学位论文,2009.05.
    [70]刘桂霞,崔永铎等.关于数据挖掘的研究[J] .工业技术经济,2000,19(3):62-64.
    [71]刘同明等.数据挖掘技术及其应用[M].北京:国防工业出版社,2001.09.
    [72] Shum Heung Yeung, Ikeuchi Katsushi,Reddy Raj. Principal Component Analysis with Missing Data and its Application to Object Modeling[C]. Proceedings of the IEEE Computer Society Conference on computer Vision and Pattern Recognition.1994.
    [73] Minsoo Kang. Statistical Analysis of Missing Data: An Overview.
    [74] http://www.kines.uiuc.edu/labwebpages/Kinesmetrics/Missing%20Data/MDA_AAHPERD04_Kang.pdf.
    [75] A.B.Anderson,A.Basilevsky,and D.P.J.Hum.Missing Data: A Review of the Literature. Handbook of Survey Research.[M]. New York: Academic Press. 1983.
    [76] Scheffer,J.,Dealing with Missing Data[A].Research Letters in the Information andMathematical Sciences. 2002.
    [77] Ron Kohavi, George H. John. Wrappers for feature subset selection[J].Artificial Intelligence. 1997.05.
    [78] Jun Yani, Etc. Effective and Efficient Dimensionality Reduction for Large-Scale and Streaming Data Preprocessing[J].IEEE Trans. on Knowledge and Data Engineering. 2006,18(3):320-333.
    [79] James Kennedy and Russell Eberhar. Particle Swarm Optimization[J].IEEE Trans.. 1999:1942-1948.
    [80] Yamille del Valle, Etc. Particle Swarm Optimization:Basic Concepts,Variants and Applications in Power Systems[J].IEEE Trans. on Evolutionary Computation. 2008,12(2):171-195.
    [81] J. Kennedy. The PSO: social adaptation of knowledge [C].in Proc IEEE Int. Conf. on Evolutionary Computation, 1997:303–308.
    [82] J. Kennedy , R. Eberhart. PSO optimization[C] in Proc IEEE Int.Conf. on Neural Networks, 1995:1941–1948. A. Silva, A. Neves, and E. Costa. An empirical comparison of particle swarm and predator prey optimization[C]. Lecture Notes in Computer Sci.2002:103–110.
    [83] R. Y. Tang, S. Y. Yang, Y. Li, G. Wen, and T. M. Mei.Combined strategy of improved simulated annealing and genetic algorithm for inverse problems[J]. IEEE Trans.1996(32): 1326–1329.
    [84] S. Y. Yang, G. Z. Ni, and Y. Li.An universal tabu search algorithm for global optimization of multimodal functions with continuous variables in electromagnetics[J]. IEEE Trans.1998(34): 2901–2904.
    [85]李方方等.基于MATLAB的最小二乘支持向量机的工具箱及其应用[J].计算机应用,2006,26(12):358-360.
    [86]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社, 2002.03.
    [87]王维博等.粒子群算法中参数的实验与分析[J].西华大学学报(自然科学版),2008,27(1):76-82.
    [88]刘军民,高岳林.混沌粒子群优化算法[J].计算机应用,2008,28(2):323-325.
    [89]贺敏伟等.改进量子遗传算法用于多峰值函数优化[J].计算机工程与应用,2008,44(7):41-43.
    [90] Jang-Ho Seo,ect.Mutimodal Function Optimization Based on Particle Swarm Otimization[J]. IEEE Trans. On Magnetics.2006,42(4): 1095-1098.
    [91] S. L. Ho, S. Y. Yang, G. Z.Ni, and K. F. Wong.An Improved PSO Method With Application to Multimodal Functions of Inverse Problems[J]. IEEE Trans. On Magnetics.2007,43(4): 1597-1600.
    [92] Shih-Ming Pan,Kuo-Sheng Cheng. Evolution-Based Tabu Search Approach to Automatic Clustering[J]. IEEE,2007,37(5):827-838.
    [93] Kai Li, Li-Juan Cui. Study of Clustering Algorithm Based on Model Data[J]. IEEE,2007,7(19):3961-3964.
    [94]周东华.数据挖掘中聚类分析的研究与应用[D] .天津大学硕士学位论文,2006.05.
    [95]戴涛.聚类分析算法研究[D] .清华大学硕士学位论文,2004.05.
    [96]杨淑莹.模式识别与智能计算—Matlab技术实现[M].北京:电子工业出版社,2008.01.
    [97]李浪波.聚类分析在科学数据挖掘中的应用研究[D] .电子科技大学硕士学位论文,2006.05.
    [98]陈衡岳.聚类分析及聚类结果评估算法研究[D] .东北大学硕士学位论文,2006.05.
    [99]杨尚森,李玉海.数据挖掘中聚类分析算法性能探析[J] .计算机与数字工程,2007,11(35).
    [100]杨占华.聚类分析研究及其在文本挖掘中的应用[D] .西南交通大学硕士学位论文,2006.05.
    [101]于翔.聚类分析中K-均值方法的研究[D] .哈尔滨工程大学硕士学位论文,2007.05.
    [102]张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.05.
    [103]朱家元,杨云等.基于优化最小二乘支持向量机的小样本预测研究[J].航空学报,2004,25(6):565-568.
    [104]熊建秋,邹长武等.基于免疫进化支持向量机的年用电量预测[J].四川大学学报(工程科学报),2005,38(2):54-57.
    [105]姚智胜,邵春福,熊志华等.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报(工学报),2008,38(1):48-52.
    [106]颜根延,马广富,肖余之.一种混合核函数支持向量机算法[J].哈尔滨工业大学学报,2007,39(11):1704-1706.
    [107]田景文,高美娟著.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.02.
    [108] Cristianini,N., Shawe-Taylor,J. .An Introduction to Support Vector Machines and Other Kenel-based Learing Methods]M]. Cambridge University Press. 2000.
    [109]李国正,王猛,曾华军.支持向量机导论[M].北京:电子工业出版社,2004.06.
    [110]罗泽举,注思铭.新型ε-不敏感损失函数支持向量机诱导回归算法及售后服务数据模型预测系统[J].计算机科学,2005,32(8):138-142.
    [111]杨俊燕,张优云,朱永生.ε不敏感损失函数支持向量机分类性能研究[J].西安交通大学学报,2007,41(11):1315-1441.
    [112] Vapnik V N. Statistical learning theory [M]. New York:John Wiley,1998.
    [113]朱家元,杨云,张恒喜等.基于优化最小二乘支持向量机的小样本预测研究[J] .航空学报,2004,25(6):565-568.
    [114]郑振亚主编,(2005版)国家电网公司输变电工程典型设计110kV变电站分册[M].北京:中国电力出版社,2005.09.
    [115]粟群文,徐业云主编.电力建设工程概预算编制要点[M] .北京,中国电力出版社,2006.01.
    [116]韩月友等.电力工业基本建设预算管理制度与规定[M].北京:中国电力出版社,2002.07.
    [117]电力规划设计总院编.火电、送电、变电工程限额设计控制字表[M]北京:中国电力出版社,2002.09.
    [118]郭日彩,许子智,徐鑫乾.220 kV和110 kV变电站典型设计研究与应用[J].电网技术,2007,6(31):23-31。
    [119]杨虎,刘琼荪,钟波编著.数理统计[M].北京:高等教育出版社,2005.02
    [120] Gao Haibo,Hong Wenxue,Cui Jianxin. Optimization of Principal Component Analysis in Feature Extraction[A]. Proceedings of the 2007 IEEE international Conference on Mechatronics and Automation. 3128-3132.
    [121]顾绍红,王永生,王光霞.主成份分析模型在数据处理中的应用[J].测绘科学技术学报,2007,24(5):387-390.
    [122] Lu Shuang,Li Meng, Bearing Fault Diagnosis Based on PCA and SVM[A]. Proceedings of the 2007 IEEE. international Conference on Mechatronics and Automation 3503-3507.
    [123]张红梅,卫志农,龚灯才等.基于离子群支持向量机的短期电力负荷预测[J].继电器,2007,34(3):28-31.
    [124]章兢等编著.数据挖掘算法及其工程应用[M] .北京:机械工业出版社.2006.07.
    [125] Holland, J. H. Adaptation in Neural and Artificial Systems: An introductory analysis with applications to biology ,control and artificial intelligence [M] .2nd editoion, Cambridge, MA:MIT Press,1992.
    [126] Holland.J.H. Adaptation in Neural and Artificial System[M].the Univ. Of Michigon Press,Michigon. 1975:10~56.
    [127] Bagley.J.D. The Behavior of Adaptive System Which Emloy Genetic and Correlation Algorithms[A]. Dissertation Abstracts International. 1976,28(12):1231~1240.
    [128] Qi X,Pal-Mieri F. Theoretical Analysis of Evolutionary Algorithms With an Infinite Population Size in Continuous Space Part I: Basic properties of Selection and Mutation[J].IEEE Trans. On Neural network . 1994, 5(1):102~129.
    [129] Jong D. An analysis of control parameters for genetic algorithms [D]. University of Michigan,Amarica,1975.
    [130] Grefernstette. J.J. Optimization of control parameters for genetic algorithms[J].IEEE Transaction on Systems,Man,and Cybernetics,1986,16 (1):122-128.
    [131] Schaffer J D.A study of control parameters affecting on-line performance of genetic algorithms for function optimization[C]. In Proceedings of the Third International Conference on Genetic Algorithms (ICGA 3), San Mateo, Morgan Kaufmann Publishers,1989:51-160.
    [132] Goldberg D E. Genetic algorithms in search , Optimization and machine learning [M]. MA : Addison-Wesley Publishing Company,1989.
    [133]张颖璐.基于遗传算法优化支持向量机的网络流量预测[J].计算机科学研究,2008,35(5):177-179.
    [134]徐晔,杜文莉,钱锋.基于核主元分析和最小二乘支持向量机的软测量建模[J].系统仿真学报,2007,19(17):3873-3876.
    [135]周林成,杨慧中.基于KPCA和最小二乘支持向量机的软测量建模[J].计算机仿真,2008,25(10):94-97.
    [136]中国电力企业联合会.电力建设工程预算定额-第四册送电线路工程(2006年版).北京:中国电力出版社,2007.02.
    [137] Min-You Chen and D. A. Linkens. A Systematic Neuro-Fuzzy Modeling Framework With Application to Material Property Prediction[J]. IEEE TRANSACTION ON SYSTEMS,MAN, AND CYBERNETICS-PART B:CYBERNETICS,VOL. 31,NO.5, OCTOBER 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700