用户名: 密码: 验证码:
卫星互联网服务质量保障方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨干拥塞、接入困难和内容分发缓慢是当今地面互联网面临的一系列棘手问题。而基于全球覆盖的、具有远程接入和广播特性的卫星互联网是解决这些难题的有效途径,同时也是未来空天地一体化信息网络的重要组成部分。当前,卫星网络正在向卫星互联网发展,注重高效性,以期提供随时随地的通信与信息服务。但是,设计和实现卫星互联网面临很多技术挑战,首要的就是服务质量(QoS, Quality of Service)问题。一方面,地面互联网的IP QoS问题依然存在于卫星互联网。另一方面,由于卫星通信自身特点又使得卫星互联网的QoS问题需要特殊考虑。因此,分析卫星互联网QoS保障需求,设计高效和易于实现的保障算法是一项重要的研究课题。
     目前,对卫星互联网服务质量保障的研究主要集中在控制拥塞以及TCP在卫星链路下的适应性问题。然而基于端到端的TCP拥塞控制机制往往无法确知网络内部状态,同时TCP的反馈工作机制又使得各种基于TCP层的改进方法仍不能很好地适应卫星网络环境;此外,切换性和移动性又使得卫星网络中的资源分配变得比地面网络复杂。在分析国内外文献的基础上,本文对卫星互联网服务质量保障方法进行了深入研究,从业务层面入手,着重从网络(IP)层解决拥塞问题,同时改善资源分配方式。这些研究工作完善了卫星互联网QoS保障体系,对未来空天地一体化信息网络QoS保障具有积极意义与参考价值。本文针对卫星互联网QoS保障方法,主要研究了以下几个问题:
     第一,对卫星网络业务自相似性的研究。考虑到近年来业务自相似性对QoS影响的研究多集中于地面网络,而对卫星网络中自相似性及其影响研究较少这一情况,针对卫星网络特点,研究了自相似业务在卫星网络中的汇聚和传播特性;进而,通过建立地面信关站模型,研究了地面有线网络自相似业务经过信关站进入卫星无线链路的传播特性,并通过仿真进行了验证。此外,仿真并分析了自相似业务对网络节点处队列性能的影响,为后文针对这些影响提出改善QoS的算法奠定基础。
     第二,对自相似业务量预测的研究。针对卫星互联网中业务普遍存在的自相似性对网络性能产生的不利影响,考虑到自相似业务本身具有可预测性,提出了基于改进卡尔曼滤波的自相似业务量预测算法。针对经典卡尔曼滤波无法求解所提滤波模型这一情况,重新推导了滤波过程。为了提高滤波预测精度,还引入在线噪声估计。所提算法不仅精确度较高,并且与真实流量具有相近的相关结构。
     第三,对基于业务预测的主动队列管理算法的研究。主动队列管理是IP层的网络拥塞控制方法,而业务量预测对于主动队列管理具有指导意义。鉴于现有主动队列管理算法对估计拥塞有效性不高的情况,提出基于业务量预测的主动队列管理算法。该算法使用改进卡尔曼滤波方法对拥塞进行预测,并结合基于测量的分组丢失率共同做出分组丢弃判决。该算法能动态调节分组丢弃概率,具有队列稳定,链路利用率高的特点。
     第四,对卫星网络公平服务质量带宽分配算法的研究。针对目前卫星网络的带宽分配算法存在着过度预留和公平性欠佳的问题,提出了卫星网络中公平服务质量的带宽分配算法。该算法使用自适应带宽预留策略,根据效用公平带宽分配准则,保持了用户连接的有效性,保障了用户之间服务的公平性。
Currently, Internet is confronted with a series of intractable problems, including backbone congestion, difficult access, slow content delivery, etc. As a significant component of air-space-ground integrated information network in the future, satellite Internet, which has advantages of global coverage, remote access and broadcasting, is an effective solution to above problems. For the purpose of providing ubiquitous communication and information services, satellite network is becoming satellite Internet with high effectiveness. However, there are some technical challenges in designing and realizing satellite Internet. Quality of service (QoS) is the primary problem in these challenges. On one hand, the IP QoS challenges in ground Internet will still exist in satellite Internet. On the other hand, due to inherent characteristics of satellite communication, the QoS issue in satellite Internet has some particularity.
     Therefore, analyzing QoS requirements and designing efficient and easily implemented QoS guarantee algorithms are crucial points in satellite Internet. At present, most of researches on QoS guarantee in satellite Internet concentrate on controlling congestion and suitability of TCP over satellite links. On one hand, TCP congestion control scheme is based on end-to-end not knowing about internal status in networks. On the other hand, various methods based on TCP layer still cannot completely adapt to satellite links due to the feedback mechanism of TCP. In addition, resource allocation in satellite networks is more complex than ground networks due to handoff and mobility. From the perspective of network traffic, focusing on solving network congestion in network (IP) layer and enhancing resource allocation, this dissertation studies QoS guarantee methods in satellite Internet in-depth by referring to the latest researches. Not only does it perfect the QoS guarantee system of satellite Internet, but also have referential significance for QoS guarantee of the future air-space-ground integrated information network. Aiming at key QoS guarantee algorithms in satellite Internet, the dissertation deals with the following aspects:
     Firstly, investigation in traffic self-similarity in satellite networks. There are many researches on the effect of self-similarity on QoS of terrestrial networks, but there is little work on traffic self-similarity and its effect of satellite networks. In view of the situation, aggregation and propagation properties of self-similar traffic in satellite networks is analyzed considering characteristics of satellite networks. Then, by building a ground gateway model, the propagation property of self-similar traffic is analyzed and simulated when the traffic from wired ground networks is released to wireless satellite links through the gateway. In addition, the effect of self-similarity on node queue performance is simulated and analyzed for the purpose of presenting algorithms to improve QoS.
     Secondly, research on self-similar traffic prediction. In the light of the negative effect of ubiquitous self-similarity in satellite Internet traffic on network performances and the predictability in self-similar traffic, an improved Kalman filtering algorithm for predicting self-similar traffic is proposed. As classical Kalman filtering method cannot solve the proposed filtering model, a new filtering process is deduced. In addition, on-line noise estimation is introduced to enhance precision. The algorithm is highly accurate with the correlation structure similar to the real traffic trace.
     Thirdly, study on active queue management (AQM) based on traffic prediction. AQM is a method of controlling congestion in IP layer, while traffic prediction is significant for AQM. Considering low efficiency of existing AQM algorithms in congestion estimation, an AQM algorithm combined with adaptive traffic prediction is presented. The algorithm estimates congestion using the above improved Kalman filtering. Packet dropping decision is made based on the predicted results and a measurement-based packet loss ratio. It dynamically adjusts packet dropping probability, with advantages of stable queue and high link utilization.
     Fourthly, work on fair QoS bandwidth allocation algorithm in satellite networks. Excessive reservation and deficient fairness are major drawbacks in existing bandwidth allocation algorithms of satellite networks. According to these flaws, a new bandwidth allocation algorithm based on fair QoS is presented. As the algorithm introduces adaptive bandwidth reservation strategy and fair utility bandwidth allocation rule, it maintains effectiveness of user's connection, while guarantees fairness of QoS among multiple users.
引文
1沈荣骏.我国天地一体化航天互联网构想.中国工程科学. 2006, 8(10): 19~30
    2王晓海.天基综合信息网络的发展及应用.数字通信世界. 2007, 10: 32~34
    3周沁,张军,张学军.浅谈我国天基综合信息网的建设.空中交通管理. 2005, 4: 28~29
    4王晓海.天基综合信息网络的发展.中国航天. 2007, 1: 25~27
    5国家自然科学基金委员会资助项目计划书.空天地一体化信息网络的基础理论及关键技术研究. 2005: 1~5
    6 L. Fan, H. Cruickshank, Z. Sun. IP Networking of Next-Generation Satellite systems. Springer. 2007: 1~14
    7郑小勇.卫星互联网综述.科技资讯. 2007, 12: 45~46
    8 V. Paxson, S. Floyd. Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transactions on Networking. 1995, 3(3): 226~244
    9 W. E. Leland, M. S. Taqqu, W.Willinger, D. V. Wilson. On the Self-Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking. 1994, 2(1): 1~15
    10黄展.宽带卫星网络安全协议研究.哈尔滨工业大学博士论文. 2009: 8~12
    11梁百川.网络中心战与网格技术.舰船电子对抗. 2008, 31(4): 32~35
    12陈萱,陈建光.美国新型军事通信卫星发展与未来战场应用.中国航天. 2008, 7: 29~35
    13柯白,舒文琼.关于IP通信进入太空领域的思考.通信世界. 2007, 20: 17
    14 http://www.globalsecurity.org/space/systems/tsat.htm
    15“十一五”宽带多媒体通信卫星系统顶层技术指标专家研讨会在京召开.数字通信世界, 2006, 12: 88
    16李广侠,冯少栋,甘仲民,张更新.宽带多媒体卫星通信系统现状和发展趋势(上).数字通信世界. 2009, 1: 82~86
    17李广侠,冯少栋,甘仲民,张更新.宽带多媒体卫星通信系统现状和发展趋势(下).数字通信世界. 2009, 2: 82~84
    18 S. Shenker, C. Partridge, R. Guerin. Specification of Guaranteed Quality of Service. IETF RFC2212, 1997, http://www.ietf.org/rfc/rfc2212.txt
    19 Y. Hu, V. O. K. Li. Satellite-Based Internet: A Tutorial. IEEE Communications Magazine. 2001, 39(3): 154~162
    20 L. S. Brakmo, S. W. O'Malley, L. L. Peterson . TCP Vegas: New Techniques for Congestion Detection and Avoidance. ACM SIGCOMM Computer Communication Review . 1994, 24(4): 24~35
    21 J. Sing, B. Soh. TCP New Vegas: Improving the Performance of TCP Vegas over High Latency Links. IEEE International Symposium on Network Computing and Applications, 2005: 73-82
    22 I. F. Akyildiz, G. Morabito, S. Palazzo. TCP-Peach: A New Congestion Control Scheme for Satellite IP Networks. IEEE/ACM Transactions on Networking. 2001, 9(3): 307~321
    23 Liu Jiong, Cao Zhigang, Khan M. Junaid. TP-Satellite: A New Transport Protocol for Satellite IP Networks. IEEE Transactions on Aerospace and Electronic Systems. 2009, 45(2): 502~515
    24顾明,张军.适用于卫星网络的TCP跨层改进机制.电子与信息学报. 2008, 30(8): 1815~1819
    25马金忠,叶进,张向利.无线网络中基于显式拥塞反馈的TCP协议跨层设计研究.计算机科学. 2009, 36(3): 82~85
    26张顺亮.端到端的网络拥塞控制及服务质量研究.浙江大学博士学位论文. 2004: 1~4
    27 N. Wisitpongphan, J. M. Peha. Effect of TCP on Self-Similarity of Network Traffic. IEEE International Conference on Computer Communications and Networks, 2003: 370~373
    28宋美娜,段云峰,宋俊德,王进.数据业务自相似特性研究.通信学报. 2004, 25(8): 150~155
    29 Guo Lei, Chen Songqing, Xiao Zhen, Tan Enhua, Zhang Xiaodong. Measurements, Analysis and Modeling of BitTorrent-like Systems. Internet Measurement Conference, 2005: 35~48
    30 R. Beverly, K. Claffy. Wide-Area IP Multicast Traffic Characterization. IEEE Network. 2003, 17(1): 8~15
    31 J. Beran, T. Sherman, M. S. Taqqu, W. Willinger. Long-Range Dependence in Variable-Bit-Rate Video Traffic. IEEE Transactionons on Communications. 1995, 43(234): 1566~1579
    32 R. Addie, M. Zuckerman, T. Neame. Fractal Traffic: Measurements, Modeling and Performance Evaluation. IEEE INFOCOM, 1995, (3): 977~984
    33 M. W. Garrett, W. Willinger. Analysis, Modeling and Generation of Self-Similar VBR Video Traffic. ACM SIGCOMM Computer Communication Review. 1994, 24(4): 269~280
    34 M. E. Crovella, A. Bestavros. Self-Similarity in World Wide Web Traffic Evidence and Possible Causes. IEEE/ACM Transactions on Networking. 1997, 5(6): 835~846
    35 S.Kalidindi, J.Z.Matthew. Surveyor: An Infrastructure for Internet Performance Measurements. http://www.isoc.org/inet99/proceedings/4h/4h_2.htm
    36 W. S. Leizaola. Tuning IP Perfonnnce: The Right Tools for the Task. Data Couunications. 1998, 27(7): 129~130
    37 A. Erramilli, R.P. Singh, P. Pruthi. An Application of Deterministic Chaotic Maps to Model Packet Traffic. Queuing Systems and their Applications. 1995, 20: 171~206
    38 W. Lau; A. Erramilli, J.L. Wang, W. Willinger. Self-similar Traffic Generation: the Random Midpoint Displacement Algorithm and Its Properties. IEEE International Conference on Communications. 1995, (1): 466~472
    39 C. W. Granger, R. Joyenn. An Introduction to Long-Memory Time Series Models and Fractional Differencing. Time Series Anal. 1980, 1: 15~29
    40 C. Huang, M. Devetsikiotis, I. Lambadaris, A. R. Kaye. Modeling and Simulation of Self-Similar Variable Bit Rate Compressed Video: A Unified Approach. ACM Computer Communication Review. 1995, 25(4): 114~125
    41 M. Stoksik, R. Lane, D. Nguyen. Accurate Synthesis of Fractal Brownian Motion Using Wavelets. Electronics Letters. 1994, 30(5): 383~384
    42吴泽民,郑少仁.自相似流量及其对网络性能的影响.解放军理工大学学报. 2000, 5(l): 29~34
    43关洪涛,王东,赵有健,吴建平. NewReno拥塞控制方式下路由器缓冲区容量研究.电子学报. 2009, 37(7): 1440~1446
    44 Rao Yunhua, Zou Xuecheng, Liu Weizhong. Resource Allocation for Self-Similar Queue System. International Conference on Parallel and Distributed Computing, Applications and Technologies, 2003: 372~374
    45胡英,谭献海,漆世钱,金炜东.自相似业务下接纳控制研究.微计算机信息. 2008, 24(8-3): 39~41
    46 A. Al-Maashri, M. Ould-Khaoua. Performance Analysis of MANET Routing Protocols in the Presence of Self-Similar Traffic. IEEE Conference on Local Computer Networks, 2006: 801~807
    47谭巍,沙学军,徐玉滨.基于自相似业务的移动Ad hoc网络路由算法研究.电子与信息学报. 2008, 30(6): 1475~1479
    48 E. S. Yu, C. Y. R. Chen. Traffic Prediction Using Neural Networks. IEEE Global Telecommunications Conference, 1993, (2): 991~995
    49 H. Tode, A. Iwamoto, H. Ikeda. Traffic Predictor Using Neural Network and Its Performance. Electronics and Communications in Japan (Part 1). 2000, 11(83): 33~42
    50王兆霞,孙雨耕,王志勇,郝庭柱,孙小薇,秦娟,沈花玉.基于神经网络的业务量预测研究.光电子·激光. 2006, 17(10): 1255~1258
    51王兆霞,孙雨耕,陈增强,袁著祉.基于模糊神经网络的网络业务量预测研究.通信学报. 2005, 26(3): 136~140
    52 S. Satsri, S. Ardhan, V. Chutchavong, O. Sangaroon. ANN based NGN IP Traffic Prediction in Thailand. International Conference on Control, Automation and Systems. 2007: 2154~2157
    53 A. Abdennour. Evaluation of Neural Network Architectures for MPEG-4 Video Traffic Prediction. IEEE Transactions on Broadcasting. 2006, 52(2): 184~192
    54 G. Mao, H. Liu. Real Time Variable Bit Rate Video Traffic Prediction. International Journal of Communication Systems. 2007, 20(4): 491~505
    55陈剑,闻英友,赵大哲,刘积仁. VBR视频流量的小波包分解及其长时预测.通信学报. 2008, 29(6): 34~42
    56白翔宇,叶新铭,蒋海.基于小波变换与自回归模型的网络流量预测.计算机科学. 2007, 34(7): 47~49
    57田妮莉,喻莉.一种基于小波变换和FIR神经网络的广域网网络流量预测模型.电子与信息学报. 2008, 30(10): 2499~2502
    58 S. Yao, C. Hu, M. Sun. Prediction of Web Traffic based on Wavelet and Neural Network. The Sixth World Congress on Intelligent Control and Automation, 2006, (1): 4026~4028
    59 J. Lv, T. Li, X. Li. Network Traffic Prediction Algorithm and its Practical Application in Real Network. 2007 IFIP International Conference on Network and Parallel Computing Workshops, 2007: 512~517
    60李捷,候秀红,韩志杰.基于卡尔曼滤波和小波的网络流量预测算法研究.电子与信息学报. 2007, 29(3): 725~728
    61 Y. Wang, S. Yu, X. Yang, D. Zou, Z. Fang. H∞-Optimal Model for VBR Video Traffic Prediction. IEEE Transactions on Consumer Electronics. 2006, 52(3): 1078~1083
    62 A. Kolarov, A. Atai, J. Hui. Application of Kalman Filter in High-speed Networks. IEEE Global Telecommunications Conference, 1994, (1): 624~628
    63 Z. Fang, Y. Zhou, D. Zou. Kalman Optimized Model for MPEG-4 VBR Sources. IEEE Transactions on Consumer Electronics. 2004, 50(2): 688~670
    64 A. M. Adas. Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model. IEEE/ACM Transactions on Networking, 1998, 6(5): 635~644
    65 B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishinan, S. Shenker, J. Wroclawski, L. Zhang. Recommendations on Queue mManagement and Congestion Avoidance in the Internet. RFC2309, 1998, http://tools.ietf.org/html/rfc2309: 1~17
    66 S. Floyd, V. Jacobson. Random Early Detection Gateways for Congestion Avoidance. IEEE Transactions on Networking. 1993, 1(4): 397~413
    67 M. Christiansen, K. Jeffay, D. Ott, F. D. Smith. Tuning RED for Web Traffic. IEEE/ACM Transactions on Networking. 2001, 9(3): 249~264
    68 W. Feng, D. D. Kandlur, D. Saha, K.G. Shin. A Self-Configuring RED Gateway. Proceedings of IEEE INFOCOM. 1999, (3): 1320~1328
    69 S. Floyd, R. Gummadi, S. Shenker. Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue Management. http://www.icir.org/floyd/papers/adaptiveRed.pdf: 1~12
    70 T. J. Ott, T. V. Lakshman, L. H. Wong. SRED: Stabilized RED. Proceedings of IEEE INFOCOM. 1999, (3): 1346~1355
    71 S. Floyd. Recommendation on Using the "Gentle" Variant of RED. 2000, http://www.icir.org/floyd/red/gentle.html
    72 D. Lin, R. Morris. Dynamics of Random Early Detection. Proceedings of ACM/SIGCOMM. 1997: 127~137
    73 C. Wang, B. Li, Y. T. Hou, K. Sohraby, Y. Lin. LRED: A Robust Active Queue Management Scheme Based on Packet Loss Ratio. IEEE INFOCOM, 2004, (1): 1~12
    74 F. M. Anjum, L. Tassiulas. Fair Bandwidth Sharing among Adaptive and Non-Adaptive Flows in the Internet. IEEE INFOCOM, 1999, (3): 1412~1420
    75 W. Feng, K. G. Shin, D. D. Kandlur, D. Saha. The BLUE Active Queue Management Algorithms. IEEE/ACM Transactions on Networking. 2002, 10(4): 513~528
    76 R. Pan, B. Probhakar, K. Psounis. CHOKe: A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation. IEEE INFOCOM, 2000, (2): 942~951
    77 W, Feng, A, Kapadia, S, Thulasidasan. GREEN: Proactive Queue Management over a Best-Effort Network. IEEE Global Telecommunications Conference, 2002, (2): 1784~1788
    78温昱晖,朱祥华,张勇.自相似流量的主动队列管理算法.电子与信息学报. 2006, 28(7): 1303~1307
    79 A. Jain, A. Karandikar, R. Verma. Adaptive Prediction Based Approach for Congestion Estimation (APACE) in Active Queue Management. Computer Communications. 2004, 27: 1647~1660
    80 L. Wang, G. Min, I. Awan. Modeling and Analysis of Active Queue Management Schemes under Bursty Traffic. International Journal of Wireless Information Networks. 2006, 13(2): 161~171
    81 K. Zhou, K. L. Yeung, O. K. Li. Victor. Nonlinear RED: A Simple yet Efficient Active Queue Management Scheme. Computer Networks. 2006, 50(18): 3784~3794
    82 H. Zhang, L. Song, B. Fan, J. Liang. Optimal Buffer Management Algorithm with Auto-Tuning Reference Queue Length. IEEE International Conference on High Performance Computing and Communications, 2008: 418~424
    83纪其进,董永强.一种链路负载自适应的主动队列管理算法.软件学报. 2006, 17(5): 1140~1148
    84 C. Wang, B. Li, Y. T. Hou, S. Kazem, K. Long. A Stable Rate-Based Algorithm for Active Queue Management. Computer Communications. 2005, 28(15): 1731~1740
    85 J. Wang, M. Song, H. Yang. Rate-Based Active Queue Management for Congestion Control over Wired and Wireless Links. IEEE ChinaCom, 2006: 1~6
    86张鹤颖,刘宝宏,窦文华.一种基于速率和队列长度的主动队列管理机制.电子学报. 2003, 31(11): 1743~1746
    87 J. Hong, C. Joo, S. Bahk. Active Queue Management Algorithm Considering Queue and Load States. Computer Communications. 2007, 30(4): 886~892
    88刘明,窦文华,张鹤颖.大延时网络中的主动队列管理机制.国防科技大学学报. 2006, 28(5): 47~51
    89 S. Ryu. PAQM: An Adaptive and Proactive Queue Management for End-to-End TCP Congestion Control. International Journal of Communication Systems. 2004, 17(8): 811~832
    90 S. Athuraliya, S. H. Low. Optimization Flow Control, II: Random Exponential Marking. 2000, http://netlab.caltech.edu/pub.html
    91 F. Huang, S. Wu, H. Xu, J. Liu, B. Xiao. Probability Based Dynamic Channel Reservation Strategy for Reliable Handoff in Multimedia LEO Satellite Communications. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005, (2): 567~1570
    92 P. Todorova, S. Olariu, H. Nguyen. A Selective Look-Ahead Bandwidth Allocation Scheme for Reliable Handoff in Multimedia LEO Satellite Networks. 2nd European Conference on Universal Multiservice Networks, 2002: 36~43
    93 M. El-Kadi, S. Olariu, P. Todorova. Predictive Resource Allocation in Multimedia Satellite Networks. IEEE Global Telecommunications Conference, 2001, (4): 2735~2739
    94 M. Wu, W. E. Wong, J. J. Li. Performance Evaluation of Predictive Handoff Scheme with Channel Borrowing. IEEE International Performance, Computing, and Communications Conference, 2003: 531~536
    95 P. K. Lakshmanan, Q. Zeng, Dynamic Adaptive Resource Allocation Scheme for Multimedia Services in Wireless and Mobile Networks. Wireless Telecommunications Symposium, 2006: 1~7
    96 M. El-Kadi, S. Olariu, H. Abdel-Wahab. A Rate-Based Borrowing Scheme for QoS Provisioning in Multimedia Wireless Networks. IEEE Transactions on Parallel and Distributed Systems. 2002, 13(2): 156~167
    97 P. Koutsakis. A New Call Admission and Medium Access Control Framework for Multimedia Traffic over GEO Satellite Networks. IEEE Singapore International Conference on Communication Systems, 2008: 890~895
    98 G. I. Tsiropoulos, D. G. Stratogiannis, P. G. Cottis. Call Admission Control with QoS Guarantees for Multiservice Wireless-Broadband over Power Line Networks. IEEE International Symposium on Wireless Communication Systems, 2008: 168~172
    99 G. Djukanovi?, N. Gospi?, M. ?unjevari?. CAC Negotiation Algorithm Proposal for Higher QoS in Heterogeneous Wireless Networks. International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 2007: 19~22
    100吴越,毕国光.无线多媒体网络中一种基于测量网络状态的动态呼叫接纳控制算法.计算机学报. 2005, 28(11): 1823~1830
    101 T. Yoshihara, S. Kasahara, Y. Takahashi. Practical Time-Scale Fitting of Self-Similar Traffic with Markov-Modulated Poisson Process. Telecommunication Systems. 2001, 1(2): 185~211
    102吴援明.网络中自相似业务流的特性及其影响研究.电子科技大学(成都)博士学位论文. 2008: 1~3
    103伍春华.因特网流量建模及其在网络仿真中的应用研究.中南大学博士学位论文. 2001: 12~15
    104 B. Tsybakov, N. D. Georganas. Self-Similar Processes in Communications Networks. IEEE Transactions on Information Theory. 1998, 44(5): 1713~1725
    105 W. Willinger, M. S. Taqqu, R. Sherman, D.V. Wilson. Self-Similarity through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE/ACM Transactions on Networking. 1997, 5(1): 71~86
    106 M. S. Taqqu, W. Willinger, S. Robert. Proof of a Fundamental Result in Self-similar Traffic Modeling. ACM Computer Communication Review, 1997, 27(2): 5~23
    107 L. Lipsky, M. Jobmann, M. Greiner, H.-P. Schwefel. Comparison of the Analytic N-burst Model with Other Approximations to Telecommunications Traffic. IEEE International Symposium on Network Computing and Applications, 2001: 122~132
    108 L. Lipsky, H.-P. Schwefel. N-burst Processes as Models of Self-Similar Traffic in Telecommunication Systems. http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.55.2935: 43~80
    109 S. Yin; X. Lin. Traffic Self-Similarity in Mobile Ad hoc Networks. 2nd IFIP International Conference on Wireless and Optical Communications Networks, 2005: 285~289
    110 Q. Liang. Ad hoc Wireless Network Traffic-Self-Similarity and Forecasting. IEEE Communications Letters. 2002, 6(7): 297~299
    111 H. R. Mehrvar, T. Le-Ngoc. Estimation of Degree of Self-Similarity for Traffic Control in Broadband Satellite Communications. Canadian Conference on Electrical and Computer Engineering, 1995, (1): 515~518
    112 J. Shi, H. Zhu. Merging and Splitting Self-Similar Traffic. Fifth Asia-Pacific Conference on Communications, 1999, (1): 110~114
    113 Y. Jie, A. P. Petropulu, H. Sethu. Rate-Limited EAFRP: A New Improved Model for High-Speed Network Traffic. IEEE Transactions on Signal Processing. 2005, 53(2) : 505~522
    114 Y. Jie, A. P. Petropulu. Is High-Speed Wireless Network Traffic Self-Similar? IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, (2): ii-425-8
    115 Y. Jie, A. A. P. Petropulu. Study of the Effect of the Wireless Gateway on Incoming Self-Similar Traffic. IEEE Transactions on Signal Processing. 2006, 54(10) : 3741~3758
    116 A. Sang, S. Li. A Predictability Analysis of Network Traffic. Proceedings of INFOCOM. 2000, (1): 342~351
    117 J. W. Roberts. Traffic Theory and the Internet. IEEE Communication Magazine. 2001, 39(1): 94~99.
    118 J. Rogers, K. J. Christensen. A Fluid-Flow Characterization of Internet1 and Internet2 Traffic. IEEE Conference on Local Computer Networks, 2001: 509-513
    119 A. P. Sage, G. W. Husa. Adaptive Filtering with Unknown Prior Statistics. Proceedings of Joint Automatic Control Conference, 1969: 760~769
    120邓自立.噪声统计的在线辨识和自适应卡尔曼滤波.黑龙江大学自然科学学报. 1981, 1: 17~32
    121 J. R. M. Hosking. Fractional differencing. Biometrika, 1981, 68(1): 165~176
    122 A. T. Andersen, B. F. Nielsen. An Application of Superpositions of Two States Markovian Sources to the Modeling of Self-Similar Behaviour. Proceedings of IEEE INFOCOM. 1997, (1): 196~204
    123 Y. Shu, Z. Jin, L. Zhang, L. Wang, O. W. W. Yang. Traffic Prediction Using FARIMA Models. IEEE International Conference on Communications, 1999, (2): 891~895
    124 C. Wang, J. Liu, B. Li, K. Sohraby, Y. T. Hou. LRED: A Robust and Responsive AQM Algorithm Using Packet Loss Ratio Measurement. IEEE Transactions on Parallel and Distributed Systems. 2007, 18(1): 29~43
    125 C. V. Hollot, V. Misra, D. Towsley, B. Gong. Analysis and Design of Controllers for AQM Routers Supporting TCP Flows. IEEE Transactions on Automatic Control. 2002, 47(6): 945~959
    126 C. V. Hollot, V. Misra, D. Towsley, B. Gong. On Designing Improved Controllers for AQM Routers Supporting TCP Flows. Proceedings of IEEE INFOCOM. 2001, (3): 1726~1734
    127 C. V. Hollot, V. Misra, D. Towsley, B. Gong. A Control Theoretic Analysis of RED. Proceedings of IEEE INFOCOM. 2001, (3): 1510~1519
    128 J. Sun, G. Chen, K.-T. Ko, S. Chan, M. Zukerman. PD-Controller: A New Active Queue Management Scheme. IEEE Global Telecommunications Conference, 2003, (6): 3103~3107
    129 J. Siwko, I. Rubin. Call Admission Control Policy for Capacity-Varying Networks with Increasing Failure Rate Holding Time Distribution. IEEE International Conference on Communications, 1998, (2): 832~836
    130 P. Barsocchi, N. Celandroni, F. Davoli, E. Ferro, G. Giambene, F. J. G. Casta?o, A. Gotta, J. I. Moreno, P. Todorova. Radio Resource Management across Multiple Protocol Layers in Satellite Networks: A Tutorial Overview. International Journal of Satellite Communication Network. 2005, 23(5): 265~305
    131 Information Technology-Coding of Audiovisual Objects-Part 2: Visual. ISO/IEC 144962-2, Committee Draft, 2004
    132 ITU-T, Video coding for low bit rate communications. ITU-T Recommendation H.263, version 1, version 2, 1998.
    133 R. R.–F. Liao, A. T. Campbell. A Utility-Based Approach for Quantitative Adaptation in Wireless Packet Networks. Wireless Networks. 2001, 7(5): 541~557
    134 V. Rakocevic, J. Griffiths, G. Cope. Performance Analysis of Bandwidth Allocation Schemes in Multiservice IP Networks Using Utility Functions. www.staff.city.ac.uk/~veselin/publications/Rakocevic_ITC01.pdf: 1~11
    135 L. Boukhatem, A. L. Beylot, D. Ga?ti, G. Pujolle. TCRA: A Time-Based Channel Reservation Scheme for Handover Requests in LEO Satellite Systems. International Journal of Satellite Communications and Networking. 2003, 21(3): 227~240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700