用户名: 密码: 验证码:
无线MESH网络资源调度算法与QoS保障机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Wireless Mesh Network (WMN)是无线Ad Hoc网络在组网结构、通信机制等方面的扩展。以往对Ad Hoc网络及IP网络的研究成果可以作为参考,但不能完全适用于WMN。WMN在网络结构、网络容量、物理层、MAC层、资源调度、路由协议、QoS(Quality of Service)保障等方面出现了许多新课题,而这些课题是WMN实现大规模应用的关键环节。
     WiMAX Mesh网络作为主流WMN网络,在资源调度与QoS保障方面仍存在一些问题需要解决。IEEE 802.16为WiMAX Mesh模式定义了三种网络资源调度机制,即协同集中式调度、协同分布式调度、非协同分布式调度,但是规范中对各种调度机制并没有给出完整的实现方案,对于实际组网所关心的网络稳定性、容灾性问题,以及对网络新技术如OFDMA等的引入等都没有给出明确的定义。在QoS保障方面,虽然IEEE 802.16标准为点到多点PMP模式在MAC层定义了若干QoS级别和保障方案,但是对WiMAX Mesh模式,在规范中却没有定义类似于PMP模式的QoS级别和保障机制。由于Mesh网络固有的多跳属性给相关机制的设计和实现造成一定困难,使得WiMAX Mesh难以支持端到端的QoS,从而对WiMAX Mesh技术投入实际应用造成了障碍。
     本文以WiMAX Mesh为研究重点,分析了业界在WMN资源调度和QoS保障方面的研究现状,结合WiMAX Mesh网络技术特点,以提高资源利用率,实现端到端QoS保障为目标,提出了一系列优化算法和保障机制,并通过理论分析和实验仿真进行了验证。本论文的主要成果和创新点包括以下6点:
     (1)系统分析主要WMN网络(包括WiFi Mesh和WiMAX Mesh)的技术原理,总结网络容量、资源调度和QoS保障的研究现状和存在问题。本文对WMN网络的物理层、MAC层、组网方案、网络接入、拓扑控制、调度算法、QoS保障机制等方面的工作原理进行了深入调研,这是开展WMN网络资源调度和QoS保障研究工作的理论基础。
     (2)根据WiMAX Mesh网络流量特性,首次提出一种网络流量预测新方法(WARPA)。在对WiMAX Mesh网络流量特性进行分析的基础上,本文提出了一种基于小波变换和AAR模型的WiMAX Mesh网络流量预测新方法。仿真实验的结果表明,本方法的预测精度较高,运算量适中,适合于对网络流量进行准确预测。
     (3)在(1)的基础上,提出一种多出口WiMAX Mesh组网方案和资源调度算法(MEMSA)。本文分析了WiMAX Mesh网络的调度机制和单出口WiMAX Mesh网络在吞吐量和容灾性方面存在的问题,提出了一种多出口组网方案,并在该方案基础上提出了一种全局最优的资源调度算法,以及把该算法在WiMAX Mesh网络实施的详细步骤。本文在具有20和50个SS节点的Mesh网络中对该算法进行仿真,本算法可以把调度效率提高53%以上。
     (4)提出基于OFDMA的WiMAX Mesh系统模型,并提出一种基于蚁群算法的资源调度算法(AWRAA)。为了实现基于OFDMA的WiMAX Mesh网络资源的最优化调度,需要综合考虑网络节点和信道的数量、调制方式、误比特率、调度模式、QoS需求等多种因素,同时使网络吞吐量达到最大化,所以问题的求解难度极高。为此,本文建立了基于OFDMA的WiMAX Mesh网络系统优化模型。模型的优化目标是在充分考虑功率、调度和吞吐量约束条件下最大化网络吞吐量。为了对系统模型进行求解,本文结合WMN网络特点,提出了一种较为完善的基于蚁群算法的求解算法。该算法具有容易实现并且灵活支持不同的需求和约束的特点。这些特点使得本方法可方便地应用于实际网络环境。仿真结果表明,本算法有效解决了OFDMA WiMAX Mesh的资源调度难题。
     (5)首次提出一种基于全局优化的WiMAX Mesh网络QoS保障算法(WMNQGA)。本文在分析现有WiMAX Mesh QoS保障机制的基础上,提出了一种有效、动态的QoS保障算法。该算法把WiMAX Mesh网络视为一个整体,定义了各节点在进行数据包处理时应该遵循的约束条件,并给出了各节点对网络流量的处理方式。此算法是在WiMAX Mesh网络的QoS保障方面一个新的探索。仿真结果表明,本算法既提高了全网吞吐量,同时在不同的拓扑结构下仍能确保各节点对带宽使用的比例公平性。
     (6)首次在WiMAX Mesh网络中提出智能标签技术,并提出一种基于智能标签的WiMAX Mesh网络QoS保障算法(ITBQoS)。本文在分析WiMAX Mesh网络QoS保障机制研究现状的基础上,首次提出了一种称之为“智能标签”的概念和算法,接着定义了与数据流相关的智能标签的结构和属性,各网络节点对智能标签及数据流的约束条件和处理算法,制定了不同优化目标下的系统模型,并给出了相应启发式算法。仿真结果表明,智能标签技术在不同带宽和故障概率下均取得较好性能,既可提升WiMAX Mesh网络吞吐量,也可满足各节点的QoS需求,具有良好的应用前景。
Wireless Mesh Network, WMN, is an extension to the mobile Ad Hoc network, both in network architecture and communication mechanism. The current achievements in the research of Ad Hoc Network and IP Network can not be used in WMN. There are some open issues in network architecture, capacity, physical layer, MAC layer, resource scheduling, routing protocol and QoS guaranteeing mechanism. And these issues are critical to the deployment of WMN at large scale.
     There are some problem in the field of resource scheduling and QoS guaranteeing for the mainstream of WMN, WiMAX Mesh Network. The IEEE 802.16 mesh mode has defined three different scheduling schemes to manage the minislots in the data subframe, i.e., centralized scheduling, uncoordinated distributed scheduling, and coordinated distributed scheduling, but the IEEE 802.16 neither explain them in detail, nor give any guideline for the stability and robustness of network. And it does not cover the problem of deploying new network technology, for example OFDMA, in WiMAX Mesh Mode. As to QoS guaranteeing, though the IEEE 802.16 defines some QoS Class and guaranteeing schemes for WiMAX Point to Multipoint Mode, there is no counterpart for WiMAX Mesh Mode. Since its character of multi-hop, it is difficult to support end-to-end QoS in WiMAX Mesh Network, and it has turned out to be an obstacle for the deployment.
     In this dissertation, we firstly analyze the current achievements in resource scheduling and QoS guaranteeing for WMN, then advance a series of algorithm and guaranteeing mechanism to improve the wireless resource utilization and end-to-end QoS guaranteeing, based on the character of WiMAX Mesh Network. The main research work and achievement of this dissertation includes:
     (1) The technical principle of mainstream of WMN, including WiFi Mesh and WiMAX Mesh, was studied systematically. We made thorough investigations in the field of network architecture, capacity, physical layer, MAC layer, resource scheduling, routing protocol and QoS guaranteeing mechanism. And this is the theoretical basis of our research.
     (2) The character of traffic in WiMAX MESH Network is analyzed, and a predicting method based on wavelet transformation and AAR model, WARPA, is proposed. To allocate bandwidth in WiMAX Mesh Network dynamically and efficiently, we need to predict the real-time traffic volume correctly, which will be sent to the Mesh scheduler. The Mesh scheduler will grant bandwidth to each Mesh node according to the value. In our study, the current predicting method, including ARMA, is found to be not so proper for using in WiMAX Mesh Network. With our predicting method, the noise of traffic volume with wavelet transformation is decreased, and the result is fed into the AAR model, which will adjust the model argument automatically, to do the predicting job. To verify the algorithm, we used the traffic volume data captured in Auckland college into the model. It is found that the algorithm is about 2 percent more accurate than the AARMA model. The simulation result showed that our method has more precise prediction and less computation time, and is more suitable for WiMAX Mesh Network.
     (3) Based on achievement (1), we consider the scheduling efficiency, throughput and robustness for WiMAX Mesh Network. We analyze the scheduling mechanism of WiMAX Mesh Network and point out problem of current backhaul network structure. We proposed a new WiMAX Mesh network topology with multiple BS as egress, and propose an efficient optimal scheduling algorithm, MEMSA, for this new network topology. The detailed procedure for deploying this algorithm is described as well. We developed a simulation platform to verify this algorithm in WiMAX Mesh network with 20 and 50 MESH SS nodes respectively. The simulation result shows that our algorithm improves the efficiency more than 53 percent. We also illustrate that the bottleneck problem of the backhaul network can be solved by our scheduling algorithm.
     (4) Although OFDMA is a candidate physical layer protocol for 802.16, there are few solutions for the wireless resource-allocating problem in OFDMA mesh network. We study the current resource allocation methods in OFDM and OFDMA network, and introduce the architecture of OFDMA mesh network. We build a mathematic system model for the OFDMA mesh network, and propose a sophisticated ACO-based algorithm for wireless resource allocation, AWRAA. With our algorithm, we get acceptable solution, while fulfilling power and QoS constraints. Since our algorithm is easy to adapt to more realistic problems, it turns out to be a feasible method. The simulation result showed our algorithm is able to find a sub-optimal answer for resource allocation in OFDMA mesh network.
     (5) Since the IEEE 802.16 Specification has not defined how to guarantee QoS in WiMAX Mesh Network, it became a critical problem for deployment. We analyzed several existing WMN QoS guaranteeing mechanisms, and found they have some limitation and could not guarantee QoS in WMN very well. We advanced an effective and dynamic QoS-Guaranteeing algorithm, WMNQGA, for WMN, which described the traffic handling method of each node in view of integrity. It calculated the global optimized traffic-handling pattern for each node, and gave some constraints for the WiMAX Mesh nodes. Our algorithm can improve the network throughput, and ensure fairness. To verify our algorithm, we developed a WiMAX Mesh simulating platform and ran our simulation on it. The simulation result showed that our algorithm is effective and feasible.
     (6) Though it is important for the application of WiMAX Mesh Network, the IEEE 802.16 Specification has not defined how to guarantee QoS in WiMAX Mesh Network. And most of the current related research on WMN QoS only focuses on routing Algorithm or Hop-by-Hop QoS guaranteeing. By analyzing the current status of QoS guaranteeing mechanism, we advanced a new technology named“Intelligent Tag”. Based on it, we proposed a QoS-Guaranteeing algorithm for WiMAX Mesh Network, ITBQoS, which defined the ITtag handling method of each node in view of the whole network, and then we give the detailed procedure of handling the ITtag in each node. We also give some constraint on the WiMAX Mesh nodes in processing the packets. To verify our algorithm, we developed a WiMAX Mesh simulating platform and run our simulation on it. The simulation result showed that our algorithm is effective and feasible.
引文
[1]方旭明.下一代无线因特网技术:无线Mesh网络[M].人民邮电出版社,2006年5月
    [2]陈林星.移动Ad Hoc网络-自组织分组无线网络技术[M].电子工业出版社,2006年4月
    [3] Akyildiz I, Wang X, and Wang W. Wireless Mesh networks: a survey[J]. Computer Networks, 2005, 47(1): 445-487
    [4]张勇,郭达.无线网状网原理与技术[M].电子工业出版社,2007: 7-10
    [5]汪裕民. OFDM关键技术与应用[M].机械工业出版社,2007年1月
    [6]黄韬. MIMO相关技术与应用[M].机械工业出版社,2007年1月
    [7] Zhang Yan, Luo Jijun, Hu Honglin. Wireless Mesh Networking Architectures, Protocols and Standards[M]. Auerbach Publications, 2007: 227-237
    [8] Hincapie R, Sierra J, Bustamante R. Remote locations coverage analysis with wireless Mesh networks based on IEEE 802.16 Standard[J]. IEEE Communications Magazine, Vol.45, No.1, Jan. 2007: 120-127
    [9] Bu T, Chan M C, Ramjee R. Designing wireless radio access networks for third generation cellular networks[J]. IEEE INFOCOM 2005, Vol.1, March 2005: 68-78
    [10] Fu L, Cao Z, Fan P. Spatial reuse in IEEE 802.16 based wireless Mesh networks[C]. IEEE International Symposium on Communications and Information Technology, Vol.2, Oct. 2005: 1311-1314
    [11] Wei H, Ganguly S, Izmailov R. Haas Z.J. Interference-aware IEEE 802.16 WiMax Mesh networks[C]. IEEE VTC 2005, Vol.5, June 2005
    [12] Han B, Jia W, Lin L. Performance evaluation of scheduling in IEEE 802.16 based wireless Mesh networks[J]. Elsevier Computer Communications, Vol.30, No. 4, February 2007: 782-792
    [13] Cao M, Ma W,Zhang Q. Analysis of IEEE 802.16 Mesh Mode Scheduler Performance[J]. IEEE Transactions on Wireless Communications, Vol.6, No.4, April 2007: 1455-1464
    [14] Bhatnagar S, Ganguly S, Izmailov R. Design of IEEE 802.16-based multi-hop wireless backhaul networks[C]. ACM Proceedings of the 1st international conference on Access networks, Sep. 2006
    [15] Wei H, Ganguly S. Design of 802.16 WIMAX Based Radio Access Network[C]. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2006
    [16] Chen D.T. On the Analysis of Using 802.16e WiMAX for Point-to-Point Wireless Backhaul[C]. IEEE Symposium on Radio and Wireless, Jan. 2007: 507-510
    [17] Gupta P, Kumar P. R. The capacity of wireless networks[J]. IEEE Trans. Inform. Theory, vol. 46, no. 3, March 2000: 388–404
    [18] Liu B, Liu Z, Towsley D. On the capacity of hybrid wireless networks[C]. IEEE INFOCOM 2003, Vol.2, April 2003: 1543-1552
    [19] Kyasanur P, Vaidya N.H. Capacity of multi-channel wireless networks: impact of number of channels and interfaces[C]. ACM International Conference on Mobile Computing and Networking, September 2005: 43-57
    [20] Jain K, Padhye J, Padmanabhan V.N, Qiu L. Impact of interference on multi-hop wireless network performance[C]. ACM 2003 International Conference on Mobile Computing and Networking, Sep. 2003: 66-80
    [21] Kodialam M, Nandagopal T. Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem[C]. ACM 2003 International Conference on Mobile Computing and Networking, Sep. 2003: 42-54
    [22] IEEE 802.11 Working Group. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. ANSI/IEEE Standard 802.11b, 2001
    [23] IEEE 802.11 Working Group. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. ANSI/IEEE Standard 802.11e, 2005
    [24] IEEE 802.11 Working Group. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. ANSI/IEEE Standard 802.11s, 2007
    [25] ANSI/IEEE Standard 802.16d-2004. IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems[S].2004
    [26]曾春亮,张宁,王旭莹,等. WiMAX/802.16原理与应用[M].机械工业出版社,2007年1月
    [27] Mogre P. S, Hollick M, Steinmetz R. The IEEE 802.16-2004 MeSH Mode Explained. Technical Report 08[D]. TU-Darmstadt, Germany,ftp://ftp.kom.tu-darmstadt.de/pub/TR/KOM-TR-2006-08
    [28] Eklund C, Marks R, Stanwood K. IEEE standard 802.16: a technical overview of the WirelessMAN air interface for broadband wireless access[J]. IEEE Communications Magazine, vol. 40, no. 6, June 2002: 98–107
    [29] Chen J, Jiao W, Guo Q. An integrated QoS control architecture for IEEE 802.16 broadband wireless access systems[C]. Globecom’05,2005
    [30] Wongthavarawat K, Ganz A. Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems[J]. International Journal of Communication Systems,vol. 16, 2003: 81–96
    [31] Lee H, Kwon T, Cho D. An Efficient Uplink Scheduling Algorithm for VoIP Services in IEEE 802.16 BWA Systems[C]. IEEE VTC2004-Fall, vol. 5, September 2004: 3070–3074
    [32] Shetiya H, Sharma V. Algorithms for routing and centralized scheduling to provide QoS in IEEE 802.16 mesh networks[C]. WMuNeP’05: Proceedings of the 1st ACM workshop on Wireless multimedia networking and performance modeling, 2005: 40–149
    [33] Niyato D, Hossain E. A Queuing-Theoretic and Optimization-Based Model for Radio Resource Management in IEEE 802.16 Broadband Wireless Networks[J]. IEEE Transactions on Computers, vol. 55, no. 11, Nov. 2006: 1473–1488
    [34] Zhang Yan, Luo Jijun, Hu Honglin. Wireless Mesh Networking Architectures, Protocols and Standards[M]. Auerbach Publications, 2007: 227-237
    [35] Bejerano Yigal. Efficient Integration of Multi-Hop Wireless and Networks with QoS Constraints[C]. Proceedings of MobiCom, 2002
    [36] Mogre P. S, Hollick M, Schwingenschloegl C. QoS Architecture for Efficient Bandwidth Management in the IEEE 802.16 MESH Mode[C]. in WiMax/MobileFi: Advanced Research and Technology. Auerbach Publications, CRC Press, Dec. 2007
    [37] Anick D, Mitra D,Sondhi M.M. Stochastic theory of a data-handling system with multiple sources[M]. BSTJ 61 (1982): 1871-1894
    [38] Asmussen S. Busy period analysis, rare events and transient behavior in fluid flow models[J]. J. Appl. Math. Stochastic Anal. 7(3) (1994): 269-299
    [39] Baccelli F, Bremaud P. Elements of Queueing Theory: Palm-Martingale Calculus and Stochastic Recurrences [M]. Springer, Berlin, 1994
    [40] Baiocchi A, Melazzi N, Roveri A,et al. Stochastic fluid analysis of an ATM multiplexer loaded with heterogeneous ON-OFF sources: An effective computational approach[C]. Proc. of INFOCOM '92, 1992, 3.1-3.10
    [41]胡严,张光昭.重尾ON/OFF源模型生成自相似业务流研究[J].电路与系统学报,2001年03期: 72-76
    [42]张冬梅,王韬,侯景辉.网络流量自相似性产生原因的分析[J].科学技术与工程,2006年17期: 2795-2798
    [43]陈建,谭献海,贾真. 7种Hurst系数估计算法的性能分析[J].计算机应用,2006年04期:945-947
    [44]闻勇,朱光喜.具有重尾特性自相似网络通信量的预测[J].华中科技大学学报(自然科学版),2006年09期: 29-31
    [45]林青家.基于小波的网络流量的特性刻画与模型建立[D].山东大学,2007年
    [46]王风宇,云晓春,申伟东.基于小波变换的网络流量在线预测模型[J].高技术通讯,2006.12: 1220-1225
    [47]杨叔子,吴雅,轩建平.时间序列分析的工程应用[M].华中理工大学出版社,1991
    [48]陆锦军,王执铨.基于混沌特性的网络流量预测[J].南京航空航天大学学报,2006,2期: 217-221
    [49]殷光伟,郑丕谔.基于小波与混沌理论的股市多步预测研究[J].辽宁工学院学报,2005,2: 64-67
    [50]杨福生.小波变换的工程分析与应用[M].科学出版社,2006,1
    [51]王帅灵,樊启斌,郑宏.尺度正交小波的Mallat算法[J].数学杂志,2007年06期: 664-668
    [52] Birge, Massart. From model selection to adaptive estimation in D.Pollard [M]. Festchrift for L. Le Cam, Springer, 1997: 55-88
    [53]董言治,刘松涛,尉志苹,等.基于Matlab的时间序列分析和动态数据建模[M].计算机工程,2003,7: 170-172
    [54] Sudeept Bhatnagar, Samrat Ganguly, and Rauf Izmailov. Design of IEEE 802.16-based Multi-hop Wireless Backhaul Networks[C]. Conference: AccessNets 06, September 4-6, 2006, Athens, Greece
    [55] He J,Yang K,Guild K,et al. Application of IEEE 802.16 mesh networks as backhaul of multihop cellular networks[J]. IEEE Communications Magazine,September 2007: 82-91
    [56] Gerhard Munz, Stephan Pfletschinger, Joachim Speidel. An Efficient Waterfilling Algorithm for Multiple Access OFDM[C]. IEEE Global Telecommunications Conference, 2002. GLOBECOM '02, Vol. 1 (2002): 681-685
    [57] Wong C. Y, Cheng R. S, Letaief K. B. Multicarrier OFDM with adaptive subcarrier, bit and power allocation[J]. IEEE Journal,Selected Areas in Communications, vol. 17, no. 10, Oct. 1999: 1747-1758
    [58] Xu Wei, Zhao Chunming, Zhou Peng. Adaptive Resource Allocation for Multiuser OFDM Systems with Minimum Rate Constraints[C]. IEEE International Conference on Communications, 2007, June 24-28 2007: 5126– 5131
    [59] Huang J, Subramanian V, Agarwal R. Downlink scheduling and resource allocation for OFDM systems[C]. CISS, Mar 2006
    [60] Kemal Karakayali, Joseph H. Kang, Murali Kodialam. Cross-Layer Optimization forOFDMA-Based Wireless Mesh Backhaul Networks[C]. IEEE Wireless Communications and Networking Conference 2007, WCNC'07, Mar. 11-15, 2007: 276-281
    [61] Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fading channels[J]. IEEE Trans. Commun, vol. 45, no. 10, Oct. 1997: 1218-1230
    [62] Jang Jiho,Kwang Bok, Lee Yong-Hwan. Transmit power and bit allocations for OFDM systems in a fading channel[C]. IEEE Global Telecommunications Conference, 2003. GLOBECOM '03,Volume: 2: 858- 862
    [63]蒋金山,何春雄,潘少华.最优化计算方法[M].华南理工大学出版社,2007: 225-260
    [64]胡续.蚁群优化原理、理论及其应用研究[D].重庆大学,2004年
    [65] Dorigo M, Gambardella L, Middendorf M. Guest editorial: special section on any colony optimization[J]. IEEE Transactions on Evolutionary Computation, vol. 6, Aug. 2002: 317-319
    [66] Dorigo M, Gambardella L. Ant colony system: a cooperative learning approach to the travelling salesman problem[J]. IEEE Transactions on Evolutionary Computation, vol. 1, Apr. 1997: 53–66
    [67] Dorigo M, Caro G. Di. Ant colony optimization: a new metaheuristic[C]. Proceedings of the Congress on Evolutionary Computation,vol. 2, 1999: 1470–1477
    [68] Xu C, Hu B, Yang L,et al. Ant-Colony-Based Multiuser Detection for Multi-Functional Antenna Array Assisted MC DS-CDMA Systems[J]. IEEE Transactions on Vehicular Technology, 57 (1), Jan. 2008: 658-663
    [69] YUE Xin, LI Yi-bing, YANG Shen-yuan. Optimization Algorithm of Channel Partition in OFDM System Based on Ant Algorithm[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2006,vol 26, issue 1: 993-996
    [70]叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004年07期: 597-601
    [71]王志杰.蚁群算法的改进及应用[M].湖南师范大学,2009年
    [72] Hawa, M, Petr D W. Quality of service scheduling in cable and broadband wireless access systems[C]. Tenth IEEE International Workshop on Quality of Service, 2002: 247-255
    [73] Wongthavarawat K, Ganz A. Packet Scheduling for QoS Support in IEEE 802.16 Broadband Wireless Access Systems[J]. International Journal of Communication Systems, Vol. 16, 2003: 81-96
    [74] He J, Yang K, Guild K, et al. Application of IEEE 802.16 mesh networks as backhaul of multihop cellular networks[J] . IEEE Communications Magazine, 2007,45(9):82-91
    [75] Draves R, Padhye J, Zill B. Routing in multi-radio, multi-hop wireless mesh networks[C]. Proc. of ACM Mobicom, 2004
    [76] Yuan Y, Yang H, Wong S H,et al. Romer: Resilient opportunistic mesh routing for wireless mesh networks[C]. in Proc. of IEEE WiMesh, 2005
    [77] Raniwala A, Gopalan K, Chiueh T. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks[J]. Mobile Computing and Communications Review, vol. 8, no. 2, 2004: 50–65
    [78] Raniwala A, Chiueh T. Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network[C]. Proc. of IEEE INFOCOM, 2005
    [79] Bicket J, Aguayo D, Biswas S. Architecture and evaluation of an unplanned 802.11b mesh network[C]. Proc. of ACM MobiCom, 2005
    [80] Xue Y, Cui Y,Nahrstedt K. Optimal Resource Allocation for Wireless Mesh Networks,Wireless Mesh Networks Architectures and Protocols[J]. Springer Science Business Media, 2008: 146-164
    [81] Kelly F P. Charging and rate control for elastic traffic[J]. European Trans. on Telecommunications, vol. 8, 1997:33–37
    [82] Kelly F P, Maulloo A K, Tan D K. Rate control in communication networks: Shadow prices, proportional fairness and stability[J]. Journal of the Operational Research Society, vol. 49, 1998: 237–252
    [83] Gupta P, Kumar P R. The capacity of wireless networks[J]. IEEE Trans. Inform. Theory, vol. 46, no. 3, March 2000: 388–404
    [84] Jain K, Padhye J, Padmanabhan V, et al. Impact on interference on multi-hop wireless network performance[C]. Proc. of ACM MobiCom, 2003
    [85] Augustson J G, Minker J. An analysis of some graph theoretical cluster techniques[J]. Journal of ACM, vol. 17, no. 4, 1970: 571–586
    [86] Berg M. de, Kreveld M van. Overmars M, et al, Computational Geometry: Algorithms and Applications[M]. Springer, 2000
    [87]曾智慧,刘富强,陶健,等. IEEE802.16 Mesh模式下MAC调度机制的研究[J].计算机工程与应用,2005,41(23):135-139
    [88]是元吉,刘富强,钱业青,等. IEEE 802.16 Mesh模式下基于QoS的时隙分配算法[J].计算机工程,2007, 33(9): 109-113
    [89] Kyasanur P, Vaidya N.H. Capacity of multi-channel wireless networks: impact of number of channels and interfaces[C]. ACM International Conference on Mobile Computing andNetworking, September 2005: 43-57
    [90] Toumpis S, Goldsmith A.J. Capacity regions for wireless Ad Hoc networks[J]. IEEE Transactions on Wireless Communications, Vol.2, No.4, Jul 2003: 736-748
    [91] Jain K, Padhye J, Padmanabhan V.N, et al. Impact of interference on multi-hop wireless network performance[C]. ACM 2003 International Conference on Mobile Computing and Networking, Sep. 2003: 66-80
    [92] Kodialam M, Nandagopal T. Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem, ACM 2003 International Conference on Mobile Computing and Networking[C]. Sep. 2003: 42-54
    [93] Kumar V.S.A, Marathe M.V, Parthasarathy S, et al. Algorithmic aspects of capacity in wireless networks[C]. ACM SIGMETRICS Performance Evaluation Review, Jun. 2005: 133-144
    [94] Neely M.J, Modiano E. Capacity and delay tradeoffs for Ad Hoc mobile networks[J]. IEEE Transactions on Information Theory, Vol.51, No.6, June 2005: 1917-1937
    [95] Kim, Min,Ra, et al. QoS Mesh Routing Protocol for IEEE 802.16 based Wireless Mesh Networks[C]. Advanced Communication Technology ICACT 2008. Korea-Phoenix Park: Conference Record,2008:812-817
    [96]蒋金山,何春雄,潘少华.最优化计算方法[M],华南理工大学出版社, 2007: 15-35
    [97] Chao H. Jonathan, Guo Xiaolei. Quality of Service Control in High-Speed Networks[M]. Wiley-Interscience, November 15, 2001: 7-10
    [98] ANSI/IEEE Standard 802.16d-2004. IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems[S].2004
    [99] Rosen E, Viswanathan A,Callon R. Multiprotocol label switching architecture, RFC 3031[S]. Internet Engineering Task Force (IETF), Jan, 2001
    [100] Awduche D, Malcolm J,Agogbua J,et al. Requirements for traffic engineering over MPLS[S]. RFC2702, Internet Engineering Task Force (IETF),Sep,1999
    [101] Xiao X, Hnnan A, Bailey B, et al. Traffic engineering with MPLS[J]. IEEE Network, vol. 14, no. 2,Mar 2000: 28-33
    [102] Davie B, Davari S, Vaananen P, et al. MPLS support of differentiated services, Internet draft[S]. Feb. 2001, draft-ietf-mpls-diff-ext-08.txt

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700