用户名: 密码: 验证码:
哈尔滨市人工湿地植物净污能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前由于工农业的迅速发展使东北地区各流域水体受到了不同程度的污染,而作为哈尔滨市主要生活用水来源的松花江在近几年污染严重。传统的污水处理方法问题较多、效果较差,而人工湿地污水处理系统是集经济价值、污水处理和景观价值于一体的绿色处理技术,其中湿地植物在人工湿地污水处理系统中发挥着重要的作用。本文以哈尔滨市白渔泡国家湿地公园为研究区域,以区域内具有代表性的9种湿地植物:泽泻(Alisma orinentale)、菖蒲(Acorus calamus)、小叶章(Deyeuxia angustifolia)、香蒲(Typha orientalis)、水葱(Scirpus validus)、慈姑(Sagittaria trifolia)、芦苇(Phragmites australis)、小白花地榆(Sangusisorbatenuifolia)、水莎草(Juncellus serotinus)为研究对象,应用模拟的小型人工湿地系统,对不同水力停留时间和不同污水浓度下单种湿地植物以及不同湿地植物配置对生活污水的净化效果进行了研究,为哈尔滨市人工湿地系统筛选净化效果好的植物以及湿地生态系统的恢复提供理论依据和基础数据。研究结果表明:
     (1)9种湿地植物对生活污水均有一定的净化能力,其中香蒲、慈姑净化效果较好。
     (2)综合分析确定5天为最佳水力停留时间(HRT);HRT=5d时,香蒲对生活污水中COD、TN、NH_4~+-N、TP的去除率均达到最高,其次是慈姑、小叶章、水葱和菖蒲,芦苇和地榆净污能力相对较差。
     (3)在中、低浓度污水中,香蒲的净化效果最好;在高浓度污水中,植物对污水净化效果均较差,且不同植物间净化效果差异不显著。植物对COD、TN、NH_4~+-N、TP的去除率随着污水浓度的升高而下降,且低浓度>中浓度>高浓度,不同植物对低、中、高浓度污水的净化能力存在显著性差异(P<0.05),大部分植物去除率显著高于对照(P<0.05)。
     (4)在中浓度污水中,不同植物配置对COD、TN、NH_4~+-N、TP的净化效果均存在显著性差异(P<0.05),两种植物配置对污水的净化能力要高于三种植物配置。在高浓度污水中,三种植物配置对COD、TP的净化效果要好于两种植物配置;不同植物配置对NH_4~+-N的净化效果存在显著性差异(P<0.05),对TP的净化效果无显著性差异(P>0.05);水葱+慈姑+香蒲的植物配置净污能力最高。
     综上所述,单种湿地植物中香蒲对生活污水的综合净化效果最好,慈姑、菖蒲和水葱也有较好的净化能力,植物配置净污效果要高于单种植物。
Nowadays, with the rapid development of agriculture and industry, the basin innortheast of China had been polluted by the different levels. In recent years, theSonghua River which was the main source of water in Harbin had been pollutedseriously. The traditional sewage treatment technique had a lot of problems, while theartificial wetland sewage treatment system which is an excellent technology ownedeconomic value, sewage processing and landscape value. The wetland plant played animportant role in artificial wetland system. We selected nine representative wetlandplants (Alisma orinentale、Acorus calamus、Deyeuxia angustifolia、Typha orientalis、Scirpus validus、Sagittaria trifolia、Phragmites australis、Sangusisorba tenuifolia、Juncellus serotinus)in the research area of Baiyupao National Wetland Park. By usingsmall artificial wetland system, we researched the sewage purification effects of singlewetland plant species and different plant dispositions in different Hydraulic ResidenceTime(HRT)and concentration of wastewater. The research will provide a theoreticalbasis and the data for selecting excellent wetland plants and restoring the wetlandecosystem in Harbin city. The research showed that
     (1)Nine wetland plants had the ability to purify the sewage and Typha orientalisand Sagittaria trifolia had the better purification effect.
     (2)The five days was optimal hydraulic retention time. When HRT was five days,the removal efficiency of COD, TN, NH_4~+-N and TP in the sewage was the highest forTypha orientalis, followed by the Sagittaria trifolia, Deyeuxia angustifolia, Scirpusvalidus and Acorus calamus. The worst was Phragmites australis and Sangusisorbatenuifolia
     (3)The purification effects of Typha orientalis was the best in the medium and lowconcentrations of sewage. The purification effects of plants were the worse and not thesignificant difference in high concentrations of sewage. The removal efficiency of COD,TN, NH_4~+-N and TP of different plants was decreased with increasing the concentrationof sewage. There were purification significant differences of different plants in the low, medium and high concentrations of sewage(P<0.05), the removal rate of the majorityof plant were significantly higher than that of the contrast(P<0.05).
     (4)The purification effects of COD, TN, NH_4~+-N and TP of different plantdispositions were significant differences in the medium concentration sewage(P<0.05),and the purification ability in the two plant dispositions were higher than the three plantdisposition. In high concentrations in sewage, the purification effects of COD and TP ofthe three plant dispositions were better than the two plant dispositions. There weresignificant differences for the purification effects of NH_4~+-N(P<0.05)and notsignificant differences among different plant dispositions of TP. The purificationability was the highest for Scirpus validus+Sagittaria trifolia+Typha orientalis plantdisposition.
     In summary, the comprehensive purification effect of Typha orientalis was the bestamong a single species of wetland plants. Sagittaria trifolia, Acorus calamus andScirpus validus owned the better purification ability. The purification effect of the plantdisposition was significantly higher than the single-species.
引文
[1] Sheoran, A. S. Sheoran, V. Heavy metal removal mechanism of acid mine drainagein wetlands: A critical review [J]. Minerals Engineering,2006,19(2):105–116.
    [2] Mays, P. A. Edwards G. S. Comparison of heavy metal accumulation in a naturalwetland and constructed wetlands receiving acid mine drainage [J]. EcologicalEngineering,2001,16(4):487–500.
    [3] Paula Arroyo, Gemma Ansola. Estanislao de Luis, Effectiveness of a Full-ScaleConstructed Wetland for the Removal of Metals [J]. Domestic Wastewater WaterAir Soil Pollut,2010,210:473-481.
    [4]刘淑芳.人工湿地处理污水技术的应用[J].科技情报开发与经济,2008,201(24):203-204.
    [5] Knox, A. S. Paller M. H. Nelson E. A. etal. Metaldistribution and stability inconstructed wetland sediment [J]. Journal Environmental Quality,2006,35(5):1948–1959.
    [6] Kosolapov D. B. Kuschk M. B. Vainshtein A. V. etal. Microbial processes of heavymetal removal from carbon-deficient effluents in constructed wetlands[J].Engineering in Life Sciences,2004,4(5):403–411.
    [7]徐大勇,徐祖信.人工湿地植物生理生态及其去污机理研究[J].安徽农业科学,2008,36(3):1144-1136.
    [8]屠晓翠,蔡妙珍,孙建国.大型水生植物对污染水体的净化作用和机理[J].安徽农业科学,2006,34(12):2843-2844.
    [9] Gerard Merlin. Jean-Luc Pajean. Thierry Lissolo. Performances of constructedwetlands for municipal wastewater treatment in rural mountainous area[J].Hydrobiologia,2002,469:87-89.
    [10] Cristina S C. Calheiros. Antonio OSS. et al. Constructed wetland systems vegetatedwith different plants applied to the treatment of tan-nery wastewater [J]. WaterResearch,2007,41:1790-1798.
    [11] Vacca G. Wand H. Nikolauszm et al. Effect of plants andfiltermaterials on bacteriaremoval in pilot-scale constructed wetland [J]. Water Research,2005,39:1361-1373.
    [12] Ciriamp Solanomlsorianop role of macrophytetypha latifolia in constructedwetland for wastewater treatment and assessment of its potential as a biomass fuel[J]. Biosystems Engineering,2005,92(4):535-544.
    [13] Hench K. R. Bissonnette G. K. fate of Physical, Chemical and MicrobialContaminants in Domestic Wastewater Following treatment by small constructedwetlands [J]. Water Research,2003,37:921-927.
    [14]王平,周少奇.人工湿地研究进展及应用[J].生态科学,2005,24(3):278-281.
    [15]郑少奎,张燕燕,杨志峰等.低温下表面流人工湿地中氨氮型富营养水体净化研究[J].环境科学,2006(10):2014-2018.
    [16]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [17] Brix H. Arias C. A. Del Bubba M. Media selection for sustainable phosphorusremoval in subsurface flow constructed wetlands [J]. Water Sci Technol,2001,44(11–12):47–54.
    [18] Brix, H. Arias C. A. The use of vertical flow constructed wetlands for on-sitetreatment of domestic wastewater: New Danish guidelines [J]. EcologicalEngineering,2005,25(5):491–500.
    [19] Cheng, S. Grosse, W. Karrenbrock, F. Thoennessen, M., Efficiency of constructedwetlands in decontamination of water polluted by heavy metals [J]. EcologicalEngineering,2002,18(3):317–325.
    [20] Maine M. A. Su e, N. Hadad H. etal. Nutrient and metal removal in a constructedwetland for wastewater treatment from a metallurgic industry[J]. EcologicalEngineering,2006,26(4):341–347.
    [21]于少鹏,王海霞,万忠娟等.人工湿地污水处理技术及其在我国发展的现状与前景[J].地理科学进展,2004,23(1):22-29.
    [22] Kohler E. A. Poole V. L. Recher Z. J. etal. Nutrient metal and pesticide removalduring storm and nonstorm events by a constructed wetlands on an urban golfcourse[J]. Ecological Engineering,2004,23(4-5):285298.
    [23]常国华,闫文德,张庆等.低温条件下3种水生植物净化淀粉污水的功能[J].中南林业科技大学学报,2011,31(5):96-99.
    [24]王宝贞,王琳.水污染治理新技术-新工艺、新概念、新理论[M].北京:科学出版社,2004:200-202.
    [25] Kivaisi A. K. The Potential for Constructed Wetlands for Wastewater Treatmentand Reuse in Developing Counties: a Review [J]. Ecological Engineeing,2001,16:545-560.
    [26]晋勇.人工湿地对城镇生活污水处理的研究[J].陕西煤炭,2010,1:39-41.
    [27]于军亭,王立鹏,邢丽贞等.潜流型人工湿地脱氮除磷影响因素探讨[J].山东建筑大学学报,2010,25(2):188-192.
    [28]陈明利,吴晓芙,明曰利.人工湿地去污机理研究进展[J].中南林学院学报,2006,3:123-127.
    [29] Brix H. Waste-water Treatment in Constructed Wetlands-System-Design.Removal Processes, and Treatment Performance, Constructed Wetlands for WaterQuality Improvement,1993,2:9-22.
    [30] Vymazal J. Removal of nutrients in various type of constructed wetlands [J].Science of the Total Environment,2007,380(1-3):48-65.
    [31]梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [32] Keith R. Edwardsa Hana C izkova Katerina Zemanov etal. Plant growth andmicrobial processes in a constructed wetland planted with Phalaris arundinacea.ecological engineering,2006,27:153–165.
    [33]吴玲.湿地植物与景观[M].北京:中国林业出版社,2009.
    [34]于洪贤,姚允龙.湿地概论[M].北京:中国农业出版社,2010.
    [35]吕宪国.中国湿地与湿地研究[M].河北科学技术出版社,2008.
    [36]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    [37] Allen W. C. Hook P. B. Biedeman J. A. etal. Wetlands and aquatic processtemperature and wetland plant species effects on wastewater treatment and wotzone oxidation [J]. Journal of Environmental Quality,2002,31(3):1010-1016.
    [38] Dalu J M. Ndamba J. Duckweed based wastewater stabilization ponds forwastewater treatment(a low cost technology for small urban areas in Zim-babwe)[J]. Physics and Chemistry of the Earth,2003,28:1147-1160.
    [39]袁东海,高士祥.几种挺水植物净化生活污水总氮和总磷效果的研究[J].水土保持学报,2004,18(4):77-81.
    [40] Reeta D. S. Ann C. W. Nutrient removal by floating aquatic macrophytes culturedin anaerobically digested flushed dairy manure wastewater [J]. EcologicalEngineering,2004,22:27-42.
    [41] Suliman H.K. French L. Haugen E. Change in flow and transport patterns inhorizontal subsurface flow constructed wetlands as a result of biological growth.Ecological engineering,2006,27:124–133.
    [42]牛晓君.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47.
    [43] Thullen J. Sartoris J. Walton W. Effects of vegetation management in constructedwetland treatment cells on water quality and mosquito production[J]. EcologicalEngineering,2002,18(4):441-457.
    [44] WALKER D J. HURL S. The Reduction of Heavy Metals in a Storm WaterWetlands [J]. Ecological Engineering,2002,18(4):407-414.
    [45] Lauchlan H F. SpringM C. David S. A testof fourplantspecies to reduce totalnitrogen and totalphosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresource Technology,2004,94(2):185-192.
    [46] Debus. Nutrient removal potentional of selected aquatic macrophysics [J]. EnvironQua,1985,14(4):459-462.
    [47]靖元孝,李晓菊,杨丹菁等.红树植物人工湿地对生活污水的净化效果[J].生态学报,2007,27(6):2365-2374.
    [48]袁东海,任全进,高士祥等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341.
    [49]赖闻玲,王玉彬,彭长连等.四种湿地植物在人工湿地的生长特性研究[J].热带亚热带植物学报,2010,18(3):238-244.
    [50]孙瑞莲,张建,王文兴.8种挺水植物对污染水体的净化效果比较[J].山东大学学报,2009(1):12-16.
    [51]祝宇慧,赵国智,李灵香等.湿地植物对模拟污水的净化能力研究[J].农业环境科学学报,2009,28(1):166-172.
    [52]瞿旭,吴树彪,侯保朝等.人工湿地植物净化效果研究[J].安徽农业科学,2009,37(31):15368-15370.
    [53]冯炜锋.公园湖泊净水植物筛选浅析[J].北方环境,2011,23(4):72.
    [54]崔丽娟,李伟,张曼胤等.不同湿地植物对污水中氮磷去除的贡献[J].湖泊科学,2011,23(2):203-208.
    [55]熊缨,苏志刚,高举明.不同挺水植物在生活污水中生长量及去污能力比较研究[J].环境科学与管理,2011,36(1):63-66.
    [56]刘树元,阎百兴,王莉霞.潜流人工湿地中植物对氮磷净化的影响[J].生态学报,2011,31(6):1538-1546.
    [57]陈润,陈中祥,莫李娟.不同基质和植物人工湿地净化效果试验[J].水资源保护,2010,26(4):62-66.
    [58]孙譞,郁东宁,赵慧等.12种挺水植物对模拟污水的净化作用[J].北京农学院学报,2010,25(2):62-66.
    [59]廖新俤,骆世明.香根草和风车草人工对猪场废水氮磷处理效果的研究[J].应用生态报,2002,13(6):719-721.
    [60]蒋跃平,葛滢,岳春等.轻度富营养化人工湿地处理系统中植物的特性[J].浙江大学学报(理学报),2005,32(3):309-313.
    [61]王庆海,段海生,武菊英等.北京地区人工湿地植物活力及污染物去除能力[J].应用生态学报,2008,19(5):1131-1137.
    [62] Hubbard R. K. Gascho G. J. Newton G. L. Use of floating vegetation to removenutrients from swine lagoon wastewater. American Society of AgriculturalEngineers,2004,47(6):1963-1971.
    [63]陈志澄,郭丹桂,熊明辉等,处理生活污水的植物品种筛选[J],环境污染治理技术与设备,2006,7(4):90-93
    [64]廖新俤,骆世明,吴银宝等.人工湿地植物筛选的研究[J].草业学报,2004,13(5):39-45.
    [65]陈建勇,史晓燕,陈宏文等.鄱阳湖湿地典型挺水植物处理生活污水污染物的研究[J].江西科学,2011,29(1):138-140.
    [66]韩苏娟,尤朝阳,万玉龙等.6种水生植物在人工湿地中特性的比较[J].安徽农业科学,2010,38(12):6367-6368.
    [67]陈庆锋,单保庆,马君健等.不同水生植物在暴雨湿地中的水质净化作用[J].环境科学与技术,2010,33(4):24-28.
    [68]周丹.人工湿地净化油田污水的机理及效果研究进展[J].科技资讯,2011,3:35-37.
    [69]籍国东,孙铁珩,郭书海等.稠油采出水的人工湿地塘床处理系统设计[J].中国给水排水,2002,18:61-64.
    [70]耿琦鹏.人工湿地对化粪池出水净化效果的研究[J].水资源研究,2007,28(2):29-30.
    [71]张志扬,唐运平,李江华等.水面流湿地系统水质净化效果及河道洗盐动态规律[J].城市环境与城市生态,2005,18(2):38-40.
    [72]付春平,唐运平,陈锡剑等.香蒲湿地对泰达高盐再生水景观河道水质净化效果的研究[J].农业环境科学学报,2006,25(2):186-190.
    [73]中国科学院植物研究所.中国植物志[DB/OL].[2004]. http://frps. plantphoto.cn/pdf. asp:
    [74]李强,徐晔春.湿地植物[M].南方日报出版社,2010.
    [75]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2011.
    [76]高拯民,李宪法.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991.
    [77]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2676.
    [78] Sartoris J. Thullen J. Barber L. et al. Investigation of transformations in a southernCalifornia constructedwastewater treatmentwetland [J]. Ecological Engineering,2000,14:49-65.
    [79]王世和.人工湿地污水处理理论与技术[M].北京:科学出版社,2007.
    [80] Tarafdar. Phophatase activity in the rhizosphere and its relation to the depletion ofsiol organic Phosphorus [J]. Biol Pertil Soils,1992,14:121-125.
    [81]方云英.不同水生植物吸收去除水体氮效果及机理研究[D].杭州:浙江大学,2006.
    [82]柳骅.水生植物的净化作用及其在水体景观生态设计中的应用[D].杭州:浙江大学,2003.
    [83] Stephan A. Meyer A. H. Schmid B. Plant diversity affects cultural soil bacteria inexperimental grassland communities. Journal of Ecology,2002,(22):988-998.
    [84] Zak D. Holmes W E. White D. Plant diversity, soil microbial communities, andecosystem function: are there any links? Ecology,2003,84(8):2042-2050.
    [85]段志勇,刘超翔,施汉昌等.复合植物床式人工湿地研究.环境污染治理技术与设备,2002,3(8):4-7.
    [86] Braskerud B. C. Factors affecting phosphorus retention in small constructedwetlands treating agricultural nonpoint source pollution[J]. Ecological Egineering,2002,19:41-61.
    [87] Gersberg RM. Elkins B V. Lyon S R. et al. Role of aquatic plants inwastewatertreatment by artificial wetlands. Wat Res,1986,20(3):363-368.
    [88]刘树元,阎百兴,王莉霞.潜流人工湿地中氮磷污染物净化的分层效应研究[J].环境科学,2011,32(3):723-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700