用户名: 密码: 验证码:
柴油机燃油射流运动行为特点及对燃烧的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于柴油机而言,燃油是缸内工作过程中主要的工质之一,燃油的射流运动与柴油机的动力性、经济性及排放性能等表观指标存在着极为密切的联系。同时,在柴油机实际工作过程中燃油射流的运动行为是极为复杂的,涉及到破碎、雾化、蒸发、混合、扩散及燃烧等多种物理及化学行为,深入了解燃油的这些运动行为,为我们深入了解缸内工作过程及降低有害排放物的生成具有重要的意义。据此,文中针对燃油射流运动行为的机理和影响因素进行了深入剖析,并且考察了喷射控制条件及喷油器结构与布置等条件对改善燃油射流运动及优化燃烧过程的应用潜力。
     为深入了解缸内燃油射流的破碎和雾化行为机理,文中首先总结并分析了过去研究人员的研究成果,对喷孔内部流动行为进行了深入而全面的了解。喷孔内的流动形态可划分为单相流、部分空化流、超空化流及柱塞流等四种基本流态,这四种不同的流动形态对应不同的气/液两相分布及流动结构,进而影响着孔外的射流雾化过程。为进一步了解喷射过程中喷孔内部流动的细节特征,通过FIRE软件中的双流体模型对单孔喷嘴进行了模拟研究。研究发现,喷射过程中随针阀升程和喷射时间的变化,孔内的流动状态发生显著变化,由单相流逐渐演变为空化流,流动结构也逐渐呈两区分布。对于轴对称喷嘴,在喷孔中心区域存在密度较高、速度较大且湍动较弱的液相区;而在壁面附近则为密度较低、流速较小且空穴气泡含量较高的空穴区。对于非轴对称结构喷嘴,喷孔内的空穴气泡分布及其流动参数也呈现非对称分布,空穴区主要产生于喷孔的上壁面附近。同时,文中还在一款实际的7孔喷油器基础上,针对喷射压力、背压、燃料性质等喷射条件,以及喷孔入口圆角半径比R/D、长径比L/D、进/出孔径系数K等几何结构参数的影响进行了研究,结果发现这些因素对孔内流动特性均具有较大影响,合理选用这些参数可以增强诱导射流破碎雾化的空穴、湍动及速度等因素。
     在已有的各种雾化假说和模型的基础上,结合FIRE软件自身的特点,以及孔内流动行为的研究,提出了一个能准确描述射流雾化过程的组合模型。模型中认为湍流、空穴及气动力等共同作用是诱导射流雾化的主要动因,并根据各因素作用区域的不同,相应地将射流雾化过程分为初次雾化与二次雾化两个阶段。初次雾化发生在近孔区域,喷孔内部形成的空穴和湍动是诱发雾化过程的主导因素。在构建初次雾化模型过程中,利用一个辅助网格将喷孔出口流动特性参数与初次雾化模型联系起来,通过质量守恒构建出射流液核的基本结构尺寸,然后破碎液滴在相应的液核表面网格上释放出来。模型中通过湍动长度尺度来确定雾化长度尺度和液滴直径,将空穴气泡的影响处理为湍动方程的一个源相;雾化时间尺度为湍流和气动破碎时间的加权平均值。该模型能被赋予准确详细的初始喷射条件,并可自动计算出SMD及喷雾锥角等特征参数。初次雾化产生的小液滴进入油/气混合区域后,由于液滴与周围气体之间具有较高的速度差,从而在气动力的作用下会进一步发生分裂破碎。文中采用KH-RT模型对液滴的二次雾化过程进行模拟,该模型中耦合KH与RT两种不稳定破碎模式,适用于低以及高Weber数条件下的多种破碎类型。
     利用轴对称结构与非轴对称结构的两种单孔喷嘴研究了孔内流动特性的变化对孔外射流雾化过程的影响,研究结果表明:对于轴对称结构喷嘴,喷雾体形态仍呈轴对称分布;而对于非轴对称结构喷嘴,由于孔内的空穴气泡呈现极强的不均匀分布,在空穴现象较为富集的上壁面,空穴气泡溃灭后,对射流体的扰动作用显著加强,射流破碎加速,并且破碎液滴获得更大的径向动能,从而具有较大的扩散锥角,而空穴气泡较少的一侧则与之相反,故而孔外射流体也呈现出非轴对称分布。
     利用所建雾化模型及可视喷雾形貌的实验装置进一步考察了不同喷射条件和喷嘴结构对多孔喷嘴射流雾化过程的影响。研究结果表明:耦合详细的初始边界,可使射流体形貌、贯穿距离和锥角等与实验结果更加吻合。同时,合理改进喷射条件和喷嘴结构能有效的改变喷孔出口的流动状态,从而改善射流雾化效果,扩大液滴的分布区域,故而从喷射条件和喷嘴结构两方面进行优化,是改善柴油机燃烧过程和降低有害排放物生成的有效手段。
     为对更为复杂的缸内工作环境下的燃油射流运动行为和燃烧过程进行深入了解和认识,文中将研究工作进一步拓展到一台实际的柴油机中,针对一台YD4A75-C3型柴油机建立了柴油机缸内工作过程的数值模拟和实验研究平台。同时,为对缸内燃油分布、燃烧过程及有害排放物生成过程进行深入和定量地分析,文中还引入了一种基于统计意义的微观信息“量”化分析法。研究结果表明:柴油机缸内工作过程中,燃烧前期和中期放热速率较快,缸内有较多的燃料参与燃烧反应,单位时间内放出的热量较多,并且局部存在放热速度更为快速的区域,促进了局部高温区的产生。同时,燃油燃烧过程中,整体上燃油分布区域较为集中,燃油扩散不足,空气利用率不高,燃油蒸汽边扩散边进行燃烧,燃烧释放的热量主要被未燃燃油和燃烧产物吸收,这也是促使局部高温产生、及有害排放物的生成的主要因素。
     鉴于柴油机工作过程中燃油射流运动与燃烧过程、高温区的产生及有害排放物的生成之间的密切关系,文中首先结合高压共轨燃油喷射系统灵活控制喷射过程的特点,针对喷射压力、主喷定时、预喷射及后喷射等喷射条件进行了研究。随后文中又研究了喷孔数、喷孔直径、喷孔布置形式和喷孔结构等喷嘴几何结构参数的影响。研究结过表明:合理地调整喷射条件及喷嘴结构能有效地改善燃油射流运动,燃油的扩散运动加强,分布区域增大,空气的利用率提高,从而有效降低有害排放物的生成。
Fuel is the major working media during the operation of the diesel engine in cylinder. Jet flow is closely related with the diesel engine power, economy and emission performance. Meanwhile, the jet flow behavior is very complicated under the practical operation of the diesel engine, which includes fuel broken, atomization, evaporation, mixing and others’physical and chemical process. A deep knowledge of these behaviors is helpful for us to understand the working process in cylinder and the reduction of harmful emissions. The mechanism and influencing factors of fuel atomization is deeply analyzed in this paper. And the application potential of the injection control condition and injector structure and layout are investigated in order to improve fuel jet behavior and optimize combustion process.
     In order to deeply understand the principle of the breakup and atomization of fuel jet in cylinder, the research results of others were analyzed and summarized, the flow behavior inside the orifice was deeply and roundly studied in this paper. The flow inside the orifice was subdivided into single-phase flow, partly cavitation flow, fully cavitation flow and plug flow. The four different flow regimes correspond to different gas/liquid two-phase flow distribution and structure, and had influences on the atomization process of jet out of the hole. For the further understanding of detail features about the flow process inside the orifice during the injecting process, single hole nozzle was numerically studied by dual fluid model in FIRE software. With the needle valve lift and fuel injection time changed, the flow state inside the hole changes apparently from single-phase flow gradually evolved into cavitation flow and the flow structure appears bi-region distribution gradually. Toward the axisymmetric nozzle, in the center of nozzle there is a higher density, higher velocity and weaker turbulence liquid area, and near the orifice wall there is a less density, lower velocity void area with more air bubble. When it comes to asymmetric orifice, the distribution of cavity bubble and flow parameter present asymmetric distribution, the void area exists around the upper wall. At the same time, based on a real injector with seven holes, the injection pressure, the backpressure, fuel characteristics and inlet rounded corner diameter ratio R/D, length rate L/D, inlet /outlet aperture ratio K and other structural geometries was studied .The results showed that these factors made high impact on the flow characteristics. The proper choice of these factors can enhance the cavity, turbulence and velocity of the inducing jet-flow that improves the atomization.
     Based on the study of the various atomization hypothesis and models, combining with the characteristics of FIRE software and the study of flow characteristics inside the hole, a more accurate and detailed description of the jet flow atomization procedure was put forward. In the model, turbulence, cavitation and aerodynamic were all important factors on the effect of jet flow atomization procedure. Cavitation and turbulence in the nozzle are one of the dominant factors to induce jet flow primary atomization. Turbulent kinetic energy and cavitation bubble motion in the nozzle greatly strengthen initial perturbations on the jet surface. Then the initial disturbance surface wave further developed under the influence of aerodynamic and finally broken isolated droplets. In the process of establishing the model, spray atomization processes was divided into primary breakup and secondary breakup to be simulated. Primary breakup near the nozzle hole, the flowing characteristics of nozzle and spray model contacted by additional grid and the basic measure of liquid can be calculated by Conservation of Mass. Then broken droplet was accordingly released in liquid core surface mesh. The length and diameter of droplets were obtained by length of turbulent in this model. The impact of the bubble cavity was treated as a source of turbulent phase equation. Atomization time scale is the weighted average of turbulence and aerodynamic crushing.
     The accurate condition of original injection was given to this model. SMD and spray cone angle can be calculated by this model. At the same time, KH-RT model was used to simulate the droplet atomization process of secondary breakup. The unstable breakup models of KH and RT were coupled in this model which applied to many breakup models of low and high Weber number.
     Based on the non-axisymmetric and axisymmetric structure, the effect Liquid-Gas Distribution on the process of jet puverization was studied. The results showed that the jet flow of the axisymmetric nozzle is axisymmetrical distribution and the non-axisymmetric nozzle jet flow was non-axisymmetric. The reason is that the bubble of cavity is non-uniformity distribution in the hole of the non-axisymmetric nozzle. The disturbance to jet flow was strengthened in the thicker side of the cavity area after the cavity collapsed. The body of the jet disturbance was significantly enhanced speed jets and fragmentation solution greater radial kinetic energy drops, which have large diffusion cone angle, while the hole on one side of the bubble is less contrast.
     Utilizing atomization model and the structure of jet atomization in the visual experiment, the influence of different injection conditions and spray hole structure on the jet atomization of porous nozzle holes were further studied. The results showed that the jet structure, spray penetration and cone angle were more consistent with the experimental results by the detailed coupled original boundary. Reasonable injection conditions and improved jet nozzle structure can effectively change the nozzle exit flow state. The jet atomization is improved , which expand the geographic distribution of droplets and promote fuel and gas mixture. Therefore the optimization on the two aspects of the spray conditions and the nozzle structure is important technical means to improve the diesel combustion process and reduce harmful emissions.
     In order to further understand the combustion process and the jet flow behavior in the complicated surroundings in cylinder, the research platform of the in-cylinder working process of the numerical simulation and experiment was established based on the YD4A75-C3 diesel engine. To deeply and quantificationally analyze the fuel distribution characteristics, combustion and the generation process of harmful emissions NO and Soot, the paper introduced the microscopic information quantity analysis method. The results showed that rate of heat release of prophase and intermediate combustion was higher. Because much fuel burned and heat rejection is much, the temperature is high at the area of high exothermic rate in this stage. The distribution of fuel is concentrated totally and the fuel spread inadequately, so the utilization of air is low at the process of combustion. The combustion is diffusive combustion. The heat was mainly absorbed by unburned fuel and combustion products which was the main factor of creating high temperature at some places and harmful emissions.
     Combined with the high-pressure common rail system of high degree of flexibility the injection pressure, main injection timing, pre-injection and post injection were studied in this paper based on the close relationships of jet flow, combustion process, high temperature zone and pollutant generation. The factors of nozzle hole number, diameter of nozzle hole, arrangement of nozzle hole and post injection were also studied. The research results showed that the jet flow, the diffusion motion of fuel, the distribution areas of fuel and the utilization of air was improved better and the harmful emissions was reduced when the injection condition and nozzle structure were reasonably improved.
引文
[1]张澜涛。国际能源态势与我国能源安全.国际关系学院学报,2006(5):45-52
    [2]唐炼,世界能源供需现状与发展趋势,国际石油经济。2005:13(1):30-33
    [3]史绍熙,苏万华.内燃机燃烧研究中的几个前沿问题[J].内燃机学报,1990,8(2):l~8
    [4]吴建平.国外的汽车排放法规.汽车科技[J],2001, (1):10-14.
    [5]濑古俊之.汽车排放法规及燃油消耗动向和与之相适应的发动机燃烧技术[J].国外内燃机,2001, (3): 9-15.
    [6]颜祥.美国汽车燃料经济性法规评述[J].世界标准化与质量管理,2007,(1):44-48.
    [7]清洁汽车行动项目背景.全国清洁汽车行动信息网. www.cleanauto.com.cn
    [8]汪卫东.国内外汽车排放法规对比分析[J].商用汽车,2004,(11).
    [9]周龙保,刘巽俊.《内燃机学》,机械工业出版社,2000,第一版
    [10]我国中重型车用柴油机实现欧Ⅲ排放法规的技术路径,董尧清等,汽车技术2005年5期
    [11]Johnson T V. Diesel Emission Control Technology-2003 in Review[C]. S AE paper 2004 - 01 - 0074
    [12]Walter Puetz .Future Diesel Engine Thermal Efficiency Improvement an Emissi ons Control Technology[C]. US Department of Energy Diesel Engine Emission Reduction Conference, Chicago , August 2005
    [13]Johnson T V. Update on Diesel Exhaust Emission Control Technology and Rregulations, Diesel Particulate Filter Technology for Low-Temperature and Low-NOx /PM App lications[C].US Depart ment of Energy Diesel Engine Emission Reduction (DEER) Conference, California, August 2004
    [14]MüllerW,Olschlegel H, Schêfer A. Selective Catalyti Reduction-Europe’s NOx Reduction Technology [C].S AE Paper 2003- 012- 2304 .
    [15]Rumminger M D , Zhou X, Balakrishnan K, et al . Regeneration behavior and transient thermal response of diesel particulate filters [J].SAE,2001-01-1342
    [16] Li Yuejin, Roth Stan, YassineMahmoud . Study of Factors Influencing the Performance of a NOx Trap in a Light- Duty Diesel Vehicle [ C ]. SAE Paper 20002 -012-2911.
    [17]新井纪男,三浦隆利,宫前茂广[编],赵黛青,赵哲石,王褪[译].燃烧生成物的发生与抑制技术.北京:科学出版社,2001
    [18]Tums S R.Understanding NOx formation in nonpremixed flames : experiments and modeling.Progress in Energy and Combustion Science,1995,21(5):361-385
    [19]Steinfeld J H. Atmospheric chemistry and Physics of air Pollution. Chiehester: John-Wiley, 1986
    [20]何学良,李疏松,《内燃机燃烧学》,机械工业出版社,1900,第一版,P397-P440.
    [21]Fenimore, C.P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames, in Thirteenth Symposium (International) on Combustion, 1971, p. 373.
    [22]Spliethoff H.Hein K Vebrennungsablauf and Schadst Offentstehung in Der Kohlenstaubfeuerung 1994
    [23]Wanzl W.Jahns P.Van Heek K H In: Proceeding 1989 International Conference on Coal Science 1989
    [24]Tao Feng,Numerical Modeling of Soot and NOx Formation in Non-Stationary Diesel Flames with Complex Chemistry,Academic press,pages3-4,2003
    [25]Lee, R., J. Pedley and C. Hobbs.“Fuel Quality Impact on Heavy Duty Diesel Emissions:- A Literature Review.”SAE Transactions, vol. 107, sec. 4, SAE Paper 982649, 1998.
    [26]J P Shi.R M Harrison.F Brear Particle size distribution from a modern diesel engine 1999.
    [27]宁智.刘双喜.资新运柴油机排气微粒特性的试验研究[期刊论文]-环境科学学报2003(6)
    [28]Choi, M. Y., A. Hamins, G. W. Mulholland and T. Kashiwagi. Simultaneous Optical Measurement of Soot Volume Fraction and Temperature in Premixed Flames. Combustion and Flame, vol. 99, pp. 174–186, 1994.
    [29]Glassman, I. Combustion. 3rd ed. Academic Press, San Diego, 1996.
    [30]Lee, K. O., R. Cole, R. Sekar, M. Y. Choi, J. Zhu, J. Kang and C. Bae.“Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling.”SAE Paper 2001-01-3572, 2001.
    [31]Tree, D. R. and D. E. Foster. Optical Measurements of Soot Particle Size, Number Density, and Temperature in a Direct Injection Diesel Engine as a Function of Speed and Load. SAE Paper 940270, 1994.
    [32]Pinson, J. A., T. Ni and T. A. Litzinger.“Quantitative Imaging Study of the Effects of Intake Air Temperature on Soot Evolution in an Optically-Accessible D.I. Diesel Engine.”SAE Paper 942044, 1994.
    [33]Ladommatos, N. and H. Zhao.“A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 1: Principles.”SAE Paper 941956, 1994.
    [34]解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2005.9,215-216
    [35]陈义良.燃烧原理[M].北京:北京航空工业出版社,1992
    [36]Stefan Fischer, Klaus Rusch, Bernd Amon.SCR Technology to Meet Future Diesel Emission Regulations in Europe[C].AVECC 2004, April 27-29, 2004,China World Hotel Beijing, China
    [37]Brian Scarnegie, William R. Miller and Bernd Ballmert.Recent DPF/SCR Results Targeting
    [38]Akihama,K.,Takatori,Y., Inagaki,K., Mechanism of the smokeless rich Diesel combustion by reducing temperature, SAE paper 2001-01-0655,2001
    [39]Kamimoto,T.,and Bae M.,High Combustion Temperature for the Reduction of Particulate in Diesel Engines,SAE paper 880423,1988
    [40]J.B.Heywood, Internal combustion engine fundamentals, New York: McGraw-Hill Book Company,1998
    [41]T Kitamura,T Ito,J Senda and H Fujimoto,Mechanism of smokeless diesel combust ion wi th oxygenated fuels based on the dependence of the equivalence ratio and temperature on soot particle formation,International Journal of Engine Research,2002,Vol.3(4):a223-247
    [42]Ciajolo,A.D'Anna,A.and Barbella,R.et al,The Effect of Temperature on SootInception in Premixed Ethylene Flames,Proceedings of the Combustion Institute 26,1996,pp.2327-2333
    [43]llen W. Gray, Thomas W. Ryan. Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel[C]. SAE Paper 971676, 1997
    [44]Robert C. Wang, Chia-fon F. Lee. Comparisons of Computed and Measured Results for a HSDI Diesel Engine Operating Under HCCI Mode[C]. SAE Paper 2006-01-1519, 2006
    [45]Manfred Amann, Janet Buckingham, Naoki Kono. Evaluation of HCCI Engine Potentials in Comparison to Advanced Gasoline and Diesel Engines[C]. SAE Paper 2006-01-3249, 2006
    [46]omohiro Kanda, Takazo Hakozaki. PCCI Operation with Early Injection of Conventional Diesel Fuel[C]. SAE Papers 2005-01-0378, 2005
    [47]Stefan Simescu, Thomas W. Ryan, Gary D. Neely, et al. Partial Premixed Combustion with Cooled and Uncooled EGR in a Heavy-duty Hiesel Engine[C]. SAE Papers 2002-01-0963, 2002
    [48]Yasutaka Kitamura, Sung-Sub Kee, Ali Mohammadi, et al. Study on NOx Control in Direct-Injection PCCI Combustion Fundamental Investigation Using a Constant-Volume Vessel[C]. SAE Papers 2006-01-0919, 2006
    [49]Yong Sun, Rolf D. Reitz. Modelling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion[C]. SAE Papers 2006-01-0027, 2006
    [50]Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa. Combustion and Emission Characteristics of Multiple-stage Diesel Combustion[C]. SAE Papers 980505, 1998
    [51]Yanagihara H, Sato Y, Mizuta J, et al. A Study of DI Diesel Combustion under Uniform Higher-dispersed Mixture Formation[J]. JSAE Review, 1997 (18): 247-254
    [52]Yanagihara H. Simultaneous Reduction of NOx and Soot in Diesel Engines Using a New Mixture Preparation Method[J]. JSME International Journal, Series B, 1997, 40(4): 592~602
    [53]Shuji Kimura, Osamu Aoki, Hiroshi Ogawa. New combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines[C]. SAE Papers 1999-01-3681, 1999
    [54]Hiroshi Ogawa, Shuji Kimura, Masao Koike, Yoshiteru Enomoto. A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-injection Diesel Engine[C]. SAE Papers 2000-01-2792, 2000
    [55]Shuji Kimura. An Experimental Analysis and Future Trend of Low-Temperature and PremixedCombustion for Ultra-Clean Diesel[C]. SAE Homogeneous Charge Compression Ignition System, 2005
    [56]Stephen A. Ciatti, Jan P. Hessler, Kyeong O. Lee, et al. Investigation of Nano-Particulate Production from Low-Temperature Combustion[C]. SAE Papers 2005-01-0128, 2005
    [57]Patrick Merritt, Yiqun Huang, Magdi Khair, Joseph Pan. Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes[C]. SAE Papers 2006-01-3307, 2006
    [58]Yutaka Murata, Jin Kusaka, et al. Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing[C]. SAE Papers 2006-01-0203, 2006
    [59]Akihiko Minato, Tsuneo Tanaka and Terukazu Nishimura et al,Investigation of Premixed Lean Diesel Combustion with Ultra High Injection Pressure. SAE 2005-01-0914,2005
    [60]Dimitris Panousakis, Andreas Gazis, Jill Patterson. Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes[C].2006-01-0024
    [61]Carsten Baumgarten,Mixture Formation in Internal Combustion Engine,New York: Springer-Verlag, 2006
    [62]宫木正彦,The Future of Diesel EMS in China--Denso Technology Contribute to Your Success,The Beijing 2006 Forum on sustainable Development of Internal Combustion Engine and the 2nd International forum of Automotive Powertrain in China,2006
    [63]F.Mallamo,M.Badami and F.Millo,“Analysis of Multiple Injection Strategies for the Reduction of Emissions,Noise and BSFC of a DI CR small Displacement Non-Road Diesel Engine”(SAE)2002-01-2672
    [64] S. Kevin Chen, Ford Motor Co.“Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine”(SAE)2000-01-3084
    [65]Sanghoon Kook and Choongsik Bae,Combustion Control using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine,SAE 2004-01-0938,2004
    [66]Stefan Pischinger, Jürgen Schnitzler, Michael Rottmann et al. Future of Combustion Engines[C].SAE paper 2006-21-0024
    [67]D.Middlemiss,Geometry controls Diesel emissions,Automotive Engineering, 1978(5)
    [68]小宫山邦彦,紊流燃烧室的研究与发展,车用发动机,1982(4)
    [69]汪洋,用荧光法和散射光法研究柴油机的喷雾撞壁混合过程及喷雾特性:[博士学位论文],天津;天津大学,1995
    [70]O'Rourke,P.J.,Bracco,F.V.Modeling of drop interactions in thick sprays and comparisons with experiments.Proc.I.Mech.E,1980,Vol.9:101-116.
    [71]Faeth,GM。Hsiang,L.P.and Wu,P.K.Structure and Breakup Properties of Sprays.Int.J.Multiphase Flow,V01.21,Suppli.,lap.99-127,1995.
    [72]Nobuyuki KAWAHARA, Eiji TOMITA, Mamoru SUMIDA. Microscopic Visualization of Liquid Column Break-up Process in Gasoline PFI Injector. 14th Int Symp on Applications of Laser Techniques toFluid Mechanics Lisbon, Portugal, 07-10 July, 2008
    [73]M.Blessing,G K6nig,C.Kriiger,U.Michels and V Schwarz.Analysis of Flow and Cavitation Phenomena in Diesel InjectionNozzles and its Effects Oil Spray and Mixture Formation.SAE Paper 2003-01-1358,2003. ,
    [74]Choongsik Bae and Jinsuk Kang. The structure of a break-up zone in the transient diesel spray of a valve-covered ori?ce nozzle.Professional Engineering Publishing (Institution of Mechanical Engineers.2006.7(4):319-334
    [75]史绍熙,赵奎翰,叶枫.直喷式柴油机喷雾特性与燃烧过程的研究.内燃机机学报1987
    [76]成晓北,黄荣华.柴油机燃油喷射雾化的PIV测量试验研究.燃烧科学与技术,2003,3
    [77]朱志勇,吴志军,黄震.燃油喷雾流场DPIV测速系统的开发.应用激光,2003,1
    [78]Reitz, R.D. and F.V. Bracco, 1982. Mechanism of atomization of a liquid jet. Physics Fluids, 25: 1730-1730.
    [79]A.Kalaaji, B. Lopez, P. Attané, and A. Soucemarianadin, Breakup length of forced liquid jets Phys. Fluids 15, 2469 (2003).
    [80] M. C. Gonzalez-Garcia, M. Maltoni and A. Yu. Smirnov, Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos, Phys. Rev. D 70 (2004) 093005 [hep-ph/0408170].
    [81] Reanz W E. On Spray and Spraying. Can .J. Chem. Eng, 1958,36:175.
    [82]Lin,S.P., Kang,D.J. Atomization of a liquid jet.Phys.Fluids,1987,Vol.30:2000-2006.
    [83]Lin,S.P.,Lian,Z.W.Mechanism of atomization.AIAA J.,1990,Vol.28:120-126.
    [84]Liu,A.B.,Mather,D.,Reitz,R.D.Modeling the effects of drop drag and breakup on fuel sprays.SAE Paper 930072,1993.
    [85]Yang,H.Q.Asymmetric instability of a liquid jet.Phys.Fluids,1992,Vol.A4:681-689.
    [86]Lee,K.W.,Spencer,R.C.Photo micrographic studies of fuel sprays.NACA Rept 454,1933.
    [87]Schweitzer, P. H.,“Mechanism of Disintegration of Liquid Jets,”Journal of Applied Physics, Vol. 8, 1937, pp. 513–521.
    [88]Chen, T.-F., andDavis, J. R.,“Disintegration of a TurbulentWater Jet,”Journal of the Hydraulics Division, American Society of Civil Engineers, Vol. 90, No. 1, 1964, pp. 175–206.
    [89]Grant, R. P., and Middleman, S.,“Newtonian Jet Stability,”AIChE Journal, Vol. 12, No. 4, July 1966, pp. 669–678.
    [90]Phinney, R. E.,“The Breakup of a Turbulent Jet in a Gaseous Atmosphere,”Journal of Fluid Mechanics, Vol. 60, No. 4, Oct. 1973,pp. 689–701.
    [91]McCarthy,M. J., andMalloy,N. A.,“Review of Stability of Liquid Jets and the In?uence of Nozzle Design,”Chemical Engineering Journal,Vol. 7, No. 1, 1974, pp. 1–20.
    [92]Hoyt, J.W., and Taylor, J. J.,“Waves onWater Jets,”Journal of Fluid Mechanics, Vol. 83, No. 1, Nov. 1977, pp. 119–123.
    [93]Hoyt, J. W., and Taylor, J. J.,“Turbulence Structure in a Water Jet Discharging inAir,”Physics of Fluids,Vol. 20,No. 10, 1977, pp. S253–S257.
    [94]Wu, P.-K., Tseng, L.K., and Faeth, G. M.,“Primary Breakup in Gas/LiquidMixing Layers for Turbulent Liquids,”Atomization and Sprays, Vol. 2, No. 3, 1992, pp. 295–317.
    [95]Wu, P.-K., and Faeth, G. M.,“Aerodynamic Effects on PrimaryBreakup of Turbulent Liquids,”Atomization and Sprays, Vol. 3, No. 3,1993, pp. 265–289.
    [96]Wu, P.-K., Miranda, R. F., and Faeth, G. M.,“Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets,”Atomization and Sprays, Vol. 5, No. 2, 1995, pp. 175-196.
    [97]Wu, P.-K., and Faeth, G.M.,“Onset and End of Drop Formation Along the Surface of Turbulent Liquid Jets in StillGases,”Physics of Fluids A,Vol. 7, No. 11, 1995, pp. 2915–2917.
    [98]Dai, Z., Chou, W.-H., and Faeth, G. M.,“Drop Formation Due to Turbulent Primary Breakup at the Free Surface of Plane Liquid Wall Jets,”Physics of Fluids, Vol. 10, No. 5, 1998, pp. 1147–1157.
    [99]Sallam, K. A., Dai, Z., and Faeth, G. M.,“Drop Formation at the Surface of Plane Turbulent Liquid Jets in Still Gases,”International Journal of Multiphase Flow, Vol. 25, Nos. 6–7, Sept. 1999,pp. 1161-1180
    [100]Sallam,K.A.,Dai, Z., and Faeth,G.M.,“Liquid Breakup at the Surface of Turbulent Round Liquid Jets in StillGases,”International Journal of Multiphase Flow, Vol. 28, No. 3, 2002, pp. 427-449.
    [101]Sallam, K. A., and Faeth, G. M.,“Surface Properties During Primary Breakup of Turbulent Liquid Jets in Still Air,”AIAA Journal, Vol. 41,No. 8, 2003, pp. 1514-1524.
    [102]Arcoumanis C, Gavaises M, French B (1997) Effect of Fuel Injection Process on the Structure of Diesel Sprays. SAE paper 970799
    [103]Huh KY, Gosman AD (1991) A Phenomenological Model of Diesel Spray Atomization. Proc Int Conf on Multiphase Flows’91, Tsukuba, Japan
    [104]Nishimura A., Assanis DN (2000) A Model for Primary Diesel Fuel Atomization Based on Cavitation Bubble Collapse Energy. 8th Int Conf on Liquid Atomization and Spray Systems (ICLASS), pp 1249-1256
    [105] Chaves,H. ,Knapp,M, Kubitzek,A. Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles.SAE Paper 950290,1995.
    [106]Hiroyasu, H.,Arai, M., and Shimizu, M., Breakup Length of a Liquid Jet and Internal Flow in a Nozzle, in "Proc. ICLASS," ( 1991), pp. 123-133.
    [107] Sotcriou,C.,Andrews,R.and Smith,M..DirectInjectionDiesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization.SAE Paper 950080,1 995 [108] N. Tamaki, M. Shimizu, and H. Hiroyasu,“Enhancement of the atomization of a liquid jet by cavitation in a nozzle hole,”Atomization Sprays 11, 125 (2001).
    [109] Arjan Helmantel,Ingemar Denbratt,HCCI Operation of a Passenger Car Common Rail DI DieselEngine with Early Injection of Conventional Diesel Fuel, SAE 2004-01-0935,2004
    [110]VY Shkadov.WAVE Formation 011 Surface of Viscous Liquid due to Tangential Stress.Fluid Dynamics,5:473-476,1970.
    [111]Schugger C, Renz. Experimental Investigations on the Primary Breakup Zone of. High Pressure Diesel Sprays from Multi-Orifice Nozzles. ICLASS 2003
    [112]李理光,苏岩,王云开等,液压张紧器式可变配气相位机构的设计与试验,内燃机学报,2002,20(4):345~349.
    [113]C.Bae,J.Yu,J.Kang Effect of nozzle geometry on the common-rail diesel spray (2002)Z
    [114]Su, T.F. Farell, P.V. Nagarajan, R.T., "Nozzle Effects on High Pressure Diesel Injection," SAE Paper 950083
    [115]Pierpont D.A.and Reitz R.D.E ffects of Injection Pressure and Nozzle Geometry on D.I.Diesel Emissions and Performance.SAE Transactions,1995,104(3):1041-1050
    [116]Kim Y K,Iwai N,Suto Hand T, suruga T.1mProvement of Alcohol Engine Peribrmance by Flash Boiling Injection.JASE Review) 1980(2):81-86.
    [117]张煌盛,张培榕,范鸿宾.燃油热强化在涡流室式柴油机上的应用研究及其机理探讨.小型内燃机,1993,22(6):25-29.
    [118]段树林,冯林,许锋,等.柴油闪急沸腾喷雾的试验研究.大连铁道学院学报,1997,18(l):57-60.
    [119]段树林,冯林,宋永臣,等.闪急沸腾喷雾场粒度分布规律及燃烧特性的研究.内燃机学报,1999,17(l):558.
    [120]段树林,冯林,高希彦,等.闪急沸腾喷雾场粒度分布特性的研究.内燃机工程,1998,19(2):27-31.
    [121]魏建勤,傅维镰.柴油混合闪蒸喷雾的探索研究.工程热物理学报,1998,19(4):509-513.
    [122]黄震,邵毅明,志贺圣,等.燃油溶气雾化新概念.上海交通大学学报,1994,28(2):l-6
    [123]Wakai K,Nishida K,Yoshizaki T,etal. SPrayand Ignition Charaoteristiesof Dimethyl Ether injected by a D.I.Diesel Injector.COMODIA1998,1998.
    [124]Wakai K,Yoshizald T,Nishida K,et al. Numerieal and ExPerimental Analyses of the Injection Charaeteristies of Dimethyl Ether with A D.I.Diesel injection Systetn.SAE1999-01-1122,1999.
    [125]Yu J and Bae C. Dimethyl Ether(DME)Spray Characteristies in a Common-Rail Fuel Injection System. proe. IMechE.,partD:J.Automobile Engineering,2003(217):1135-1144.
    [126]Yu J,Lee J W and Choollgsik B.Dimethyl Ether(DME) Pray Characteristies Compared to Diesel in a Conunon-Rail Fuel Injection Systeln.SAE2002-01-2898,2002.
    [127]Zheng Z Q.Shi C T.Yao M F. Experimental study on dimethyl ether combustion process in homogeneous charge compression ignition mode [C] -Transactions of Tianjin University2004(04)
    [128]Long Zhang, Toshiaki Takatsuki, Katsuhiko Yokata. An Observation and Analysis of the Combustion under Supercharging on a DI Diesel Engine[C]. SAE paper 02-28-1994, 1994
    [129]F. J. Struwe, D. E. Foster. In-Cylinder Measurement of Particulate Radiant Heat Transfer in a DirectInjection Diesel Engine[C]. SAE paper 2003-01-0072, 2003
    [130]Eric Stevens, Richard Steeper. Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation[C]. SAE paper 2001-01-1203, 2001
    [131]汪洋,谢辉,苏万华等.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程[J].燃烧科学与技术,2002,8(4):338~341
    [132]C. R. Stone, E. P. Lim, P. Ewart, et al. Temperature and Heat Flux Measurements in a Spark Ignition Engine[C]. SAE paper 2000-01-1214, 2000
    [133]Wook Choi, Byung-Chul Choi, Hyung-Koo Park, Kyung-Jei Joo, Je-Hyung Lee. In-cylinder flow field analysis of a single-cylinder DI diesel engine using PIV and CFD[C]. SAE Paper 2003-01-1846, 2003
    [134]金华玉,刘忠长,王忠恕,李康等.柴油机燃烧过程模拟分析[J].吉林大学学报(工学版),2007,37(5):1028~1033
    [135]Knapp R T, Daily J W, Hammitt F G . Cavitati on [M]. McGraw2 Hill, New York, 1970 .
    [136]Parsons,C.A (1906). The steam turbine on land and at sea. Lecture to the Royal Institution, London.
    [137]Gelalles, A. G.,“Coefficients of Discharge of Fuel Injection Nozzles for Compression- Ignition Engines,”NACA Technical Memo. 373, 1931.
    [138]Lichtarowicz, A. K., R. K. Duggins, and E. Markland. Discharge Coefficients for Incompressible Non-Cavitating Flow Through Long Orifices,”Journal of Mechanical Engineering Science 7(2), 1965.
    [139] BergwerkW. Flow Pattemin Diesel Nozzle Spray Holes. Proceedings of the Institute of Mechanical Engineers .1959,5(25):655-660.
    [140] Brennen, C.E. (1995) Cavitation and bubble dynamics. Oxford University Press.
    [141]张林夫,夏维洪。空化与空蚀[M].南京:河海大学出版社, 1989 .
    [142]黄继先。空化与空蚀的原理及应用。北京:清华大学出版社,1991。
    [143] von Kuensberg Sarre, C., Kong, S., and Reitz, R., 1999.Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays. SAE Paper 1999-01-0912.
    [144]Buchwald,R.Brauer,M.Blechstein,A.,Adaption of Injection System Parameters to Homogeneous Diesel Combustion,SAE 2004-01-0936,2004.
    [145] Soteriou,C.E.,Andrews,R.J.,Smith,M.Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization.SAE Paper 950080,1995..
    [146] B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics Wiley, New York, 1997 .
    [147]Akira SOU, Muhammad Ilham MAULANA, Kenji ISOZAKI, Effects of Nozzle Geometry on Cavitation in Nozzles of Pressure Atomizers. Journal of Fluid Science and Technology. Vol. 3 (2008) , No. 5 pp.622-632.
    [148] L. C. Ganippa, G. Bark, S. Andersson, and J. Chomiak,“Cavitation: A contributory factor in thetransition from symmetric to asymmetric jets in cross-?ow nozzles,”Exp. Fluids .2004, 36, 627.
    [149] C. Mishra and Y. Peles,“Size scale effects on cavitating ?ows through micro-ori?ces entrenched in rectangular microchannels,”J. Microelectro mech. Syst. 14, 987 [2005],1991,7:53-9.
    [150]Kubota A.,Kato H.,.A new modeling of cavitating flows: Anumerical study Of unsteady cavitation on a hydrofoil seetion.J.FluidMeeh.,1992,240:59-96.
    [151] Soteriou C.,Smith M.,Andrews R. Dieseli njector laser light sheet illumination of The development of cavitations in orifices. Proe,lmeehe,1998,C529:018-98.
    [152]Arcoumanis c.,Badami M.,Flora H.,Gavaises M. Cavitation in real-sizeize multi-hole diesel inj jector nozzles. SAEPaPer,2000-01-1249.
    [153]Badoek E.,Wirth R,Kampmann S,Tropea E. Fundamental study oft hei nfluence of Cavitation on the internal flowa and atomization of diesel sprays. Proe,13th ILLASS-Europe 97,53-59. Florenee:Jule,8-10.
    [154] Mulemane, A., Subramaniyam, S., Lu, P., Han, J., Lai, M.,and Poola, R., 2004.“Comparing Cavitation in Diesel Injectors Based on Different Modeling Approaches”. SAEPaper 2004-01-0027.
    [155] Payri, R.,Margot, X., and Salvador, F., 2002.“A Numerical Study of the In?uence of Diesel Nozzle Geometry on the Inner Cavitating Flow”. SAE Paper 2002-01-0215.
    [156] Vortmann, C., Schnerr, G., Seelecke, S., 2003.“Thermo-dynamic Modeling and Simulation of Cavitating Nozzle Flow”. International Journal of Heat and Fluid Flow, 24. [157]Nurick,W.H.Orifice cavitation and its effects on spray mixing.Journal Fluids Engineering,1976, Vol.98.
    [158]Schmidt,D.P.,Corradini,M.L.Analytical prediction of the exit flow of cavitating orifices. Atomization and Sprays,1997,Vol.7(6).
    [159]Ruiz, F.A few useful relations for cavitating orifices. Proceedings of ICLASS-91,Caithersburg, Maryland,July,1991.
    [160]Hirt, C.W. and Nichols, B.D. (1981) Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, pp. 201-225.
    [161] Sauer, J. (2001) Instation?r Kavitierende Str?mungen-Einneues Modell, basierend auf Front Capturing (VoF) und Blasendynamik. Dr.-Ing. Diss., Karlsruhe Univ., 2001.
    [162]Kubota,A. Kato,H. Yamaguchi,H. Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil. Proceedings of the 5th Inter. Conf.On Numerical Ship Hydrodynamics, Hiroshima,September,1989.
    [163]Delannoy,Y. Kueny,J.L.Two phase flow approach in unsteady cavitation modeling.ASME Cavitation and Multiphase Flow Forum, ASME FED,Vol.98,1990.
    [164]Chen, Y. and Heister, S.D. (1995) Two-phase modelling of cavitated flows. In: ASME Cavitation and Multiphase Forum, Reno, Nevada, 1994. (Comput. Fluids, vol. 24, no. 7, pp. 799– 806)
    [165]Avva, R.K., Singhal, A., and Gibson, D.H. (1995) An enthalpy based model of cavitation. ASME,Hilton Head.
    [166]Schmidt,D.P.,Rutland,C.J.,Corradini,M.L.A fully compressible two-dimensional model of high speed cavitating nozzles.Atomization and Sprays,1999,Vol.7.
    [167]Singhal, A.K., Athavale, M.M., Li, H., Jiang Yu (2002) Mathematical basis and validation of the full cavitation model. Tr. ASME, J. Fluid Eng., vol. 124, pp. 617-624.
    [168] Fujimoto H, Mishikori T, Tzumakoto T, et al. Modeling of atomization and vaporization process in flash boiling spray. ICLASS-94, paper VI-13, 1994
    [169]Chaves H, Obermeier F. Modelling the effect of modulations of the injection velocity on the structure of diesel sprays. SAE Paper 961126, 1996
    [170]Baumgarten,C.,Shi,Y.,Merker,G.P.Numerical and experimental investigations of cavitating flow in high pressure diesel nozzles.ILASS-Europe 2001,Zurich,2001.
    [171]Reitz RD (1987) Modeling Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technology 3, pp 309–337
    [172]aylor GI (1963) The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. In Batchelor GK (1963) The Scientific Papers of Sir Geoffery Ingram Taylor. vol 3, pp 532–536, Cambridge University Press
    [173]Reitz RD, Diwakar R (1987) Structure of High-Pressure Fuel Sprays. SAE-paper 870598
    [174]Lefebvre HA (1989) Atomization and Sprays, Combustion: An International Series, by Hemisphere Corporation
    [175]Long WQ, Hosoya H, Mashimo T, Kobayashi K, Obokata T, Durst F, Xu TH (1994) Analytical Functions to Match Size Distributions in Diesel Sprays. COMODIA 94
    [176]Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana
    [177]Arcoumanis C, Gavaises M, French B (1997) Effect of Fuel Injection Process on the Structure of Diesel Sprays. SAE paper 970799
    [178]O’Rourke PJ, Amsden AA (1996) A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines. SAE paper 961961
    [179]Tanner FX. Liquid Jet Atomization and Droplet Breakup Modeling of Non Evaporating Diesel Fuel Sprays. SAE paper 970050,1997
    [180]Ibrahim EA, Yang HQ, Przekwas AJ (1993) Modeling of Spray Droplets Deforma- tion and Breakup. AIAA J Propulsion and Power, vol 9, no 4, pp 652–654
    [181]R. Lebas and G. Blokkeel. Coupling Vaporization Model With the Eulerian-Lagrangian Spray Atomization (ELSA) Model inDiesel Engine Conditions。SAEpaper 2005-01-0213.
    [182]Vallet A., Burluka A. A., Borghi R.,“Development of a Eulerian model for the“atomization”of a liquid jet”, Atomization and Sprays, vol. 11, pp. 619-642, 2001.
    [183]Blokkeel G., Barbeau B., Borghi R.“A 3D Eulerian Model to Improve the Primary Breakup of Atomizing Jet”, SAE 2003-01-0005.
    [184]Blokkeel G., Mura A., Demoulin F. X., Borghi R.,“A continuous modeling approach for describing the atomization process from inside the injector to the final spray”, ICLASS 2003, Sorrento.
    [185]Tatschl,R. Sarre,C. Alajbegovic,A., et al.Diesel spray break-up modelling including multidimensional cavitating nozzle flow effects. ILASS-Europe 2000,Darmstadt,2000.
    [186]Berg,E.V.,Edelbauer,W.,Alajbegovic,A.,et al.Coupled calculation of cavitating nozzle flow, primary diesel fuel break-up and spray formation with an Eulerian Multi-Fluid-Model.9th ICLASS-2003,Sorrento,Italy,2003.
    [187]AVL-HYDSIMRefereneeManual,V4.2,2001.7
    [188]刘永长,内燃机热力过程模拟,北京:机械工业出版社,1999
    [189]陶文铨,数值传热学(第2版),西安:西安交通大学出版社,2001,332~364
    [190]Orme,M.E. Experiments on droplet collisions ,bounce, coalescence and disruption. Progress in Energy Combustion Science,1997,Vol.23:65-79.
    [191]Yoshio,M., Mototsugu,N., Jun,F. Numerical simulation of coalescence and separation behavior during binary droplets collision. Proc.of the 8th ICLASS,Pasadena,California,2000.
    [192]Zeng,Y.,Lee,C.F.A model for multi-component spray vaporization in a high pressure and high temperature environment.J.Engineering for Gas Turbines and Power,2002,Vol.124: 717-724.
    [193]Stanton,D.W.,Rutland,C.J.Modeling fuel film formation and wall interaction in diesel engines.SAE Paper 960628,1996.
    [194]蒋德明.内燃机燃烧与排放学[M] .西安:西安交通大学出版社, 2001 .
    [195]Methodology STAR-CD version 3.10A [M].Computat i onalDynam ics limited, 1999 .
    [196]FIRE versi on 8 sp ray[M] . AVL LIST GmbH, 2004 .
    [197] L. Perkovi? , D. Greif , R. Tatschl , P. Priesching , N. Dui?. 3D CFD Calculation of Injector Nozzle Model Flow for Standard and Alternative Fuels. Fifth International Conference on Transport Phenomena In Multiphase Systems June 30 - July 3, 2008.
    [198]Blessing, M, Konig, G~ Kruger, C, et al. Analysis of Flow and Cavitation Phenomena in Diesel Injection Nozzles and Its Effects on Spray and Mixture Formation. SAEPaper No.2003-01-1358, 2003.
    [199]Ohrn,T.R.,Senser,D.W.,Lefebvre,A.H.Geometric effects on spray cone angle for plain-orifice atomizers.Atomization and Sprays,1991,Vol.1:137-153.
    [200] Bianchi, P. Pelloni. Modeling the Diesel Fuel Spray Break-up by Using a Hybrid Mode. SAE 1999-01-0226, 1999.
    [201] Russ.MF,Delphi公司,“LDCR共轨系统与预喷射对性能、排放的影响”,内燃机燃油喷射和控制,2001年2期
    [202]何宏舟,“应用预蒸发技术燃烧液体燃料”,工程热物理学报,2002, 23 (3)
    [203]张晓宇,苏万华,林铁坚“MULINBUMP HCCI燃烧控制特性的试验和数值模拟”.燃烧科学与技术.2004.5
    [204] P.J. Tennison R.Reitz ,Engine Research Center University of Wisconsin-Madison ,“An Experimental Inverstigation of the Effects of Common-Rail Injection System Parameters on Emissions and Performance in a High-Speed Direct-Injection Diesel Engine”,Journal of Engineering for Gas Turbines and Power ,January 2001,Vol,123/167
    [205] Badami,M.,Millo,F.,D’Amato,D. D.,“Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection”,SAE Paper 2001-01-0657,2001
    [206]祝轲卿,杨林,卓斌. GD-1柴油机多次喷射协调控制策略研究.内燃机工程,2006,27( 4) .
    [207]Beatric C. Belardini P. Bertoli C. Del Giacomo N. Migliaccio Ma. Downsizing of Common Rail D.I. Engines: Influence of Different Injection Strategies on Combustion Evolution, SAEpaper 2003-01-1784
    [208]F.Mallamo,M.Badami and F.Millo,“Analysis of Multiple Injection Strategies for the Reduction of Emissions,Noise and BSFC of a DI CR small Displacement Non-Road Diesel Engine . SAEpaper 2002-01-2672.
    [209]S. Kevin Chen, Ford Motor Co.“Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine”(SAE)2000-01-3084
    [210] Cheolwoong Park, Sanghoon Kook, Choongsik Bae, Effects of Multiple Injections in a HASI Diesel Engine Equipped With Common Rail Injection System. SAEpaper 2004-01-0127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700