用户名: 密码: 验证码:
网络混沌行为及其控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络中存在着大量的混沌行为,对网络混沌行为及其控制的研究有助于深入理解网络这个非线性动力系统的物理本质,以促进网络协议设计、业务量预测、网络规划以及网络性能分析等多个领域的发展。本文围绕网络中的混沌行为及混沌控制方法进行研究,侧重于流量的混沌特性及其控制,基于混沌理论的网络流量性能评估,TCP-RED禺散反馈系统中的混沌现象及其控制,以及网络中的混沌传播模型。论文的主要工作包括:
     (1)深入分析了自相似流量时间序列和流量混沌吸引子的关系,并指出分形维数是联系流量自相似和混沌特征的纽带;同时,基于混沌理论提出了一种使用最大Lyapuno扌旨数对网络性能进行刻画的方法。
     (2)提出了一种网络流量混沌控制方法。该方法基于混沌预测值对系统进行控制,将拥塞链路上呈现较强突发性的网络流量向指定的平衡点或区间进行引导,从而减小系统中的最大Lyapunov指数值,降低流量的突发强度。通过对实际网络流量的控制验证了该方法的有效性。
     (3)研究了TCP-RED离散反馈系统中的边界碰撞分岔现象。通过范式方法分析了该TCP-RED系统中边界碰撞分岔的原因和种类,并根据不动点的稳定条件提出了一种混沌控制的方法,通过对不动点邻域内的状态变量进行扰动,将系统稳定在不动点,显著提高系统性能和资源利用率。仿真验证了该控制方法的有效性。
     (4)讨论了网络中混沌现象的传播问题。建立了一个基于耦合映像格子的混沌传播模型,同时鉴于Internet的网络拓扑具有小世界特征且网络中节点的度服从幂率分布,故在本文中考虑了WS小世界网络和BA无标度网络两种典型的复杂网络拓扑结构。研究表明,若给定耦合强度,则在这两种网络中混沌节点数占总节点数的初始比例对最终的比例曲线均具有两个相变过程。仿真结果验证了分析结果。
There exist a large number of chaotic behaviors in network. The study of chaotic behavior and chaotic control on network can contribute to better understanding the physical nature of this nonlinear dynamical system, and therefore promote network protocol design, network traffic forecasting, network planning and network performance evaluation, etc. This dissertation makes an investigation into chaotic behavior and chaotic control on the network. It focuses on chaotic charactistics of network traffic and its chaotic control, performance evaluation of network traffic based on chaos theory, border collision bifurcation and chaotic control on discrete feedback TCP-RED system and propagation of chaos in network. The main contributions are as follows.
     (1)The relationship between the self-similar time series of network traffic and the traffic chaotic attractor is analyzed in depth and it is pointed out that the fractal dimension is the association of the both; At the same time, a performance evalution method using the largest Lyapunov exponet based on chaos theory is proposed.
     (2) A method of chaotic control on network traffic is presented. By this method, the chaotic network traffic can be controlled to pre-assigned equilibrium point according to chaotic prediction and the largest Lyapunov exponent (LLE) of the traffic on congested link is reduced, thereby the probability of traffic burst and network congestion can be reduced. Numerical examples show that this method is effective.
     (3) Border collision bifurcations occurred in discrete feedback TCP-RED system is studied. The causes and types of the border collision bifurcations are analyzed based on the normal form method. And according to the linear stability condition of fixed point, a method of chaotic control is presented. With this method, the system can be stabilized to the fixed point by perturbing the state variable in the neighborhood of the fixed point. This method can significantly improve the performance and resource utilization of TCP-RED system, and simulation results show that it is effective.
     (4) Propagation of chaos in the network is discussed. A dynamical model of chaos propagation based on coupled map lattices is established, meanwhile as the small-world characteristics of the Internet and the degree of network nodes obeys power-law distribution, the WS small-world network and BA scale-free network are considerd herein. The research suggests that in the two different networks, as the initial proportion of chaotic nodes increases, there are two phase change process of the final proportion of chaotic node for a given coupling strength. Numerical simulation results verify the theoretical analysis.
引文
[1]Leland W E, Taqqu M S, Willinger W, et al. On the self-similar nature of Ethernet traffc. In Proceeding of ACM Sigcomm, San Francisco, CA, USA,1993,1715-1723
    [2]Crovella M E, Bestavros A. Self-similarity in world wide web traffic:evidence and possible causes. In Proceeding of ACM Sigmetrics, May 1996,160-169
    [3]Paxson V, Floyd S. Wide-area traffic:the failure of Poisson modeling. In Proceeding of ACM SIGCOMM,1994,257-268
    [4]Erramilli A, Singh E P, Pruthi P. Chaotic maps as models of packet traffic. In Proceeding of the 14th ITC, June,1994,329~338
    [5]Veres A, Boda M. The chaotic nature of TCP congestion. In Proceeding of IEEE INFOCOM, 2000,1715-1723
    [6]Mandelbrot B. Fractals:Form, Chance and Dimension. San Francisco:Freeman, New York, 1997,36-85
    [7]Li T Y, Yorke J A. Period three implies chaos. American Mathematical Monthly,1975,82: 481~485
    [8]Devaney R L. An Introduction to Chaotic Dynamical Systems. Addison-Wesley,1987
    [9]Devaney R L. An Introduction to Chaotic Dynamical Systems (2nd ed). Addison-Wesley,2003
    [10]邹恩,李祥飞,李建国.混沌控制及其优化.国防科技大学出版社,2002
    [11]Banks J, Brooks J, Cairns G et al. On Devaney's definition of chaos. American Mathematical Monthly,1992,99:332~334
    [12]Huang W, Ye X. Devaney's chaos or 2-scattering implies Li-Yorke's chaos. Toplogy and its Apilications,2002,117:259~272
    [13]郝柏林.分岔、混沌、奇怪吸引子、湍流及其他.物理学进展,1983,3(3):329~416
    [14]Gencay R. Nolinear prediction of noisy times series with feed forward networks. Physics Letters A,1994,187:397~403
    [15]Oliveira K A, Vanucci A, Silva E C. Using artificial neural networks to forescast chaotic time series. Physica A,2000,284:393~404
    [16]Lisi F, Schiavo R A. A comparison between neural networks and chaotic models for exchange rate prediction. Computational Statistics & Data Analysis,1999,30:87~102
    [17]Gencay R, Tung L. Nonlinear modeling and prediction with feedforward and recurrent network. Physica D,1997,108:119~134
    [18]Cao L, Hong Y, Fang H et al. Predicting chaotic time series with wavelet networks. Physica D, 1995,85(1):225~238
    [19]Maguire L P, Roche B, Mcginnity T M. Prediction a chaotic time series using a fuzzy neural network. Information Sciences,1998,112:125~136
    [20]Kaplan D, Glass L. Understanding nonlinear dynamics. New York:Springer-Verlag Inc.,1997
    [21]Farmer J D, Sidorwich J J. Predicting chaotic time series. Physical review letters,1987,59(8): 845~848
    [22]Jayawardena A W, Li W K, Xu P. Neighborhood selection for local modeling and prediction of hydrological time series. Journal of Hydrology,2002,258:40~57
    [23]Farmer J D, Sidorwich J J. Exploiting chaos to predict the future and reduce noise. Lee Y C Ed. Evolution, Learning and Cognition. Singapore:World Scientific,1988,277~330
    [24]Itoh K. A method for predicting chaotic time-series with outliers. Electronics and Communications in Japan,1995,78(5):44~53
    [25]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [26]王永忠,曾昭磐.混沌时间序列的局域线性回归预测方法.厦门大学学报,1999,38(4):636~640.
    [27]白晓林,胡兴锐,徐雄.混沌时间序列局域线性预测方法.上海交通大学学报,1999,33(1):19~21
    [28]Linsay P S. An efficient method of forecasting chaotic time series using linear interpolation. Physics Letters A,1991,153(6,7):353~356
    [29]Navone H D, Ceccatto H A. Forecasting chaos from small data sets:a comparison of different nonlinear algorithms. Journal of Physics A:Mathmatical and General,1995,28(12): 3381~3388
    [30]张家树,肖先赐.混沌时间序列的Volterra自适应预测.物理学报,2000,49(3):403~408
    [31]张家树,肖先赐.用于混沌时间序列自适应预测额一种少参数二阶Volterra滤波器.物理学报,2001,40(7):1248~1254
    [32]甘建超,肖先赐.基于相空间领域的混沌时间序列自适应预测滤波器(1)线性自适应滤波.物理学报,2003,52(5):1096~1101
    [33]甘建超,肖先赐.基于相空间领域的混沌时间序列自适应预测滤波器(2)非线性自适应滤波.物理学报,2003,52(5):1102~1107
    [34]Ott E, Grebogi G, Yorke J A. Controlling chaos. Physical Review Letters,1990,64(11): 1196~1199
    [35]Peng B, Petrov V, Showalter K. Controlling chemical chaos. Journal of Physical Chemistry, 1991,95:4957~4959
    [36]Hunt E R. Stabilizing high period orbits in a chaotic system:the diode resonator. Physical Review Letters,1991,67:1953~1955
    [37]Hu G., Qu Z L, He K F. Feedback control of chaos in spatiotemporal systems. International Journal of Bifurcatin and Chaos,1995,5:901-936
    [38]Huberman B A, Lumer E L. Dynamics of adaptive system. IEEE Trans. on Circuit and Systems, 1990,37(4):547~550
    [39]Lima R, Pettini M. Suppression of chaos by resonant parametric perturbations. Physical Review A,1990,41:726~733
    [40]Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perturbations. Physica Review Letters,1991,66:2545~2548
    [41]Jackson E A. On the Control of Complex Dynamic Systems. Physica D,1991,50:341-366
    [42]Pecora L M, Carroll T L. Synchronization in chaotic circuits. Physical Review Letters,1990, 64(8):821
    [43]王海燕,卢山.非线性时间序列分形及其应用.科学出版社,2006
    [44]Packard N H, Griuthfield J P, Farmer J D, et al. Geometry from a time series. Physical Review Letters,1980,45(9):712~716
    [45]Takens F. On the numerical determination of the dimension of an attractor. In Rand D, Young L S editors. Dynamical Systems and Turbulence. Warwick,1980, Lecture Notes in Mathematics, Springer-Verlag,1981,898:366~381
    [46]Mane R. On the dimension of the compact invariant sets of certain nonlinear maps. In Rand D, Young L S editors. Dynamical Systems and Turbulence. Warwick,1980, Lecture Notes in Mathematics, Springer-Verlag,1981,898:230
    [47]Sauer T, Yorke J A, Casdagli M. Embeddology. Journal of Statistical Physics,1991,65: 579~616
    [48]Kennel M, Brown R, Abarbanel H. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A,1992,45(6):3403~3411
    [49]Fraser A M, Swinney H. Independent coordinates for strange attractors from mutual information. Physical Review A,1986,33(2):1134~1140
    [50]Fraser A M. Information and entroy in strange attractors. IEEE Trans. on Information Theory, 1989,35(2):245~262
    [51]Rosenstein M T, Collins J J, DeLuca C J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D,1993,65:117~134
    [52]Rosenstein M T, Collins J J, DeLuca C J. Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D,1994,73:82~198
    [53]Albano A M, Passamante A, Farrell M E. Using higher-order correlation to define an embedding window. Physica D,1991,54:85~97
    [54]Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows. Physica D,1999,127:48~60
    [55]Broomhead D S, King G P. Extracting qualitative dynamics from experimental data. Physica D, 1986,20:217~336
    [56]Kaplan D T, Glass L. Direct test for determinism in a time series. Physical Review Letters, 1992,68(4):427~430
    [57]Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D,1997,110(1-2):43~50
    [58]刘东林,帅典勋.网络流量模型的非线性特征量的提取及分析.电子学报,2003,31(12):1866~1869
    [59]Mondragon R J, Pitts R J, Arrowmith D K. Chaotic intermittency-sawtooth map model of aggregated self-similar traffic streams. Electronics Letters, Jan 2000,36(2):184~186
    [60]Aklilu G, Pitts J M. Multi-scaling chaotic map suitable for modeling aggregate TCP/IP and MPEG4 traffic streams. Electronics Letters, June 2005,41(12),
    [61]Mondragon, R J, Arrowmith D K, Pitts R J. Chaotic maps for traffic modeling and queueing performance analysis. Performance Evaluation,2001,43:223~240
    [62]Costamagna E, Favalli L, Tarantola F. Characterization and modeling of campus-level IP network traffic. In Proceeding of IEEE ICME'03,2003
    [63]Hasegawa M, Wu G, Mizuni M. Application of nonlinear predictin methods to the Internet traffic. In In Proceeding of ISCAS 2001, May 2001,169~172
    [64]Chen S Y, Zhou Y H, Wang W. Short-term traffic volume time series forecasting based on phase space reconstruction. In In Proceeding of IEEE International Conference on Machine Learning and Cybernetics,2005,6:3585~3588
    [65]Hu G, Qu Z L. Controlling spatiotemporal chaos in coupled map lattice systems. Physical Review Letters,1994,72(1):68~71
    [66]Wang X F, Chen G. Pinning control of scale-free dynamical networks. Physica A,2002,310: 521~531
    [67]Li X, Wang X F.Pinning control of scale-free Chen's networks. The second Asia-Pacific workshop on chaos control and synchronization, Shanghai,2003
    [68]Li X, Wang X F. Feedback control of scale-free coupled Henon networks. In Proceeding of International Conference on Control, Automation, Robotics and Vision, Kunming, 2004,574~578
    [69]Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium. IEEE Trans. on Circuits and Systems-I,2004,51:2074~2087
    [70]Samuel L G, Pitts J M., Mondragon R J, et al. The maps paradigm:chaotic control of networks. IEE Telecomunications,1998,57~61
    [71]Samuel L G, Pitts J M., Mondragon R J. The maps control paradigm:using chaotic maps to control telecoms networks. Broadband Communications-The future of telecommunications. Eds. Kuhn P., and Ulrich R, London:Chapman and Hall,1998
    [72]胡常谦.用混沌方法研究ATM通信网的流量控制[博士论文].北京:清华大学,2000
    [73]刘润杰,申金媛,穆维新.SCTP流量的混沌控制研究.见第26届中国控制会议论文集,2007, China,603~606
    [74]Ranjan P, Abed E H, La R J. Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Networking,2004,12(6):1079~1092
    [75]La R J. Instability of a tandem network and its propagation under RED. IEEE Trans. Auto. Control,2004,49(6):1006~1011
    [1]Eckmann J P, Kamphorst S O, Ruelle D et al. Lyapunov exponents from time series. Physical Review A,1986,34(6):4971~4979
    [2]Brown R, Bryant P, Abarbanel H D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series. Physical Review A,1991,43(6):2787~2806
    [3]Wolf A, Swift J B, Swinney H L et al. Determining Lyapunov exponents from a time series. Physica D,1985,16:285~317
    [4]Barana G, Tsuda I. A new method for computing Lyapunov exponents. Physical Letters A, 1993,175:421~427
    [5]Rosenstein M T, Collins J J, DeLuca C J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D,1993,65:117~134
    [6]Peitgen H O, Jurgens H, Saupe D. Chaos and Fractals:New Frontiers of Science(2nd ed). Springer-Verlag,2004
    [7]Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A,1983,28(4):2591~2593
    [8]Pawelzik K, Schuster H G. Generalized dimensions and entropies from a measured time series. Physical Review A,1987,35(1):481~484
    [9]Grassberger P. Finite sample corrections to entropy and dimension estimate. Physical Letters A, 1988,128:369~373
    [10]Caputo J G, Atten P. Metric entropy:an experimental means for characterizing and quantifying chaos. Physical Review A,1987,35(3):1311~1316
    [11]Frank M, Blank H R, Heindl J et al. Improvement of K2-entropy calculations by means of dimension scaled distances. Physica D,1993,65:359~364
    [12]Zhang Y. Abilene traffic metrics. http://www.cs.utexas.edu/-yzhang/research/AbileneTM/
    [13]Mandelbrot B. The Fractal Geometry of Nature. W. H. Freeman,1982
    [14]Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science,1967,156:636~638
    [15]Leland W E, Taqqu M S, Willinger W et al. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. on Networking,1994,2(1):1~15
    [16]Duffy D E, McIntosh A A, Rosenstein M et al. Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks. IEEE Journal on Selected Areas in Communications,1994, 12(3):544~551
    [17]Erramilli A, Wang J L. Monitoring packet traffic levels. In Proceeding of IEEE GLOBECOM'94, San Francisco, CA,1994,274~280
    [18]Garrett M V, Willinger W. Analysis, modeling and generation of self-similar VBR video traffic. In Proceeding of ACM SIGCOMM'94, London,1994,269~280
    [19]Paxson V, Floyd S. Wide area traffic:the failure of Poisson process. IEEE/ACM Trans. on Networking,1995,3(3):226~244
    [20]Hayman D P, Tabatabai A, Lakshman T V. Statistical analysis and simulation study of video teleconference traffic in ATM networks. IEEE Trans. on Circuits and System for Video Technology,1992,2(1):49~59
    [21]Addie R, Zukerman M Z, Neame T. Fractal traffic:measurement, modeling and performance evaluation. In Proceeding of IEEE INFOCOM'95, Boston, MA, CA,1995,977~984
    [22]Harris J W, Stocker H. Handbook of Mathematics and Computational Science. Springer-Verlag, 1998,113~114
    [23]Schroeder M. Fractals, Chaos, Power Laws:Minutes from an Infinite Paradise. New York: W. H. Freeman,1991,41-45
    [24]Grassberger P, Procaccia I. Characterization of strange attractors. Physical Review A,1992, 45(6):3403~3411
    [25]Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D,1983,9: 189~208
    [26]Kaplan J L, and Yorke J A. Chaotic behavior of multidimensional difference equations. In Peitgen H O and Walter H O editors. Functional Differential Equations and Approximations of Fixed Points. Berlin,1979, Lecture Notes in Mathematics, Springer,204
    [27]Frederickson P, Kaplan J L, Yorke E D et al. The Lyapunov dimension of strange attractors. Journal of Differential Equations,1983,49:185~207
    [28]Wallis J R, Matalas N C. Small sample properties of H and K-estimations of the Hurst coefficient H. Water Resource Research,1970,6(6):1583~1594
    [29]Mandelbrot B. Fractals:Form Chance and Dimension. W. H. Freeman,1977
    [30]Mandelbrot B. The fractal geometry of nature. W.H.Freeman.1983,244~255
    [31]Sugihara G, May R M. Applications of fractals in Ecology. Trends in Ecology and Evolution, 1990,5(3):79~86
    [32]丁晶,刘权授.随机水文学.北京:中国水利水电出版社,1997,49~54
    [33]徐喆,王培荣,付冲等.Internet流量的混沌动力学模型研究.通信学报,2006,27(11A):199-203
    [34]陆锦军,王执铨.一种基于混沌特性的网络流量改进预测算法.兵工学报,2007,28(11):1346-1350
    [35]甘建超,肖先赐.混沌的可加性.物理学报,2003,52(5):1085~1090
    [36]Boccaletti S, Valladares D L, Pecora L M et al. Reconstructing embedding spaces of coupled dynamical systems from multivariate time series. Physical Review E,65(3): 035204-1~035204-4
    [37]Cao L Y, Mees A, Judd K. Dynamics from multivariate time series. Physica D,1998,121: 75~88
    [1]Tsybakov B, Georganas N D. On self-similar traffic in ATM queues:Definitions, overflow probability bound, and cell delay distribution. IEEE/ACM Trans. on Networking,1997,5: 397~408
    [2]Tsybakov B, Georganas N D. Self-similar processes in communications networks. IEEE Trans. on Information Theory,44:713~1725
    [3]\Song S B, Ng J K, Tang B H. Some results on the self-similarity property in communication networks. IEEE Trans. on Communications,2004,52(10):1636~1642
    [4]Vamvakos S, Anantharam V. On the departure process of a leaky bucket system with long-range dependent input traffic. Queueing Systems,1998,29:191~214
    [5]Min G Y, Khaoua M O. A performance model for wormhole-switched interconnection networks under self-similar traffic. IEEE Trans. on Computers,2004,53(5):601~613
    [6]Willinger W, Taqqu M S, Sherman R et al. Self-similarity through high-variability:statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. on Networking,1997, 5(1):71~86
    [7]Park K, Willinger W. Self-similar network traffic and performance evaluation. New York:John Wiley & Sons,2000
    [8]邹柏贤,刘强.基于ARMA模型的网络流量预测.计算机研究与发展,2002,39(12):1645~1652
    [9]Sang A, Li S Q. A predictability analysis of network traffic. Computer Networks,2002,39(4): 329~345
    [10]Zare M H, Masnadi-Shirazi M A. ARIMA model for network traffic prediction and anomaly. International Symposium on Information Technology,2008, Kuala Lumpur, Malaysia,2008,1
    [11]舒炎泰,王雷,张连芳等.基于FARIMA模型的Internet网络业务预报.计算机学报,2001,24(1):46~54
    [12]Wang X Y, Meditch J S. Adaptive wavelet predictor to improve bandwidth allocation efficiency of VBR video traffic. Computer Communication,1999,22(1):40~45
    [13]洪飞,吴志美.基于小波的多尺度网络流量预测模型.计算机学报,2006,29(1):166~170
    [14]Pang Q X, Cheng S D, Zhang P. Adaptive fuzzy traffic predictor and its applications in ATM networks. In proceeding of IEEE ICC'98,1998,3:1759~1763
    [15]Cao J H, Liu Y, Dai Y. Network traffic prediction based on error advanced DGM(1,1) model. International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai,2007,6353~6356
    [16]Hippert H S, Pedreira C E, Souza R C. Neural networks for short-term load forecasting:a review and evaluation. IEEE Trans. on Power Systems,2001,16(1):44~55
    [17]Liang Y. Real-time VBR video traffic prediction for dynamic bandwidth allocation. IEEE Trans. on Systems, Man, and Cybernetics,2004,34(1):32~47
    [18]Doulamis A D, Doulamis N D, Kollias S D. An adtable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources. IEEE Trans. on Neural Networks,2003,14(1):150~166
    [19]袁礼海,宋建社.小波变换中的信号边界延拓方法研究.计算机应用研究.2006,3:25~27
    [20]何永勇,褚福磊,王庆禹等.小波分析在应用中的两个问题研究.振动工程学报,2002,15(2):228~232
    [21]Feng H F, Shu Y T. Study on network traffic prediction techniques. In International Conference on Wireless Communications, Networking and Mobile Computing,2005,2: 1041~1044
    [22]Chen S Y, Zhou Y H, Wang W. Short-term traffic volume time series forecasting based on phase space reconstruction. In In Proceeding of IEEE International Conference on Machine Learning and Cybernetics,2005,6:3585~3588
    [23]Kaplan D, Glass L. Understanding nonlinear dynamics. New York:Springer-Verlag Inc.,1997
    [24]Oiwa N N, Ferrara N F. Lyapunov spectrum from time series using moving boxes. Physical Review E,2002,65(3):036702-1~036702-10
    [25]Chen G R, Lai D J. Feedback control of Lyapunov exponents for discrete-time chaotic dynamical systems. International Journal of Bifurcation and Chaos,1996,6:1341-1349
    [26]Boccaletti S, Valladares D L, Pecora L M et al. Reconstructing embedding spaces of coupled dynamical systems from multivariate time series. Physical Review E,65(3): 035204-1~035204-4
    [27]Parlitz U. Advanced black-box techniques. Boston:Kluwer Academic Publishers,1998
    [1]Crovella M E, Bestavros A. Self-similarity in world wide web traffic:evidence and possible causes. In Proceeding of ACM SIGMETRICS, May 1996,160-169
    [2]Veres A, Boda M. The chaotic nature of TCP congestion. In Proceeding of IEEE INFOCOM, 2000,1715-1723
    [3]Park K, Kim G, Crovella M. On the relationship between file sizes, transport protocols, and self-similar network traffic. In Proceeding of IEEE ICNP,1996,171-180
    [4]Hollot C V, Misra V, Towsley D et al. A control theoretic analysis of RED. In Proceeding of IEEE INFOCOM, Anchorage, AK,2001,1510~1519
    [5]Low S H, Paganini F, Wang J et al. Dynamics of TCP/RED and a scalable control. In Proceeding of IEEE INFOCOM, New York,2002,239~248
    [6]Ranjan P, Abed E H, La R J. Nonlinear instabilities in TCP-RED. IEEE/ACM Trans. Networking,2004,12(6):1079~1092
    [7]Firoiu V, Borden M. A study of active queue management for congestion control. In Proceeding of IEEE INFOCOM, Tel Aviv, Israel,2000,1435~1444
    [8]Mathis M, Semke J, Mahdavi J et al. The macroscopic behavior of the TCP congestion avoidance algorithm. Computer Communication Review,1997,27(3):67~82
    [9]Padhye J, Firoiu V, Towsley D et al. Modeling TCP Reno performance:a simple model and its empirical validation. IEEE/ACM Trans. on Networking,2000,8:133~145
    [10]Hespanha J P, Bohcek S, Obraczka K et al. Lecture Notes in Computer Science,2001,2034: 291~304
    [11]Tinnakornsrisuphap P, La R J, Makowski A. Characterization of general TCP traffic under a large number of flows regime. In Proceeding of ITC, Berlin, Germany,2003
    [12]Tinnakornsrisuphap P, Makowski A. Limit behavior of ECN/RED gateways under a large number of TCP flows. In Proceeding of IEEE INFOCOM,2003,873~883
    [13]Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York:Springer-Verlag,1983,158
    [14]Glendinning P, Wong C H. Border collision bifurcations, snap-back repellers, and chaos. Physical Review E,2009,79(2):5202
    [15]戴栋,马西奎,李小峰.一个具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌.物理学报,2003,52(11):2729~2736
    [16]罗晓曙,汪秉宏,陈关荣等.DC-DC buck变换器的分岔行为及混沌控制研究.物理学报,2003,52(1):12~17
    [17]李明马西奎等.基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析.物理学报,2005,54(3):1084~1091
    [18]Liu F. Fast-scale border collision bifurcation in SEPIC power factor pre-regulators. Chinese Physics B,2008,17(7):2394~2404
    [19]Banerjee S, Karthik M S, Yan G H et al. Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits. IEEE Trans. on Circuits and Systems,2000, 47(3):389~394
    [20]Banerjee S, Ranjan P, Grebogi C. Bifurcations in two-dimensional piecewise smooth maps-theory and applications in switching circuits. IEEE Trans. on Circuits and Systems,2000,47(5): 633~643
    [21]Chen L, Wang X F, Han Z Z. Controlling bifurcation and chaos in Internet congestion control model. International Journal of Bifurcation & Chaos,2004,14(5):1863~1876
    [22]Chen L, Wang X F, Han Z Z. Controlling chaos in Internet congestion control model. Chaos Solitons & Fractals,2004,21(1):81~91
    [23]Nga J, Iu H, Ling S H, Lam H K. Comparative study of stability in different TCP/RED models. Chaos Solitons & Fractals,2008,37:977~987
    [1]La R J. Instability of a tandem network and its propagation under RED. IEEE Trans. Auto. Control,2004,49(6):1006~1011
    [2]Kaneko K. Coupled map lattices. Singapore:World Scientific,1992
    [3]Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Physical Review E,2001,63(6):066117
    [4]Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks. Physical Review E,2001,65(3):035108-1-035108-4
    [5]许丹,李翔,汪小帆.复杂网络病毒传播的局域控制研究.物理学报,2007,56(3):1313~1317
    [6]倪顺江,翁文国,范维澄.具有局部结构的增长无标度网络中传染病传播机制研究.物理学报,2009,58(6):3707~3713
    [7]翁文国,倪顺江,中世飞,袁宏永.复杂网络上灾害蔓延动力学研究.物理学报,2007,56(4):1938~1943
    [8]欧阳敏,费奇,余明晖.基于复杂网络的灾害蔓延模型评价及改进.物理学报,2008,57(11):6763~6770
    [9]Wang X F, Xu J. Cascading failures in coupled map lattices. Physical Review E,2004, 70(5):056113
    [10]Xu J, Wang X F. Cascading failures in scale-free coupled map lattices. Physica A,2005,349: 685-692
    [11]Faloutsos M, Faloutsos P, Faloustsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review,1999,29(4):251-262
    [12]Faloutsos M, Faloutsos P, Faloustsos C. Power laws and the AS-level Internet topology. IEEE/ACM Trans. Networking,2003,11(4):514-524
    [13]Kaneko K. Collapse of tori and genesis of chaos in dissipative system. Ph.D. Thesis,1983.
    [14]Kaneko K. Period-doubling of kink-antikink patterns, quasiperiodicity in antiferro-like structures and spatial intermitterncy in coupled logistic lattice:towards a prelude of a "field theory of chaos". Prog. Thery. Phys.,1984,72:480
    [15]Kaparal R Pattern formation in two dimensional arrays of coupled discrete-time oscillators, Physical Review A,1985,31:3868
    [16]Crutchfield J P, Kaneko K. Phenomenology of spatiotemporal chaos,. Directions in Chaos., 1987,1:272
    [17]Kaspar F, Schuster H G. Scaling at the onset of spatial disorder in coupled piecewise linear mapping. Physics Letters A,1986,113:451
    [18]Waller I, Kapral R. Spatial and temporal structure in system of soupled nonlinear oscillators Physical Review A,1984,30:2047
    [19]Gade P M, Hu C K. Synchronous chaos in coupled map lattices with small-world interactions. Physical Review E,62:6409~6413
    [20]Erdos P, Renyi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci.,1960, 5:17~60
    [21]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks. Nature,1998,393 (6684):440~442
    [22]Barabasi A L, Albert R. Emergence of scaling in random networks. Science,1999,286(5439): 509~512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700