用户名: 密码: 验证码:
GaN基太赫兹器件的新结构及材料生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于其他传统半导体材料,GaN太赫兹器件具有更大的电子有效质量,更高的纵向声子能量,更快的子带间电子散射,更大的负阻区电流峰谷比和更高的二维电子气密度等,使其在太赫兹领域中具有一定的优势。然而GaN材料的生长技术和传统的半导体材料相比依然不够成熟,GaN材料中的缺陷密度依然很高,这会直接导致GaN太赫兹器件的性能衰减,更甚至于击穿和烧毁。为了推动GaN太赫兹器件的应用,必须首先解决相关器件材料中的结晶质量问题。传统的结晶质量改善可以通过横向外延过生长技术(ELOG)或者插入层技术来达到。然而ELOG技术包括了多步生长以及掩膜技术,实现起来不仅繁琐而且代价昂贵;插入层技术是可以过滤位错缺陷,但是由于插入层技术通常采用异质材料,那么必然存在晶格失配情况,这会在插入层界面处引入失配位错,从而不能有效直接地降低位错密度。针对这些问题,本文结合GaN太赫兹器件的特殊结构,对生长过程进行了调整以及优化,从而有效过滤了位错密度,明显改善了器件渡越区中结晶质量。并且通过一系列的实验测试,获得了一些令人振奋的结果,主要研究结论如下:
     1,论文报道了采用MOCVD法生长实现了底层Notch掺杂加速区(BNL)结构和顶层Notch掺杂加速区(TNL)结构的GaN基太赫兹耿氏器件外延结构,并进行了相关的材料测试分析,并通过自主建立的外延缺陷生长动力学模型解释了器件有源区生长位错湮灭的机理。
     2,论文报道了一种改进的四元件小信号电容-电压(C-V)测试等效模型,该模型被用来消除测试中的频率离散现象。接着我们提出一种新颖的数学模型来计算GaN缓冲层中的体缺陷密度。在GaN太赫兹耿氏二极管中,体缺陷的存在(尤其是深能级点缺陷)会影响器件的高场输运特性。为了分析这类缺陷,我们采用了PL谱,改进的C-V,SIMS,HRXRD,以及TEM等测试对结构中的点缺陷进行了深入的研究。研究提出热退火处理可以使点缺陷密度分布降低30%左右,有效改善了GaN中深能级缺陷引入的电荷俘获效应会导致射频功率和转换效率的明显衰减。
     3,论文报道了设计和实验获得了亚微米渡越区长度的带有Al组分三级递进AlGaN层的AlGaN/GaN异质结太赫兹耿氏二极管外延结构,详细研究AlGaN热电子注射(HEI)层对GaN渡越区位错的阻断和结晶质量的影响,进一步通过分析验证揭示了位错从缓冲层穿透并进入AlGaN HEI层时,螺位错和刃位错在AlGaN/GaN异质界面发生弯曲和随之而来的湮灭现象,指出采用底层AlGaN-HEI层结构可以作为AlGaN/GaN异质结THz耿氏器件的最佳选择。同时研究了通过赝晶生长的Al组分线性渐变AlGaN插入层来湮灭N极性GaN中位错,提出了一种有效改善N极性GaN结晶质量的方法以而改善N极性太赫兹器件的特性。
     4,论文报道了针对InAlN/GaN异质界面的结晶质量优化过程,采用PMOCVD生长InAlN层,然后生长一层低温(LT)GaN保护层,这样可以保证在紧着的高温GaN生长时InAlN中不会发生In簇的形成以及In组分再分布。从TEM测试中可以看出,高质量的InAlN/GaN异质界面不仅可以有效过滤位错,而且可以防止失配位错的产生。因此,PMOCVD生长InAlN加上LT-GaN层可以获得高质量的InAlN/GaN异质界面,从而改善材料的整体结晶质量,最终为相关太赫兹器件应用提供一种有价值的参考。
Compared to other conventional semiconductor material, GaN terahertz device hasmore electron effective mass, higher longitudinal phonon energy, faster electronscattering between sub-band, greater negative resistance current peaks valley, highertwo dimension electron gas density and so on, showing that GaN has evident advantagesin the field of terahertz application. However, the growth of GaN material technologycompared with traditional semiconductor materials is still not mature enough to obtainhigh crystal quality, the high defect density in GaN materials is still high, therefore, itcan directly result in GaN terahertz device performance attenuation, and more evenbring in breakdown and burning. In order to promote the application of terahertz GaNdevice, the related devices material quality problem must be first taken into account.The traditional improvement of crystal quality can be achieved byEpitaxial-lateral-overgrowth (ELOG) or interlayer technologies. However, ELOGtechnology requires multi-step regrowth and mask technology, which is cumbersomeand costly to be achieved. Interlayer technology can filter dislocation defect, but it canintroduce large lattice-mismatch with GaN layer therefore lead to generation of misfitdislocations at the interface, which could not effectively reduce the dislocation density.To solve these problems, this paper takes the special structure of GaN terahertz devicesinto consideration, and then carry out the adjustment and optimization for growthprocess, thus effectively filter the dislocation density, significantly improved the crystalquality in the transit region of devices. Some encouraging results have been obtainedthrough a series of experimental tests, the main research conclusions are as follows:
     1, We report the GaN based THz Gunn diode epitaxial growth through MOCVD,including the bottom notch-doping accelerating region structure (BNL) and the topnotch-doping accelerating region structure (TNL). Subsequently, the relatedmeasurement and analysis are carried out, and independent establishment of the growthdynamics model of the epitaxial defect is proposed to explain the annihilation ofdislocation in the active region.
     2, We propose an improved small-signal equivalent model to eliminate frequencydispersion phenomenon in capacitance-voltage (C-V) measurement, and introduce anew mathematic method to calculate the amount of bulk defect existing in the GaNbuffer layer. As well known, the existence of bulk defect (especially deep-level pointdefect) can degrade high-field transport characteristic during further device operation.To have a further investigation, we make use of PL, improved C-V, SIMS, HRXRD, and TEM measurements to take a deep insight into the bulk defect in the device. In addition,the experiment indicates that the annealing treatment reduces the point defect density ofsamples by around30%, which can weaken the charge-trapping effect introduced bydeep-level crystal defects in GaN and encourage the improvement of radio frequencypower and conversion efficiency in terahertz device operation.
     3, We report the design and experiment of the sub-micron transit regionAlGaN/GaN heterostructure THz Gunn diode with a tri-graded AlxGa1-xN layer. Wecarry out a detailed investigation about the effects of AlGaN hot electron injecting layer(HEI) on blocking the dislocation in GaN transit region and improving the crystalquality. In the following, the related experiment demonstrates that the bending andannihilation of the screw and edge dislocations occur at the AlGaN/GaN heterointerface.We propose that the bottom AlGaN-HEI structure is a promising candidate for thefabrication of GaN Gunn diodes in terahertz regime. At the same time, we report on thedislocation annihilation in N-polar GaN with a pseudomorphicly growngraded-Al-fraction AlGaN interlayer. The improvement for the crystal quality ofN-polar GaN can be introduced in optimizing the N-polar related THz deviceperformance.
     4, We report the crystal quality optimization of the InAlN/GaN heterointerface.PMOCVD was employed to grow InAlN interlayer. Subsequently, a low temperature(LT)-GaN protective layer was deposited on the InAlN interlayer, to prevent the risk ofindium cluster formation and indium redistribution during the following hightemperature top GaN growth. According to the TEM measurement, it demonstrates thatthe InAlN/GaN heterointerface can not only filter the dislocations with great efficiency,but also avoid the generation of misfit dislocation. Therefore, the InAlN layer grown byPMOCVD and the LT-GaN layer can significantly bring in high quality InAlN/GaNheterointerface, thus improve the crystal quality of the whole material. In brief, ourwork provides a valuable reference to the related terahertz devices application.
引文
[1.1] P. J. Bulman, G. S. Hobson, B. C. Taylor, Transferred Electron Devices,Academic Press, London and New York,1972.
    [1.2] H. Eisele and G. I. Haddad, Efficient power combining with D-band(110-170GHz) InP Gunn devices in fundamental-mode operation, IEEEMicrowave and Guided Wave Letter,1998, Jan,8(1),24-6.
    [1.3] J. Kolnik et al., Electronic Transport Studies of bulk zinc-blende and wurtzitephases of GaN based on an ensemble Monte Carlo calculation including a fullzone bandstructure, J. Appl.Phys,1995,Jul,78(2),1033-1038.
    [1.4] S. Krishnamurthy et al., Bandstructure effect on high-field transport in GaN andAlGaN, Appl. Phys.Lett.1997,Oct,71(14),1999-2000.
    [1.5] E. Alekseev and D. Pavlidis, Microwave Potential of GaN-based Gunn Devices,Electronics Letters,2000,Jan,36(2),176-178.
    [1.6] B. E. Foutz et al., Comparison of high field electron transport in GaN and GaAs,Appl. Phys.Lett.1997, Mar,70(21),2849-2852.
    [1.7] S. Wu, A. F. M. Anwar, Monte-Carlo Simulation in Submicron GaN n+nn+Diodes,1999International Semiconductor Device Research Symposium,Charlotesville,1999,1-3.
    [1.8] S. N. Mohammad and H. Morco, Progress and Prospects of Group-III NitrideSemiconductors, Prog. Quant. Electron.1996,Aug,20(5),361-525.
    [1.9] J. Kolnik et al., Monte Carlo calculation of electron initiated impact ionization inbulk zinc blende and wurtzite GaN, J. Appl. Phys.1997, Mar,81(12),727-733.
    [1.10] U. D. Bhapkar and M. S. Shur, Monte Carlo calculation of velocity-fieldcharacteristics of wurtzite GaN, J. Appl. Phys.1997,Nov,82(4),1649-1655.
    [1.11] M. Shur, GaAs Devices and Circuits, Plenum Press, New York and London,1987.
    [1.12] M. F. Zybura et al.,100-300GHz Gunn oscillator simulation through harmonicbalance circuit analysis linked to a hydrodynamic device simulator, IEEEMicrowave and Guided Wave Letters,1994,Sep,4(8),282-284.
    [1.13] V. A. Posse and B. Jalili, Gunn effect in heterojunction bipolar transistors,Electronics Letters,1994,Jul,30(14),1183-1184.
    [1.14] O. Yilmazoglu, K. Mutamba, D. Pavlidis, et al., Measured negative differentialresistivity for GaN Gunn diodes on GaN substrate, Electron. Lett.,2007,Apr,43(8),480.
    [1.15] A. F rster, M. I. Lepsa, D. Freundt, et al., Hot electron injector Gunn diode foradvanced driver assistance systems,Appl. Phys. A.2007,Jun,87(3),545.
    [1.16] N. R. Couch, H. Spooner, P. H. Beton,et al., High-performance, graded AlGaAsinjector, GaAs Gunn diodes at94GHz, IEEE Electron Device Letters.1989,Jul,10(7),288.
    [1.17] L. A. Yang,W. Mao, Q.Y. Yao,et al., Temperature effect on the submicronAlGaN/GaN Gunn diodes for terahertz frequency, J. Appl. Phys.2011,Jan,109(2),024503-1.
    [1.18] L. A. Yang, Y. Hao, and J. C. Zhang, Use of AlGaN in the notch region of GaNGunn diodes, Appl. Phys. Lett.2009,Oct,95(14),143507-1.
    [1.19] L. Li, L.A Yang, J.C. Zhang, and Y. Hao, Dislocation blocking by AlGaN hotelectron injecting layer in the epitaxial growth of GaN terahertz Gunndiode, Journal of Applied Physics,2013,Sep,114(10),104508.
    [1.20] K. Mutamba, O. Yilmazoglu, C. Sydlo, et al., Technology aspects of GaN-baseddiodes for high-field operation, Superlattices and Microstruct.2006,Sep,40(4-6),363.
    [1.21] J. A. Floro, D. M. Follstaedt, P. Provencio, et al., Misfit dislocation formation inthe AlGaN/GaN heterointerface, J. Appl. Phys.2004, Sep,96(12),7087-1.
    [1.22] J. Elsner, R. Jones, M. Haugk, Th.Frauenheim,et al., Deep acceptors trapped atthreading edge dislocations in GaN, Phys. Rev. B.1998,Nov,58(12571),12571.
    [1.23] A. Asgari, S. Babanejad, and L. Faraone, Electron mobility, Hall scattering factor,and sheet conductivity in AlGaN/AlN/GaN heterostructures, J. Appl. Phys.2011,Dec,110(11),113713-1.
    [1.24] N. G. Weimann, L. F. Eastman, D. Doppalapudi, et al., Scattering of electrons atthreading dislocations in GaN,J. Appl. Phys.1998,3656,Dec,83(7),.
    [1.25] Z. Chen, H. R. Yuan, D.C. Lu, et al., Nitrogen vacancy scattering in GaN grownby metal–organic vapor phase epitaxy, Solid-State Electronics.2002,Apr,46(12),2069.
    [1.26] L.A.Yang, H.B.He, W. Mao, et al., Quantitative analysis of the trapping effect onterahertz AlGaN/GaN resonant tunneling diode, Appl. Phys. Lett.2011,Oct,99(15),153501-1.
    [1.27] H.R.Chen, L.A. Yang, S. Long, et al., Reproducibility in the negative differentialresistance characteristic of In0.17Al0.83N/GaN resonant tunnelingdiodes-Theoretical investigation, J. Appl. Phys.2013,May,113(19),194509.
    [1.28] H.R.Chen, L.A. Yang, X.X. Liu, The impact of trapping centers on AlGaN/GaNresonant tunneling diode, IEICE Electronics Express,2013,Sep,10(19),1-6.
    [1.29] C.Bayram, Z.Vashaei, and M. Razeghi, Reliability in room-temperature negativedifferential resistance characteristics of low-aluminum content AlGaN/GaNdouble-barrier resonant tunneling diodes, Appl. Phys. Lett.2010,Nov,97(18),181109-1.
    [1.30] K. Lorenz, N. Franco, E. Alves,et al., Anomalous Ion Channeling in AlInN/GaNBilayers: Determination of the Strain State, Phys. Rev. Lett.2006,Aug,97(085501),085501.
    [1.31] J. Dorsaz, J. F. Carlin, S. Gradecak,et al., Progress in AlInN–GaN Braggreflectors: Application to a microcavity light emitting diode, J. Appl. Phys.2005,97,084505-1.
    [1.32] J.S.Xue,Y.Hao, X.W.Zhou,et al., High quality InAlN/GaN heterostructures grownon sapphire by pulsed metal organic chemical vapor deposition,J. Cryst. Growth.2011,Jan,314(1),359.
    [1.33] A.Gadanecz, J.Bl sing, A.Dadgar, et al., Thermal stability of metal organic vaporphase epitaxy grown AlInN,Appl. Phys. Lett.2007,May,90(22),221906.
    [1.34] J.S. Xue, Y. Hao, J.C. Zhang,et al., Nearly lattice-matched InAlN/GaN highelectron mobility transistors grown on SiC substrate by pulsed metal organicchemical vapor deposition, Appl. Phys. Lett.2011,Mar,98(11),113504-1.
    [1.35] Y.J. Wang, F.R. Hu, K. Hane, Lateral epitaxial overgrowth of GaN on a patternedGaN-on-silicon substrate by molecular beam epitaxy, Semicond. Sci. Technol.2011,Mar,26(4),045015
    [1.36] B. Imer, F. Wu, J. S. Speck, et al., Growth evolution in sidewall lateral epitaxialovergrowth (SLEO),J. Cryst. Growth.2007,Aug,306(2),330.
    [1.37] A.V. Tikhonov, T. V. Malin, K. S. Zhuravlev, et al., TEM study of defects inAlxGa1-xN layers with different polarity, J. Cryst. Growth.2012,Oct,338(1),30.
    [1.38] A.M. Sanchez, F.J. Pacheco, S.I. Molina, et al., Critical Thickness ofHigh-Temperature AlN Interlayers in GaN on Sapphire (0001), J. Electron.Mater.2001,May,30(5), L17.
    [2.1] R. F. Macpherson, G. M. Dunn, and N. J. Pilgrim, Simulation of gallium nitrideGunn diodes at various doping levels and temperatures for frequencies up to300GHz by Monte Carlo simulation, and incorporating the effects of thermalheating, Semicond. Sci. Technol.,2008, May,23(5),055005.
    [2.2] R. F. Macpherson and G. M. Dunn, The use of doping spikes in GaN Gunndiodes,Appl. Phys. Lett.,2008, Aug,93(6),062103-1.
    [2.3] L. A. Yang, Y. Hao, and J. C. Zhang, Use of AlGaN in the notch region of GaNGunn diodes, Appl. Phys. Lett.2009,Oct,95(14),143507-1.
    [2.4] A. F rster, M. I. Lepsa, D. Freundt, et al., Hot electron injector Gunn diode foradvanced driver assistance systems, Appl. Phys. A.,2007,Mar,87(3),545.
    [2.5] O. Yilmazoglu, K. Mutamba, D. Pavlidis, et al., Measured negative differentialresistivity for GaN Gunn diodes on GaN substrate, Electron. Lett.,2007,Apr,43(8),480.
    [2.6] N.E.S.Farrington, M.W. Carr, and M.Missous, Rapid evaluation of doping-spikecarrier concentration levels in millimetre-wave GaAs Gunn diodes withhot-electron injection, Semicond. Sci. Technol.,2010,25(12),125011.
    [2.7] S. Nakamura, GaN Growth Using GaN Buffer Layer, Jpn. J. Appl. Phys.1991,Aug,30(L1705), L1705.
    [2.8] G. B. Stephenson, J. A. Eastman, C. Thomson, et al., Observation of growthmodes during metal-organic chemical vapor deposition of GaN, Appl. Phys.Lett.,1999, Apr,74(22),3326-1.
    [2.9] A. Munkholm, C.Thompson, M.V.R.Murty, et al., Layer-by-layer growth of GaNinduced by silicon, Appl. Phys.Lett.2000,Jun,77(11),1626-1.
    [2.10] A. L. Rosa, J. Neugebauer, J. E. Northrup, et al., Adsorption and incorporation ofsilicon at GaN(0001) surfaces, Appl. Phys. Lett.2002,Dec,80(11),051903-1.
    [2.11] J. Bai, M. Dudley, W. H. Sun, et al., Reduction of threading dislocation densitiesin AlN/sapphire epilayers driven by growth mode modification, Appl. Phys. Lett.2006, Jan,88(5),051903-1.
    [2.12] O. Contreras, F. A. Ponce, J. Christen, et al., Dislocation annihilation by silicondelta-doping in GaN epitaxy on Si, Appl. Phys. Lett.2002, Dec,81(25),4712-1.
    [2.13] P. Cantu, F. Wu, P. Waltereit, S. Keller, et al, Si doping effect on strain reductionin compressively strained thin films, Appl. Phys. Lett.2003,Jun,83(4),674-1; P.Cantu, F. Wu, P. Waltereit, S. Keller, et al., Role of inclined threadingdislocations in stress relaxation in mismatched layers, J. Appl. Phys.2005,May,97(10),103534-1.
    [2.14] S. Ruvimov, Z.L. Weber, T.Suski, et al., Effect of Si doping on the dislocationstructure of GaN grown on the A‐face of sapphire,Appl. Phys. Lett.1996,May,69(7),990-1.
    [2.15] K. Mutamba, O. Yilmazoglu, C. Sydlo, et al., Technology aspects of GaN-baseddiodes for high-field operation, Superlattices and Microstruct.2006,Sep,40(4-6),363.
    [2.16] W. Rieger, T. Metzger, H. Angerer, et al., Influence of substrate-induced biaxialcompressive stress on the optical properties of thin GaN films, Appl. Phys. Lett,1996,Dec,68(7),970-1.
    [2.17] A. Krost, A. Dadgar, G. Strassburger, and R. Clos, GaN-based epitaxy onsilicon: stress measurements, Phys. stat. sol.(a).2003,Oct,200(1),26.
    [2.18] C.Kisielowski, J. Krüger, and S. Ruvimov et al., Strain-related phenomena inGaN thin films, Phys. Rev. B.1996,Dec,54(17745),17745.
    [2.19] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, et al., Experimental andtheoretical studies of phonons in hexagonal InN, Appl. Phys. Lett.1999,Sep,75(21),3297-1.
    [3.1] L.A.Yang, H.B.He, W. Mao, et al., Quantitative analysis of the trapping effect onterahertz AlGaN/GaN resonant tunneling diode, Appl. Phys. Lett.2011,Oct,99(15),153501-1.
    [3.2] C.Bayram, Z.Vashaei, and M. Razeghi, Reliability in room-temperature negativedifferential resistance characteristics of low-aluminum content AlGaN/GaNdouble-barrier resonant tunneling diodes, Appl. Phys. Lett.2010,Nov,97(18),181109-1.
    [3.3] O. Yilmazoglu, K. Mutamba, D. Pavlidis, et al., Measured negative differentialresistivity for GaN Gunn diodes on GaN substrate, Electron. Lett.,2007,Apr,43(8),480.
    [3.4] K.Saarinen, T.Laine, S.Kuisma, et al., Observation of Native Ga Vacancies inGaN by Positron Annihilation, Phys. Rev. Lett.1997,Oct,79(3030),3030.
    [3.5] F.J. Xu, B.Shen, L. Lu, et al., Different origins of the yellow luminescence inas-grown high-resistance GaN and unintentional-doped GaN films, J. Appl. Phys.2010,Jan,107(2),023528-1.
    [3.6] S.R. Xu, Y. Hao, J.C. Zhang, et al., Polar dependence of impurity incorporationand yellow luminescence in GaN films grown by metal-organic chemical vapordeposition, J. Crystal Growth.2010,Nov,312(23),3521.
    [3.7] S. Xie, J.Y.Yin, S.Zhang, et al., Trap behaviors in AlGaN-GaN heterostructuresby C-V characterization, Solid-State Electronics,2009, September,53(1183),1183.
    [3.8] L.Lv, J.C. Zhang, J.S. Xue, et al., Neutron irradiation effects on AlGaN/GaNhigh electron mobility transistors, Chin. Phys. B.2012, Jun,21(3),037104.
    [3.9] X.H. Wang, L.Pang, X.J.Chen. et al., Investigation on trap by the gatefringecapacitance in GaN HEMT,Acta Phys. Sin.2011,Sep,60(9),097101.
    [3.10] R. M. Chu, Y. G. Zhou, K. J. Chen, et al., Admittance characterization andanalysis of trap states in AlGaN/GaN heterostructures, Phys. Stat. Sol.(c),2003,May,7(2400),2400.
    [3.11] J.A.Smart, A.T.Schremer, N.G.Weinman, et al., AlGaN/GaN heterostructures oninsulating AlGaN nucleation layers, Appl. Phys. Lett.1999, Jul,75(3),388.
    [3.12] R. Dimitrov, A. Mitchell, L. Wittmer, O. Ambacher, et al., Comparison ofN-face and Ga-face AlGaN/GaN-Based High Electron Mobility TransistorsGrown by Plasma-Induced Molecular Beam Epitaxy,Jpn.J.Appl.Phys.1999,Jun,38(4962),4962.
    [3.13] A.P.Zhang, L.B. Rowland, E.B. Kaminsky, et al., Correlation of deviceperformance and defects in AlGaN/GaN high-electron mobility transistors,Journal of Electronic Materials.2003,May,32(5),388.
    [3.14] W.L. Liu, Y.L. Chen, A.A. Balandin, K.L. Wang, Capacitance-voltagespectroscopy of trapping states in GaN/AlGaN heterostructure field-effecttransistors, J.Nanoelectron. Optoelectron.2006,Aug,1(2),258.
    [3.15] Y. Polyakov, N.B. Smirnov, A.V. Govorkov, et al., Deep traps responsible forhysteresis in capacitance-voltage characteristics of AlGaN/GaN heterostructuretransistors, Appl. Phys. Lett.2007, Dec,91(232116),232116-1.
    [3.16] S. Singhal, Corp.Nitronex, NC. Raleigh, et al., GaN-on-Si failure mechanismsand reliability improvements, IEEE06CH3772844th Annual InternationalReliability Physics Symposium, San Jose.2006,Mar,95.
    [3.17] Rongming Chu, AlGaN-GaN single-and double-channel high electronmobility transistors, M.S.Thesis,2004,(Hong Kong:The Hong KongUniversity).
    [3.18] H.Rohdin, N. Moll, A. M.Bratkovsky,et al., Dispersion and tunneling analysisof the interfacial gate resistance in Schottky barriers, Phys.Rev.B.1999,May,59(20),13102.
    [3.19] Oleg Mitrofanov, M.J. Manfra, Charge trapping on defects in AlGaN/GaN fieldeffect transistors, Proc. SPIE,2007, Jan,6473.
    [3.20] J.R. Shealya and R.J. Brown, Frequency dispersion in capacitance-voltagecharacteristics of AlGaN/GaN heterostructures, Appl. Phys. Lett.2008,Jan,92(032101)032101-1.
    [3.21] E. J. Miller, X. Z. Dang, H. H. Wieder, et al., Trap characterization bygate-drain conductance and capacitance dispersion studies of an AlGaN/GaNheterostructure field-effect transistor, J. Appl. Phys.2000,Jun,87(11),8070.
    [3.22] Xavier Garros, Charles Leroux, and Jean-Luc Autran, An efficient model foraccurate capacitance-voltage characterization of high-k gate dielectrics using amercury probe, Electrochemical and Solid-State Letters,2002,Mar,5(3),F4.
    [3.23] O. Ambacher, J. Smart, J. R. Shealy, et al., Two-dimensional electron gasesinduced by spontaneous and piezoelectric polarization charges in N-and Ga-faceAlGaN/GaN heterostructures, J. Appl. Phys.1999, Dec,85(6),3222-1.
    [3.24] B. Jogai, Free electron distribution in AlGaN/GaN heterojunction field-effecttransistors,J. Appl. Phys.2002, Dec,91(6),3721-1.
    [3.25] Oleg Mitrofanov, Michael Manfra, Dynamics of trapped charge inGaN/AlGaN/GaN high electron mobility transistors grown by plasma-assistedmolecular beam epitaxy, Appl. Phys. Lett.2004, Jan,84(3),422-1.
    [3.26] J. Osvald, Influence of AlGaN/GaN heterojunction parameters on itscapacitance-voltage characteristics,J. Appl. Phys.2009, Jul,106(1),013708-1.
    [3.27] J. Mickevièius, R. Aleksiejunas, M.S. Shur, et al., Correlation between yellowluminescence intensity and carrier lifetimes in GaN epilayers, Appl. Phys. Lett.2005,Jan,86(4),041910-1.
    [3.28] J. Elsner, R. Jones, M. Haugk, Th.Frauenheim,et al., Deep acceptors trapped atthreading edge dislocations in GaN, Phys. Rev. B.1998,Nov,58(12571),12571.
    [3.29] S. Nakamura, GaN Growth Using GaN Buffer Layer, Jpn. J. Appl. Phys.1991,Aug,30(L1705), L1705.
    [3.30] J.H.You and H.T.Johnson, Effect of threading edge dislocations on thephotoluminescence spectra for n-type wurtzite GaN, Phys. Rev. B.2007,Sep,76(115336),115336.
    [3.31] D.C.Du, J.C. Zhang, X.X Ou, et al., Investigation of yellow luminescenceintensity of N-polar unintentionally doped GaN, Chin. Phys. B.2011,20(3),037805.
    [3.32] L.Li L, L.A.Yang L A, J.C.Zhang J C, et al., Point defect determination byeliminating frequency dispersion in C-V measurement for AlGaN/GaNheterostructure, Solid-State Electronics.2012,Nov,68(98),98.
    [3.33] M.W.Cole, F. Ren, and S.J.Pearton, Post growth rapid thermal annealing ofGaN: The relationship between annealing temperature, GaN crystal quality, andcontact-GaN interfacial structure, Appl. Phys. Lett.1997, Sep,71(20),3004-1.
    [3.34] N.Maeda, K.Nozawa, Y.Hirayama, N.Kobayashi, Effect of thermal annealingon electrical properties in MBE-grown n-type GaN films, J.Cryst.Growth.1998,Jun,189/190,359.
    [4.1] O.Yilmazoglu, K.Mutamba, D. Pavlidis, et al., First Observation of BiasOscillations in GaN Gunn Diodes on GaN Substrate, IEEE Trans. ElectronDevices.2008,Jun,55(6),1563.
    [4.2] E. A. Barry, V. N. Sokolov, K. W. Kim, et al., Terahertz generation in GaNdiodes operating in pulsed regime limited by self-heating,Appl. Phys. Lett.2009,Jun,94(22),222106-1.
    [4.3] L. A. Yang, Y. Hao, and J. C. Zhang, Use of AlGaN in the notch region of GaNGunn diodes, Appl. Phys. Lett.2009,Oct,95(14),143507-1.
    [4.4] N. R. Couch, H. Spooner, P. H. Beton,et al., High-performance, graded AlGaAsinjector, GaAs Gunn diodes at94GHz, IEEE Electron Device Letters.1989,Jul,10(7),288.
    [4.5] L.A. Yang, Y. H., Q.Y. Yao, et al., Improved Negative Differential MobilityModel of GaN and AlGaN for a Terahertz Gunn Diode, IEEE Trans. ElectronDevices,2011,Apr,4(58),1076-1083.
    [4.6] L. A. Yang,W. Mao, Q.Y. Yao,et al., Temperature effect on the submicronAlGaN/GaN Gunn diodes for terahertz frequency, J. Appl. Phys.2011,Jan,109(2),024503-1
    [4.7] A. Chakraborty, K.C. Kim, F. Wu, et al., Defect reduction in nonpolar a-planeGaN films using in situ SiNx nanomask, Appl. Phys. Lett.2006,Jul,89(4),041903-1.
    [4.8] B. Imer, F. Wu, J. S. Speck, et al., Growth evolution in sidewall lateral epitaxialovergrowth (SLEO),J. Cryst. Growth.2007,Aug,306(2),330.
    [4.9] P. H. Betton, A. P. Long, N. R. Couch, et al., Use of n+spike doping regions asnonequilibrium connectors,Electron. Lett.1988,Mar,24(7),434.
    [4.10] A. F rster, M. I. Lepsa, D. Freundt, et al., Hot electron injector Gunn diode foradvanced driver assistance systems,Appl. Phys. A.2007,Jun,87(3),545.
    [4.11] M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides,Rep. Prog.Phys.2009,Feb,72(3),036502.
    [4.12] F. A. Ponce, D. Cherns, W. T. Young, et al., Characterization of dislocations inGaN by transmission electron diffraction and microscopy techniques, Appl. Phys.Lett.1996,May,69(6),770-1.
    [4.13] J. A. Floro, D. M. Follstaedt, P. Provencio, et al., Misfit dislocation formationin the AlGaN/GaN heterointerface, J. Appl. Phys.2004, Sep,96(12),7087-1.
    [4.14] Z. Ren, Q. Sun, S.-Y. Kwon, et al., Heteroepitaxy of AlGaN on bulk AlNsubstrates for deep ultraviolet light emitting diodes,Appl. Phys. Lett.2007,Aug,91(5),051116-1.
    [4.15] L. W. Sang, Z. X. Qin, H. Fang, et al., Study on threading dislocations blockingmechanism of GaN/AlxGa1xN superlattices, Appl. Phys. Lett.2008,May,92(19),192112.
    [4.16] A.V. Tikhonov, T. V. Malin, K. S. Zhuravlev, et al., TEM study of defects inAlxGa1-xN layers with different polarity, J. Cryst. Growth.2012,Oct,338(1),30.
    [4.17] Z. Chen, D. Lu, H. Yuan, et al., A new method to fabricate InGaN quantum dotsby metalorganic chemical vapor deposition, J. Cryst. Growth2002,Feb,235(1-4),188.
    [4.18] Z. Chen, R. S. Q. Fareed, M. Gaevski, et al., Pulsed lateral epitaxial overgrowthof aluminum nitride on sapphire substrates, Appl. Phys. Lett.2006,Aug,89(8),081905-1.
    [4.19] K. Mutamba, O. Yilmazoglu, C. Sydlo, et al., Technology aspects of GaN-baseddiodes for high-field operation, Superlattices and Microstruct.2006,Sep,40(4-6),363.
    [4.20] A. Asgari, S. Babanejad, and L. Faraone, Electron mobility, Hall scatteringfactor, and sheet conductivity in AlGaN/AlN/GaN heterostructures, J. Appl.Phys.2011, Dec,110(11),113713-1.
    [4.21] N. G. Weimann, L. F. Eastman, D. Doppalapudi, et al., Scattering of electrons atthreading dislocations in GaN,J. Appl. Phys.1998,3656,Dec,83(7),.
    [4.22] Z. Chen, H. R. Yuan, D.C. Lu, et al., Nitrogen vacancy scattering in GaN grownby metal–organic vapor phase epitaxy, Solid-State Electronics.2002,Apr,46(12),2069.
    [4.23] B. K. Ridley, The electron-phonon interaction in quasi-two-dimensionalsemiconductor quantum-well structures, J. Phys. C: Solid State Phys.1982,Oct,15(28),5889.
    [4.24] R. H. Hopper, C. H. Oxley, J. W. Pomeroy, et al., Micro-Raman/InfraredTemperature Monitoring of Gunn Diodes, IEEE Trans. Electron Devices.2008,55(4),4,1090.
    [4.25] M. Yoshikawa, R. Sugie, M. Murakami, et al., Defect characterization ofSi-doped films by a scanning near-field optical microscope-inducedphotoluminescence, Appl. Phys. Lett.2006,Aug,88(16),161905.
    [4.26] J. Elsner, R. Jones, M. Haugk, et al., Deep acceptors trapped at threading-edgedislocations in GaN, Phys. Rev. B.1998,Nov,58(12571),12571.
    [4.27] S.-H. Jang, S.-S. Lee, O.-Y. Lee, et al., The influence of AlxGa1xNintermediate buffer layer on the characteristics of GaN/Si(111) epitaxy, J. Cryst.Growth.2003,Aug,255(2-4),220.; S.-H. Jang, and C.-R. Lee, High-qualityGaN/Si(111) epitaxial layers grown with various Al0.3Ga0.7N/GaNsuperlattices as intermediate layer by MOCVD, J.Cryst.Growth.2003,Jun,253(1-4),64.
    [4.28] C. Bayram, Z. Vashaei, and M. Razeghi, Room temperature negative differentialresistance characteristics of polar III-nitride resonant tunneling diodes,Appl.Phys. Lett.2010,Aug,97(092104),092104-1; Z. Vashaei, C. Bayram, and M.Razeghi, Demonstration of negative differential resistance in GaN/AlN resonanttunneling diodes at room temperature,J. Appl. Phys.2010,Apr,107(083505),083505-1; C. Bayram, Z. Vashaei, and M. Razeghi, Reliability inroom-temperature negative differential resistance characteristics oflow-aluminum content AlGaN/GaN double-barrier resonant tunnelingdiodes,Appl. Phys. Lett.2010,Nov,97(181109),181109-1; C. Bayram, Z.Vashaei, and M. Razeghi, AlN/GaN double-barrier resonant tunneling diodesgrown by metal-organic chemical vapor deposition,Appl. Phys. Lett.2010,Jan,96(042103),042103-1.
    [4.29] M. Piazza, C. Dua, M. Oualli, et al., Degradation of TiAlNiAu as ohmic contactmetal for GaN HEMTs,Microelectron. Reliab.2009,Sep,49(9-11),1222.
    [4.30] R. M. Gong, J. Y. Wang, S. H. Liu,et al., Analysis of surface roughness inTi/Al/Ni/Au Ohmic contact to AlGaN/GaN high electron mobility transistors,Appl. Phys. Lett.2010,Aug,97(6),062115-1.
    [4.31] Q. Sun, Y.S. Cho, B.H. Kong, et al., N-face GaN growth on c-plane sapphire bymetalorganic chemical vapor deposition, J.Cryst. Growth.2009,May,311(10),2948.
    [4.32] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, et al., Electrical and luminescentproperties and deep traps spectra of N-polar GaN films,Materials Science andEngineering: B.2010,Oct,166(1),83.
    [4.33] S. Rajan, A. Chini, M. H. Wong, et al., N-polar GaN/AlGaN/GaN high electronmobility transistors, J. Appl. Phys.2007,Aug,102(044501),044501-1.
    [4.34] M. Stutzmann, O. Ambacher, M. Eickhoff, et al., Playing with Polarity,Phys.stat.sol.(b).2001,Aug,228(2),505.
    [4.35] N. Nidhi, D. Brown, S. Keller, et al., Optimization of ohmic contact throughAlGaN etch stop for N-polar AlGaN/GaN HEMT structures, Proc. Int.Workshop Nitride Semicond., Montreux, Switzerland,2008, Oct.6-10.
    [4.36] D.J. Won, X.J. Weng, and J. M. Redwing, Metalorganic chemical vapordeposition of N-polar GaN films on vicinal SiC substrates using indiumsurfactants, Appl. Phys. Lett.2012,Jan,100(2),021913-1.
    [4.37] S. Keller, N. A. Fichtenbaum, F. Wu, et al., Influence of the substratemisorientation on the properties of N-polar GaN films grown by metal organicchemical vapor deposition, J. Appl. Phys.2007,Oct,102(8),083546.
    [4.38] A.V. Tikhonov, T. V. Malin, K. S. Zhuravlev, et al., TEM study of defects inAlxGa1-xN layers with different polarity, J. Cryst. Growth.2012,Oct,338(1),30.
    [4.39] A.M. Sanchez, F.J. Pacheco, S.I. Molina, et al., Critical Thickness ofHigh-Temperature AlN Interlayers in GaN on Sapphire (0001), J. Electron.Mater.2001,May,30(5), L17.
    [4.40] A. Chakraborty, K.C. Kim, F. Wu, et al., Defect reduction in nonpolar-planeGaN films using in situ nanomask, Appl. Phys. Lett.2006,Jul,89(4),041903-1.
    [4.41] B. Imer, F. Wu, J.S. Speck, et al., Growth evolution in sidewall lateral epitaxialovergrowth (SLEO), J. Cryst. Growth.2007,Aug,306(2),330.
    [4.42] D. H. Wang, Y. Hao, S. R. Xu, et al., Broadband LED for optical displacementsensor with wavelength sensitive detector, J. Alloys Compd.2013,Mar,42(3),311.
    [4.43] D.G. Zhao, D.S. Jiang, L.L. Wu, et al., Effect of dual buffer layer structure onthe epitaxial growth of AlN on sapphire, J. Alloys Compd.2012,Dec,544(15),94.
    [4.44] M. Imura, K. Nakano, N. Fujimoto, et al., Dislocations in AlN epilayers grownon sapphire substrate by high-temperature metal-organic vapor phase epitaxy,Jpn. J. Appl. Phys.2007,Apr,46(4),1458.
    [4.45] M. Sumiya, and S. Fuke, Effect of treatments of sapphire substrate on growthof GaN film,Appl. Surf. Sci.2005,May,244(1-4),269.
    [4.46] Nicholas A. Fichtenbaum, Growth of N-face GaN by MOCVD, Ph.D. Thesis,Los Angeles: University of California Santa Barbara2008.
    [4.47] M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Rep. Prog.Phys.2009,Feb,72(3),036502.
    [4.48] I. Y. Knoke, P. Berwian, E. Meissner, et al., Selective etching of dislocations inGaN grown by low-pressure solution growth, J. Crystal Growth,2010,Oct,312(20),3040.
    [4.49] N. Yamamoto, H. Itoh, and V. Grillo,et al., Cathodoluminescence characterizationof dislocations in gallium nitride using a transmission electron microscope, J.Appl. Phys.2003, Sep,94(7),4315-1.
    [4.50] F. A. Ponce, D. Cherns, W. T. Young, et al., Characterization of dislocations inGaN by transmission electron diffraction and microscopy techniques, Appl. Phys.Lett.1996,Aug,69(6),770.
    [4.51] J. A. Floro, D. M. Follstaedt, P. Provencio, et al., Misfit dislocation formationin the AlGaN/GaN heterointerface, J. Appl. Phys.2004, Sep,96(12),7087-1.
    [4.52] Z. Ren, Q. Sun, S.-Y. Kwon, et al., Heteroepitaxy of AlGaN on bulk AlNsubstrates for deep ultraviolet light emitting diodes,Appl. Phys. Lett.2007,Aug,91(5),051116-1.
    [4.53] L. W. Sang, Z. X. Qin, H. Fang, et al., Study on threading dislocations blockingmechanism of GaN/AlxGa1xN superlattices, Appl. Phys. Lett.2008,May,92(19),192112.
    [4.54] Z. Chen, R. S. Q. Fareed, M. Gaevski, et al., Pulsed lateral epitaxial overgrowthof aluminum nitride on sapphire substrates, Appl. Phys. Lett.2006,Aug,89(8),081905-1.
    [4.55] S. R. Xu, J. C. Zhang, Y. R. Cao, et al., Improvements in (11-22) semipolarGaN crystal quality by graded superlattices, Thin Solid Films.2011,Sep,520(6),1909.
    [4.56] D. G. Zhao, D. S. Jiang, J. J. Zhu, et al., Role of edge dislocation and Siimpurity in linking the blue luminescence and yellow luminescence in n-typeGaN films,Appl. Phys. Lett.2009,Jul,95(4),041901-1.
    [4.57] Michael A. Reshchikov, and Hadis Morko, Luminescence properties of defectsin GaN, J. Appl. Phys.2005,Mar,97(6)061301-1.
    [5.1] L.A.Yang, H.B.He, W. Mao, et al., Quantitative analysis of the trapping effect onterahertz AlGaN/GaN resonant tunneling diode, Appl. Phys. Lett.2011,Oct,99(15),153501-1.
    [5.2] C.Bayram, Z.Vashaei, and M. Razeghi, Reliability in room-temperature negativedifferential resistance characteristics of low-aluminum content AlGaN/GaNdouble-barrier resonant tunneling diodes, Appl. Phys. Lett.2010,Nov,97(18),181109-1.
    [5.3] C. Bayram, Z. Vashaei, and M. Razeghi, Room temperature negative differentialresistance characteristics of polar III-nitride resonant tunneling diodes,Appl.Phys. Lett.2010,Aug,97(092104),092104-1; Z. Vashaei, C. Bayram, and M.Razeghi, Demonstration of negative differential resistance in GaN/AlN resonanttunneling diodes at room temperature,J. Appl. Phys.2010,Apr,107(083505),083505-1; C. Bayram, Z. Vashaei, and M. Razeghi, AlN/GaN double-barrierresonant tunneling diodes grown by metal-organic chemical vapordeposition,Appl. Phys. Lett.2010,Jan,96(042103),042103-1.
    [5.4] Z.L.Miao, T.J.Yu, F.J.Xu, et al., Strain effects on InxAl1-xN crystalline qualitygrown on GaN templates by metalorganic chemical vapor deposition,J. Appl.Phys.2010,Feb,107(4),043515-1.
    [5.5] K. Lorenz, N. Franco, E. Alves,et al., Relaxation of compressively strainedAlInN on GaN, J. Cryst. Growth.2008,Aug,310(18),4058.
    [5.6] A.Gadanecz, J.Bl sing, A.Dadgar, et al., Thermal stability of metal organicvapor phase epitaxy grown AlInN,Appl. Phys. Lett.2007,May,90(22),221906.
    [5.7] K. Lorenz, N. Franco, E. Alves,et al., Anomalous Ion Channeling in AlInN/GaNBilayers: Determination of the Strain State, Phys. Rev. Lett.2006,Aug,97(085501),085501.
    [5.8] J. Dorsaz, J. F. Carlin, S. Gradecak,et al., Progress in AlInN-GaN Braggreflectors: Application to a microcavity light emitting diode, J. Appl. Phys.2005,97,084505-1.
    [5.9] H.R.Chen, L.A. Yang, S. Long, et al., Reproducibility in the negative differentialresistance characteristic of In0.17Al0.83N/GaN resonant tunnelingdiodes-Theoretical investigation, J. Appl. Phys.2013,May,113(19),194509.
    [5.10] H.R.Chen, L.A. Yang, X.X. Liu, The impact of trapping centers on AlGaN/GaNresonant tunneling diode, IEICE Electronics Express,2013,Sep,10(19),1-6.
    [5.11] A.V. Tikhonov, T. V. Malin, K. S. Zhuravlev, et al., TEM study of defects inAlxGa1-xN layers with different polarity, J. Cryst. Growth.2012,Oct,338(1),30.
    [5.12] A.M. Sanchez, F.J. Pacheco, S.I. Molina, et al., Critical Thickness ofHigh-Temperature AlN Interlayers in GaN on Sapphire (0001), J. Electron.Mater.2001,May,30(5), L17.
    [5.13] A. Chakraborty, K.C. Kim, F. Wu, et al., Defect reduction in nonpolar a-planeGaN films using in situ SiNx nanomask, Appl. Phys. Lett.2006,Jul,89(4),041903-1.
    [5.14] B. Imer, F. Wu, J. S. Speck, et al., Growth evolution in sidewall lateral epitaxialovergrowth (SLEO),J. Cryst. Growth.2007,Aug,306(2),330.
    [5.15] J.S.Xue,Y.Hao, X.W.Zhou,et al., High quality InAlN/GaN heterostructuresgrown on sapphire by pulsed metal organic chemical vapor deposition,J. Cryst.Growth.2011,Jan,314(1),359.
    [5.16] J.S. Xue, Y. Hao, J.C. Zhang,et al., Nearly lattice-matched InAlN/GaN highelectron mobility transistors grown on SiC substrate by pulsed metal organicchemical vapor deposition, Appl. Phys. Lett.2011,Mar,98(11),113504-1.
    [5.17] J.S. Xue, J.C. Zhang, Y.W. Hou, et al., Pulsed metal organic chemical vapordeposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channelhigh electron mobility transistors, Appl. Phys. Lett.2012,Jan,100(1),013507-1.
    [5.18] J.S. Xue, J.C. Zhang, W. Zhang W, L. Li, et al., Effects of AlN interlayer on thetransport properties of nearly lattice-matched InAlN/GaN heterostructuresgrown on sapphire by pulsed metal organic chemical vapor deposition, J. Cryst.Growth.2012,Mar,343(1),110.
    [5.19] T.S. Oh, H.Jeong, T.H.Seo, et al., Improved Strain-Free GaN Growth with aNearly Lattice-Matched AlInN Interlayer by Metalorganic Chemical VaporDeposition, Jpn. J. Appl. Phys.2010, Nov,49(111001),111001-1.
    [5.20] M. Miyoshi, T. Egawa, H. Ishikawa, et al., Structural characterization ofstrained AlGaN layers in different Al content AlGaN/GaN heterostructures andits effect on two-dimensional elctron transportproperties,J.Vac.Sci.Technol.A.2005,Jul,23(4),1527.
    [5.21] H. Angerer, D. Brunner, F. Freudenberg, et al., Determination of the Al molefraction and the band gap bowing of epitaxial AlxGa1-xN films, Appl. Phys. Lett.1997,Sep,71(11),1504.
    [5.22] M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides,Rep. Prog.Phys.2009,Feb,72(3),036502.
    [5.23] E.D. Bourret-Courchesne, S. Kellermann, K.M. Yu, et al., Reduction ofthreading dislocation density in GaN using an intermediate temperatureinterlayer, Appl. Phys. Lett.2000,Oct,77(22),3562-1.
    [5.24] E.D. Bourret-Courchesne, K. M. Yu, M. Benamara, Mechanisms of DislocationReduction in GaN Using an Intermediate Temperature Interlayer,Journal ofElectronic Materials.2001,Nov,30(11),1417.
    [5.25] A. Vilalta-Clemente, M.A. Poisson, H. Behmenburg, The structure ofInAlN/GaN heterostructures for high electron mobility transistors, Phys. StatusSolidi A.2010,Feb,207(5),1105.
    [5.26] C. Kisielowski, J. Krüger, S. Ruvimov,et al.,Strain-related phenomena in GaNthin films,Phys. Rev. B.1996,Dec,54(17745),17745-1.
    [5.27] M. Yoshikawa, R. Sugie, M. Murakami, et al., Defect characterization ofSi-doped films by a scanning near-field optical microscope-inducedphotoluminescence, Appl. Phys. Lett.2006,Aug,88(16),161905.
    [5.28] J. Elsner, R. Jones, M. Haugk, Th.Frauenheim,et al., Deep acceptors trapped atthreading edge dislocations in GaN, Phys. Rev. B.1998,Nov,58(12571),12571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700