用户名: 密码: 验证码:
发动机冷却水套耦合仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现今发动机向着高功率、高转速方向发展,受热零部件的热负荷也逐渐增强,其热强度直接影响着发动机工作耐久性和可靠性,因此对发动机传热问题的研究越来越受到重视。本文对某四缸水冷增压汽油机冷却水套的传热问题进行试验及仿真研究。利用一维仿真与三维数值模拟耦合的方法求解冷却水套内流场、温度场以及机体温度场分布情况,评价该发动机冷却性能和热负荷大小,研究适用的耦合仿真方法。
     在温度场求解之前,利用一维仿真软件GT-POWER根据试验样机几何结构和参数搭建了发动机进、排气系统,供油系统,涡轮增压系统,气缸以及曲轴箱模块,设置了配气相位、燃烧模型、传热模型等参数,搭建完整的虚拟样机,对模型进行调试和求解,在后处理中得到发动机性能参数,并根据发动机标定试验中外特性数据验证一维模型,该模型仿真求解值与试验值吻合较好。随后在此基础上,输出缸内燃气温度和换热系数等参数,作为求解三维温度场的传热边界条件,实现与三维数值模拟计算的数据对接耦合。
     建立发动机测温试验台,讨论了测温仪器和密封方式的选用,最终确定了试验方法及测温点定位方案。缸体测点布置在进、排气侧的缸套壁面上和两缸之间连接处中点,缸盖测点布置在两缸之间和每缸进、排气门鼻梁区之间。测量了发动机在外特性,负荷特性和怠速工况实际工作状态下测点温度,得到该发动机在不同工况下温度场分布特点和受热零部件热负荷值,由此判断出冷却系统能力较好,零件热负荷符合发动机设计要求。并且试验测得结果为耦合仿真方法提供了验证依据。
     采用固-液耦合传热方法对温度场进行求解。利用前处理软件ANSYS ICEM CFD划分求解区域网格,划分时采用由分部到整合的方式,对液体区域和固体区域分别定义不同大小的网格,且对关键部位网格加密,在流体近壁处划分一层三棱柱网格作为边界层,这样处理以保证计算精度。将整体网格导入FLUNET中施加流场和温度场边界条件从而进行求解,在流场计算收敛的基础上进行温度场计算,最后得到流场和温度场分布,本文求解了发动机在最大扭矩转速和额定转速下全负荷时稳态温度场分布情况,分析结果表明该冷却系统设计合理,零部件热负荷在允许范围内。并将计算结果同测温试验数据进行对比,吻合程度较好,误差较小。
     通过试验和仿真研究,得到该机冷却能力较好,热负荷能够达到发动机设计要求。并利用测温试验数据对耦合仿真方法计算得到的数据进行验证,得出利用本文使用的耦合仿真方法计算得到的温度场与试验获得的温度场结果相近,误差很小,验证了耦合仿真方法的可行性和准确性。
Nowadays,with the engine development towards high power and high speed, thethermal load is gradually increased,which thermal intensity have greatly affected thedurability, reliability and economy of the engine. Therefore, people more and more payattention to the study of the engine heat transfer. Test and simulation methods were used toresearch the topic of heat transfer in water jacket of a four-cylinder turbocharged gasolineengine. The coupled method of one-dimensional simulation and three-dimensional numericalcalculation was used to solve the coolant flow field and temperature field in the, water jacketand the temperature field of engine block. The engine cooling performance and thermal loadwas evaluated. The coupled simulation method which is suitable for the research wasstudied.
     Before solving the temperature field, according to the experimental prototype geometricstructure and parameters, the intake and exhaust system, fuel supply system, turbo system,cylinder and crankcase modules were set up using GT-POWER software, the valve timing,combustion model and heat transfer model parameters were set, then a complete virtualengine model was built up. With debugging and solving the model, The engine performanceparameters were gotten in the postprocessing. The one-dimensional model. was verified bythe test data which were gotten from the engine calibration test of full load characteristics.Simulation results were in good agreements with experiment value. On this basis, gastemperature and heat transfer coefficient parameters in cylinder were brought out as heattransfer boundary conditions for solving3D temperature field. The data which would be setout to3D simulation were achieved and implemental.
     The test platform of engine temperature field was established. The selection of thetemperature measurement instruments and seal methods were discussed. After that, the testmethod and the position of measurement points were determined. The test points on cylinderblock were arranged on the cylinder liner wall both on the intake and exhaust sides and inthe middle zone of the connection between the two cylinders. The test points on cylinder head were arranged between two cylinders, and in the bridge zone between the intake andexhaust valve of each cylinder. The temperature values of the test points were measuredwhen the engine was under the full-load characteristics condition, load characteristicscondition and idle condition respectively. The temperature field distribution characteristicsand heat load value of the heated parts were gotten under different working conditions. Thecooling capacity of the water jacket was estimated to be good and the thermal load of theheated parts met the design requirements. Test results provided a basis for verifying thecoupled simulation method.
     Numerical simulation method of solid-liquid conjugate heat transfer was used to solvethe temperature field of the engine. Using per-processing software ANSYS ICEM CFD toget the grid of solving region, the division-assembly methods was applied. Liquid areas andsolid areas were defined in different cell sizes, in which the key-part grids should beincreased the density. One layer of prism grid was set off as the boundary layer in the fluidzone near the wall to increase the accuracy. The whole grid was input into FLUENTsoftware and the boundary conditions to solve the flow field and temperature field were setup. Finally, the flow field and the temperature field were solved. The temperature fielddistributions were gotten under the maximum torque speed and the rated speed full-loadcondition. The analysis on the results showed that the cooling system design was reasonableand the heat loads of the parts were permitted. By comparing the calculate results with thetest data, they were matched well and the deviation was small.
     Through the research of experiment and simulation calculation, the cooling ability ofthis engine was found good and the heat load results achieved the design requirements.Using the test data to verify the simulation calculation values, the deviation of them wassmall, which proved the coupled simulation method was practicable and accurate.
引文
[1]周龙保,刘巽俊,高宗英.内燃机学[M].机械工业出版社,1996.9.
    [2]陈特銮.内燃机热强度[M].国防工业出版社.1991.5.
    [3]姚仲鹏.车辆冷却传热[M].北京理工大学出版社.2001.6.
    [4]朱义伦,邓康耀.发动机缸头冷却水流场试验研究[J].上海交通大学学报,2002.04:463-465.
    [5]屈盛官,黄荣华.高强化柴油机气缸盖水流分布试验研究[J].车用发动机,2001.06:29-31.
    [6]李佑长,吕林,等.某四缸柴油机冷却水流动的试验研究[J].武汉理工大学学报,2006.10:793-795.
    [7]刘铁钢.李君,等.498型柴油机冷却水套优化设计[J].吉林大学学报.2008.07:778-781.
    [8]谷芳,崔国起,等.柴油机缸盖水套冷却流畅的LDV试验研究[J].汽车工程.2010.08:678-681.
    [9]熊锐,吴志新,等.发动机温度测试方法介绍[J].小型内燃机.1999.3:17-21.
    [10]叶晓明,闵作兴,等.柴油机活塞温度场试验研究及三维有限元分析[J].华中科技大学学报.2002.03:46-48.
    [11]杨新桥,张智.2135柴油机活塞及缸套温度测量试验[J].船海工程.2007.8:59-61.
    [12]孙平,张玲,等.柴油机活塞热负荷的试验研究及其有限元分析[J].小型内燃机与摩托车.2008.06:59-62.
    [13] Berglund S.Comparison Between Measured and Simulated Transients of aTurbocharged Diesel Engine.SAE942323.
    [14] Aaron Joseph King.A Turbocharger Unsteady Performance Model For theGT-Power Internal Combustion Engine Simulation. Master of PurdureUniversity Graduate School,2002:64-68.
    [15]郑广勇.CA6DF2-26柴油机瞬变过程研究[D].长春:吉林大学,2006.
    [16]朱袆飞.YC6T型柴油机变工况性能仿真研究[D].大连:大连交通大学,2008.
    [17]石来华.基于GT-POWER的车用汽油机动力性能优化[D].长沙:湖南大学,2009.
    [18]刘高飞.TY3100EZ增压柴油机试验与整机性能循环模拟研究[D].武汉:武汉理工大学,2010.
    [19] VALASZKAI L.,JOUANNET B.. Cooling System Optimization for Euro-4EPA/02Heavy Duty Trucks[C].SAE Paper200-01-0964.
    [20] ETENMAD S., WALLESTEN J., STEIN C.F., et al. CFD-Analysis of Cycle AveragedHeat Flux and Engine Cooling in An IC-engine[C].SAE Paper2005-01-0200.
    [21] MARK D.Moeckel.Computational Fluid Dynamic Analysis of A Six CylinderDiesel Engine Cooling System with Experimental Correlations[C].SAE Paper941081.
    [22] Okumura, CFD Simulation by Automatically Generated Tetrahedral andPrismatic Grid for Engine Intake Duct and Coolant Flow in Three Days[C].SAE2000—01-0294.
    [23] Satheesh Makkapati,Coolant Velocity Corrections in an IC Engine CoolantJacket[C].SAE2002-01.1203.
    [24] Stephen Shih,Engine Knock Toughness Improvement Through Water JacketOptimization[C].SAE2003-01-3259.
    [25] Jian Ye,Coolant Flow Optimization in a Racing Cylinder Block and Head UsingCFD Analysis and Testing[C].SAE2004-01-3542.
    [26]陈小东,詹樟松.发动机冷却水套内三维流动的数值模拟研究.汽车技术[J].2004.12:23-26.
    [27]刘铁钢.柴油机冷却水套模拟分析及结构优化[D].长春:吉林大学,2007.
    [28]张伟.发动机冷却水套流场的分析及研究[D].太原:太原理工大学,2010.
    [29]董晨波等.分体冷却式柴油机缸体水套的CFD分析[J].汽车技术.2004.03.
    [30]陈群.车用柴油机冷却水套的计算流体力学的分析[D].长春:吉林大学,2003.
    [31] Morel T, Fort E, Blummberg P. Effect of Insulation Strategy and DesignParameters on Diesel Heat Rejection and Performance[C].SAE Trans850506.
    [32]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社.2004.
    [33]苏培刚.Q475发动机缸体的传热和强度研究[D].重庆:重庆大学.2005.
    [34] KIM Jae Su,WANG Allan,CRUSE Michael W..Transient Conjugate CFD Simulationof the Radiator Thermal Cycle[C].SAE2006-01-1577.
    [35] Brian J. Luptowski,Vehicle Engine Cooling System Simulation (VECSS)Utilizing GT-Power,Michigan Technological U.
    [36]赵宏国,白敏丽.耦合法在柴油机传热研究中的应用[J].小型内燃机与摩托车.2007.12:1-5.
    [37] GT-COOL TUTORIAL6.1,2004.8.
    [38]罗玉君,陈辉.柴油机工作过程模拟计算.船海工程[J].2006.01:15-17.
    [39]李春野.16V240ZJB型柴油机工作过程数值计算[D].大连:大连海事大学硕士论,2001.
    [40]冯敬奇.柴油机工作过程仿真与试验研究硕士[D].天津:天津大,2004.
    [41]刘铮,张扬军.内燃机一维非定常流动[M].清华大学出版社,2007.
    [42]户冬.气道试验台及4种评价方法介绍[J].重庆理工大学学报(自然科学),2010.12:123-127.
    [43]钱作勤,吴家兵,王苏丹.柴油机机体温度的实验测量与三维数值仿真[J].武汉理工大学学报,2005.03:70-73.
    [44]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].清华大学出版社,2007.
    [45]金忠青.N-S方程的数值解和紊流模型[M].河海大学出版社,1989.
    [46] Fluent User’s Guide. Fluent Inc., Lebanon, NH,1999.
    [47] POLLANRD Tracey Smithe, BURGERS Iohn.CFD Solution of High Prandtl FlowsUsing Boundary Layer Similarity[C].SAE Paper960376.
    [48]钱作勤,张智.内燃机缸内传热研究发展综述[J].中国水运(理论版).2006.07:170-171.
    [49]魏春源,张卫正,葛蕴珊.高等内燃机学[M].北京:北京理工大学出版社,2001:30-56.
    [50] Ye J,covey J,Coolant now optimization in a racing cyIinder block and headusing CFD anlysis and testing[C].SAE2004一01-3542.2004.
    [51] Tim Juan,Invstigation and Assessment of Factors Affecting the UnderhoodCooling Air Flow Using CFD[C].SAE2008-01-2658
    [52] Robert D.Chalgren,Thermal comfort and engine warm-up optimization ofalow-flow advanced thermal management system[C].SAE2004-01-0047
    [53] Fel wang,A New System Restriction Simulation Method for Underhood AirflowCFD Analysis[C].SAE2007-01-0768
    [54] Siders J A,Tiuey D G.Optimizing cooling system per-formance using computersimulation[C].SAE Paper971802.
    [55]姚仲鹏,王新国.车辆冷却传热[M].北京:北京北京理工大学出版社,2006.
    [56] J.G.McManus,S.R.Anderson.Co-Simulation:Developing A Virtual VehicleModeling Capability[C].SAE paper2001-01-0038.2001.
    [57] Elena Cortona,Christopher H Onder.Engine Thermal Management with ElectricCooling Pump[C].SAE Paper2000—01—0965.
    [58]潘立.柴油机冷却系统工作过程数值仿真与试验研究[D].华中科技大学硕士学位论文,2008年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700