用户名: 密码: 验证码:
毛白杨嵌合体的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自河北省宁晋县获得一个特殊的毛白杨株系,确定为嵌合体。该嵌合体苗木的主要性状与毛白杨相似,但叶片略小,叶尖较尖;皮色为灰绿色,表皮可纵向分为两部分,一部分平滑,类似毛白杨,另一部分有纵棱,与某些杂杨如小叶杨类似;皮孔分布均匀,菱形,与小叶杨相似。该嵌合体与毛白杨最大的区别是枝条扦插成活率远远高于毛白杨(38.2%),达96.4%。扦插成苗后发生分离,其中88%为毛白杨,2.6%为杂杨,9.4%仍为嵌合体。本文对嵌合体进行了过氧化物酶同工酶分析,并研究了插条生根行为和扦插生根过程中一些生理生化的变化。主要结果如下:
     1.过氧化物酶同工酶分析表明,嵌合体无论有棱部分还是平滑部分及由此萌生的毛白杨的叶片和皮层酶谱更接近于毛白杨;而由嵌合体分离出的杂杨酶谱与小叶杨类似。说明该嵌合体极有可能是毛白杨与小叶杨在某一环节(如嫁接)发生嵌合所致。
     2.普通毛白杨、毛白杨嵌合体以及由嵌合体萌生分离的毛白杨、小叶杨的插条生根行为的观测结果表明,嵌合体与分离小叶杨一样容易生根,萌根时间均在插后两周左右,发根部位集中在插条中部和切口处,中部根多数自皮孔生出,切口处则是先形成愈伤组织,然后自愈伤组织分化出根;而普通毛白杨和分离毛白杨相似,不容易生根,只是在切口处形成大量愈伤组织,但不能分化生根。
     3.对其扦插生根过程的动态跟踪分析表明,嵌合体过氧化物酶活性在扦插初期呈上升趋势,第9d升至高峰,之后下降,第18d降至低谷,第21d又出现一高峰,而毛白杨无此规律,且在前9d,第15d~21d与嵌合体恰好相反;吲哚乙酸氧化酶活性变化规律在前期与过氧化物酶相似,也是先升后降,而毛白杨恰好相反;超氧化物歧化酶活性开始呈下降趋势,在第6d~9d出现一个低谷,之后有所升高但没有太大变化,而毛白杨开始呈上升趋势,第9d形成高峰,之后有所下降,但规律不明显;可溶性蛋白质含量,嵌合体总体比毛白杨高,且两者在后期(第15d~27d)变化相反;嵌合体扦插初期酚含量较低,在前期呈上升态势,而后稍有下降,至第12d为一低谷,之后上升,至第11d又升至高峰,再下降,而毛白杨扦插初期酚含量较高,而后迅速下降,至第6d为一低谷,此后与嵌合体变化基本一致,但第12d之后大幅度升高;嵌合体的黄酮含量开始呈下降趋势,第6d降至低谷,而此时毛白杨已迅速升到第一个高峰,第9d嵌合体回升,毛白杨则降至最低点,第12d两种试材均升至高峰,之后变异不大。
     试验证明,嵌合体易生根与其过氧化物酶、吲哚乙酸氧化酶及超氧化物歧化酶的活性和可溶性蛋白、酚类、黄酮类物质的含量密切相关,是其协同作用的综合结果,而毛白杨不易生根也恰是不能满足这些要求。
A clone in Populus tomentosa Carr. from Ningjin was concluded to be a chimera, which is similar to Chinese white poplar (Populus tomentosa Carr.) such as leaves. But the differences between the chimera and Chinese white poplar was obvious: There were vertical arrises on the parts of its grey-green epidermis as simon poplar (Populus simonii Carr.) and the other parts were smooth as Chinese white poplar. Moreover, the survival ratio of shoot cottage (96.4%) was higher than the Chinese white poplar (38.2%). The seedlings arised from shoot crttage consisted of three types: Chinese white poplar similitudes (88%), simon poplar (2.6%) and chimera (9.4%).
     1.The peroxidase isozyme zymograph showed that the chimera was similar to Chinese white poplar while not to simon poplar, but the isozyme zymograph of simon poplar seedling arised from chimera was like simon poplar. This indicated the chimera was related to Chinese white poplar and simon poplar.
     2.The relationships between the rooting of the cutting of the chimera and the normal of Chinese white poplar (populus tomentosa Carr.) and the activities of peroxidase, indoleacetate oxidase, the superoxide dismutase and the content of dissoluble protein ware analyzed.
     3.In the stages of cutting rooting of the chimera of P. tomentosa, the activity of peroxidase increased after cutting and got to the first peak at the 9th day, and followed to decrease and got to minimum at the 18th day, the second peak appeared at the 21st day. The change curve found in normal P. tomentosa was reverse to the chimera at first 9 days and from the 15th to 21st days. The indoleacetate oxidase activity was similar to peroxidase. The activity of superoxide dismutase decreased after cutting and got to the minimum at the 9th day in the stages of cutting rooting of the chimera of P. tomentosa, then increased. The activity of superoxide dismutase of P. tomentosa increased at the beginning of cutting and got to the peak at the 9th day, then decreased. The activity of dissoluble protein between the chimera of P. tomentosa and normal P. tomentosa was contrary from the 15th day to the 27th day, and the chimera of P. tomentosa was higher than the normal in all.
     As a conclusion, the chimera rooting phase was related to the activities of peroxidase and indoleacetate oxidase as well as superoxide dismutase and dissoluble protein. Normal Chinese white poplar did not easily root because it could not satisfy the relative conditions.
引文
[1]李明银,何云晓. 植物遗传嵌合体及其在观赏植物育种中的应用[J]. 植物学通报,2005,22 (6):3-9.
    [2]Poethig R S. Clonal analysis of cell lineage patterns in plant development[J]. Am. J. Bot.,1987,74:581-594.
    [3]李天菲,蔡得田. 植物嵌合体机理及研究进展[J]. 湖北大学学报,2002,24(1):81-86.
    [4]Lindsay G C,Copping M E,Binding H. Graft chimeras and somatic hybrids for new cultivars[J]. NZ. J. Bot.,1995,33:79-92.
    [5]Goffreda J C,Szymkowiak E J,Sussex I M. Chimeric tomato plants show that aphid resistance and tricylgulucose production are epidermal autonomous characters[J]. Plant Cell,1990,2:643-649.
    [6]Derman H,Stewart R N. Ontogenetic study of floral organs of path (Prunus persica) utilizing cytochimeral plants[J]. Am. J. Bot.,1973,60:283-291.
    [7]Sugawara K,Wakizuka T,Oowada A. Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric citrus[J]. J. Amer. Sco. Hort. Sci., 2002,127(1):104-107.
    [8]Marcotrigiano M,Bernatzky R. Arrangement of cell layers in the shoot apical meristems of periclinai chimeras influences cell fate[J]. Plant J.,1995,7:193-202.
    [9]Sessions A,Yanofsky M F,Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1[J]. Science,2000,289:779-781.
    [10]Burge G K,Morgan E R,Seelye J F. Opportunities for synthetic plant chimeral breeding past and future[J]. Plant Cell,Tissue and Organ Culture,2002,70:13-21.
    [11]Tilney-Bassett R A E. Plant Chimersa[M]. London:Edward Arnold,1986.
    [12]Darwin C. The variation of animals and plants under domestication , parts Ⅰ and Ⅱ[M]. London:John Murrary,1868.
    [13]Huala E,Sussex L M. Determination and cell interaction in reproductive meristems [J]. The Plant Cell,1993,5:1157-1165.
    [14]Szymkowiak E J,Sussex I M. What chimeras can tell us about plant development[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:351-376.
    [15]Marcotrigieno M. Genetic mosaics and chimeras in implication in biotechnology. In: Bajaj YPS ed,Biotechnology in Agriculture and Forestry Ⅱ,Somaclonal Variation in Crop Improvenment Ⅱ[M]. Berlin:Springer Verlag,1990.
    [16]Marcotrigiano M. Chimeras and variegation:patterns of deceit[J]. Hort Science,1997,32:773-784.
    [17]Pohlheim F. Vergleichende Untersuchungen zur Sprossvariation bei Plectranthus L’ HERIT. (Lamiaceae)[J]. Feddes Repertorium,2003,114:488-496.
    [18]Bowman J L,Eshed Y. Formation and maintenance of the shoot apical meristem[J]. Trends in Plant Science,2000,5:110-115.
    [19]Hagemann R,Scholze M. Struktur und Funktion der genetischen Information in den Plastiden:Ⅶ. Vererbung und Entmischung genetisch unterschiedlicher Plastidensorten bei Pelargonium zonale AIT[J]. Biologisches Zentralblatt,1974,93: 625-648.
    [20]Tilney-Bassett R A E,Almouslem A B,Amoatey H M. Complementary genes control biparental plastid inheritance in Pelargonium[J]. Theoriticaland Applied Genetics, 1992,85:317-324.
    [21]Norris R E,Smith R H,Vaughn K C. Plant chimeras used to establish the de novo origin of shoots[J]. Science,1983,220:75-76.
    [22]Li M Y. Observation of high-frequency occurrence of chimeral adventitious shoots in tissue culture from the chimeral tissues of Pelargonium zonale[J]. Hort Science, 2005,40:1461-1463.
    [23]Szymkowiak E J,Irish E E. Interaction between jointless and Wild-Type Tomato Tissues during Development of the Pedicel Abscission Zone and the Inforescence Meristem[J]. The Plant Cell,1999,11:159-175.
    [24]Perbal M C,Haugh G,Saedler H. Non-cell-automous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking[J]. Development, 1996,122:3433-3441.
    [25]Kita M,Hirata Y,Noguchi T. Cell layer constitution and DNA polymorphism in interspecific chimera between Brassica oleracea and CMS B. napus with GUS gene[J]. Japan J. Breed,1994,44(2):235.
    [26]Zhou J M,Hirata Y,Nou I S. Interactions between different genotypic tissues in citrus graft chimeras[J]. Euphytica,2002,126:355-364.
    [27]Taller J,Hirata Y,Yagishta N. Graft-induced genetic changes and the inheritance of several characteristics in peper(Capsicum annuum L.)[J]. Theor Appl Genet,1998, 97:705-713.
    [28]Zhang D H,Meng Z H,Xiao W M. Graft-induced inheritable variation in mungbean and its application in mungbean breeding[J]. Acta Botanica Sinica,2002,44:832-837.
    [29]Xiao W M,Sakamoto W,Sodmergen. Isolation and characterization of Tyl/Copia-like reverse transcriptase sequence from mungbean[J]. Acta Botanica Sinica,2004,46: 582-587.
    [30]Marcotrigiano M. Experimentally synthesized plant chimeras 3. Qualitative and quantitative characteristics of the flowers of interspecific Nicotiana chimeras[J]. Ann. Bot.,1986,57:435-442.
    [31]Binding H , Witt D , Monzer J. Plant cell graft chimeras obtained by co-culture of isolated protoplasts[J]. Protoplasma,1987,141:64-73.
    [32]Jorgensen C A. A periclinal tomato-potato chimera[J]. Hereditas,1927,10:293-301.
    [33]朱之悌. 毛白杨良种选育战略的若干思考及其 8 年研究结果总结. 见:林业部科技司主编. 阔叶树遗传改良[M]. 北京:科学技术文献出版社,1991.
    [34]黄智慧. 毛白杨无性系地理变异的研究[J]. 北京林业大学学报,1992,14(3):33-42.
    [35]陕西林业研究所编. 毛白杨[M]. 北京:中国林业出版社,1981.
    [36]河南农学院园林系杨树研究组. 毛白杨类型的研究[J]. 中国林业科学,1978,1:14-20.
    [37]Bartkowiak S. Floral bractlets in poplars of the section leech duby as a diagnostic feature[J]. Arboretum Kornickie,1958,3:221-236
    [38]张杰. 毛白杨的起源、分类与分布研究概述. 见:中国林科院林科所育种二室编著. 杨树遗传改良[M]. 北京:北京农业大学版社,1991.
    [39]徐纬英主编. 杨树[M]. 哈尔滨:黑龙江人民出版社,1988.
    [40]赵天榜. 毛白杨起源的研究[J]. 杨树,1986,3(1):25-26.
    [41]张廷桢. 毛白杨无性系花器变异及类群的研究[J]. 西北林学院学报,1995,10(1):43-47.
    [42]康向阳. 染色体次级联会与杨属的起源进化[J]. 甘肃农业大学学报,1996,31(4):323-326.
    [43]康向阳,朱之悌,张志毅. 毛白杨异源三倍体形态和减数分裂观察[J]. 北京林业大学学报,1999,21(1):1-5.
    [44]王中仁主编. 植物等位酶分析[M]. 北京:科学出版社,1996.
    [45]杨自湘,顾万春,李玲. 毛白杨种内过氧化物同工酶变异[J]. 林业科学研究,1990,3(4): 335-340.
    [46]苏晓华,张绮纹,郑先武,等. 利用 RAPD 分析大青杨天然群体的遗传结构[J]. 林业科学,1997,33(6):504-512.
    [47]李宽钰,黄敏仁,王明庥. 用 RAPD 探讨毛白杨起源[J]. 植物分类学报,1997,35(1):24-31.
    [48]何承忠. 毛白杨遗传多样性及起源研究[D]. 北京:北京林业大学,2005.
    [49]李均安. 毛白杨繁殖技术研究综述[J]. 陕西林业科技,1999,4:71-75.
    [50]赵天锡,陈章水. 中国杨树集约栽培[M]. 北京:中国科技出版社,1994.
    [51]王燕,高程达. 毛白杨繁殖技术的研究现状[J]. 宁夏农林科技,1994,4:22-26.
    [52]国家林业局科学技术司主编. 林业十项重点推广技术[M]. 北京:中国林业出版社,1998.
    [53]朱之悌. 树木的无性繁殖和无性系育种[J]. 林业科学,1986,22(3):280-290.
    [54]薛崇伯,吴妙锋,张近勇. 毛白杨[M]. 北京:中国林业出版社,1981.
    [55]陈雪梅,刘玉军,王沙生. 细胞分裂素促进白杨派树种插穗生根作用的研究[J]. 北京林业大学学报,1992,14(1):66-69.
    [56]裴保华,王世绩. 提高毛白杨插条成活率的研究[J]. 河北林业科技,1977,2:37-42.
    [57]左永忠. 毛白杨硬枝扦插保全苗的研究[J]. 北京林业大学学报,1986,8(4):18-24.
    [58]郭素娟. 林木扦插生根的解剖学及生理学研究进展[J]. 北京林业大学学报,1997,19(4): 64-66.
    [59]朱之悌. 毛白杨优树快速繁殖方法的研究[J]. 北京林业大学学报,1986,8(4):1-7.
    [60]张康健,孙长忠,董三孝,等. 毛白杨、河北杨多代循环繁殖方法的研究[J]. 林业科技,1990,26(2):110-116.
    [61]刘玉媛,符毓秦,高建社,等. 高效率低成本的毛白杨繁育技术研究[J]. 陕西林业科技,1994,1:1-5.
    [62]李浚明. 植物组织培养教程[M]. 北京:中国农业大学出版社,1996.
    [63]桑玉强,李继东,李淑玲. 杨树育种研究的现状与展望[J]. 河南农业大学学报,2001,35 (2):134-139.
    [64]林静芳,董茂山,黄钦才. 白杨派树种的组织培养[J]. 林业科学,1980,16(S1):58-64.
    [65]彭信海,宾秋实. 植物组织培养在林木遗传育种中的应用[J]. 经济林研究,1998,16(2): 54-55.
    [66]施季森. 迎接 21 世纪现代林木生物技术育种的挑战[J]. 南京林业大学学报,2000,24(1): 1-6.
    [67]王善平,许智宏,卫志明. 毛白杨外植体的遗传转化[J]. 植物学报,1990,32(3):172-177.
    [68]李继华. 扦插的原理与应用[M]. 上海:上海科学技术出版社,1987.
    [69]哈特曼 H T,凯斯特 D E 著. 郑开文,吴应祥,李嘉乐等译. 植物繁殖原理和技术[M]. 北京:中国林业出版社,1985.
    [70]丘醒球,余倩珠,张少宏羽,等. 桉树插条生根解剖研究初报[J]. 林业科学研究,1995,8 (2):170-176.
    [71]森下义郎,大山浪雄著. 李云森译. 植物扦插理论与技术[M]. 北京:中国林业出版社,1988.
    [72]林艳. 白桦嫩枝扦插不定根形成的解剖观察[J]. 东北林业大学学报,1996,24(3):15-19.
    [73]王涛. 植物扦插繁殖技术[M]. 北京:北京科学技术出版社,1989.
    [74]梁玉堂,龙庄如. 树木营养繁殖原理和技术[M]. 北京:中国林业出版社,1989.
    [75]王乔春. 植物激素与插条不定根的形成[J]. 四川农业大学学报,1992,1:33-39.
    [76]陈雪梅,高红兵,王沙生. 三种杨树扦插生根期间内源激素水平的比较研究[J]. 林业科学,1994, 30(1):3-7.
    [77]陈雪梅,刘玉军,王沙生. 细胞分裂素促进白杨派树种插穗生根作用的研究[J]. 北京林业大学学报,1992,14(l):66-69.
    [78]郑均宝,刘玉军,裴保华,等. 几种木本植物插穗生根与内源 IAA、ABA 的关系[J]. 植物生理学报,1991,17(3):313-316.
    [79]程水源,王燕. 银杏插穗生根与酶及内源激素的关系[J]. 园艺学报,1996,23(4):407-408.
    [80]郑先武,田砚亭. 金丝小枣插条中内源激素与外源激素的关系[J]. 北京林业大学学报,1995, 17(4):44-49.
    [81]郑均宝,裴保华,耿桂荣. 毛白杨插穗生根的研究[J]. 东北林业大学学报,1988,169(6): 34-40.
    [82]张娟. 欧李嫩枝扦插生根繁殖机理的研究[D]. 太谷:山西农业大学,2005.
    [83]Christensen M V,Eriksen E N,Andersen A S. Interaction of stock irradiance and auxin in the propagation of apple root-stocks by cuttings[J]. Scientiv Horticultural. 1980,78(1):11-17.
    [84]程水源,罗晓. 果树扦插繁殖研究进展[J]. 湖北农学院学报,1992,12(2):57-62.
    [85]李振坚. 核果类果树扦插生根的研究[D]. 太谷:山西农业大学,2000.
    [86]汪杰. 猕猴桃扦插生根的生理基础及调控机理研究[D]. 合肥:安徽农业大学,2001.
    [87]师晨娟. 青海云杉扦插繁殖技术与生根机理研究[D]. 北京:北京林业大学,2002.
    [88]张宇和. 果树繁殖[M]. 上海:上海科学技术出版社,1989.
    [89]Haissig B E. Metabolism during adventitious root primordium initiation and development[J]. Newzealand Journal of Forest Science,1974,4(2):324-335.
    [90]Gaspar. Total practical uses of peroxidase activity as a predictive maker of rooting performance of micropropagation[J]. Agronomic,1992,12:757-765.
    [91]Calderon Baltierra X V. Changes in peroxidase activity during root formation by Eucalyptus globules shoots raisd in vitro Plant Perox[J]. Newlett,1994,4:27-29.
    [92]Moncousin Ch. Peroxidase as maker for rooting improvement of clones of Vitis cultured in vitro. In: Molecular and Physiological Aspects of Plant Peroxidase. (Greppin H et al.)[M]. Geneva: University of Geneva,1986.
    [93]Ahuja A , Grewal S. Biothemical markers for in vitro initiation of cultures in Eucalyptus macrorhyncha and Euculyptus youmanni[J]. Natl Acad Sci llett(India),1983,6(6):185-187.
    [94]黄卓烈,李明,詹福建. 不同生长素处理对桉树无性系插条氧化氧化酶活性影响的比较研究[J]. 林业科学,2002,38(4):46-52.
    [95]李明,黄卓烈,谭绍满. 难易生根桉树过氧化物酶及其同工酶多型性比较研究[J]. 华南农业大学学报,2000,21(3):56-59.
    [96]Mato M C,Rua M L,Ferro E. Changes in levels of peroxidease and phenolics during root formation in vatic cultured in vitro[J]. Physiol Plant,1998,72:84-88.
    [97]田砚亭. 圆铃大枣绿枝扦插技术研究[J]. 北京林业大学学报,1992,14(1):14-19.
    [98]李明,黄卓烈,谭绍满. 难易生根桉树多酚氧化酶、吲哚乙酸氧化酶活性及其同工酶的比较研究[J]. 林业科学研究,2000,13(5):493-500.
    [99]Bassuk N L,Hunter L D,Howard B H. The apparent of polyphenol oxidase and phloridzin in theproduction of apple rooting cofactors[J]. Hort. Sci.,1981,4: 313-322.
    [100]Bhatacharya S,Nanda K K. Promotive effect of purine and pyrimidine bases and their role in the mediation of auxin action through the regulation of oxidases and phosphatases in rooting cuttings of Phaseolus mungo[J]. Esp. Biol.,1979,1:40-45.
    [101]黄卓烈,林韶湘,谭绍满. 桉树等植物吲哚乙酸氧化酶活性变化与插条生根的比较研究[J]. 林业科学研究,1996,9(5):510-516.
    [102]朴楚炳,张有富,苗锡臣,等. 促进红松插穗生根能力的研究[J].林业科技,1996,9(6): 5-8.
    [103]黄卓烈. 桉树体内的生根抑制剂物质研究综述[J]. 林业科学研究,1994,7(3):319-324.
    [104]吴海东. 六种植物的嫩枝扦插繁殖及生长调节剂对插条生理、生化代谢调控的研究[D]. 沈阳:辽宁师范大学,2005.
    [105]张昉,郭素娟. 不定根发生机理的研究进展[J]. 广东林业科技,2006,22(3):91-95.
    [106]Theo P M,Van Der Salm,Caroline J G,et al. Production of ROL gene transformed plants of Rosa hybridal and characterization of their rooting ability[J]. Molecular Breeding,1997,3:39-47.
    [107]Rugini E,Pellegrineschi A,Mencuccini M,et al. Increase of rooting ability in the woody species kiwi(Actenidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes[J]. Plant Cell Reports,1991,10:291-295.
    [108]Maurel C,Barbier-Brygoo H,Spena A,et al. Single ROL genes from A. rhizogenes T1-DNA alter some of the cellular responses to auxin in Nicotiana tabacum[J]. Plant Physiol,1991,97:212-216.
    [109]Maurel C,Leblanc N,Barbier-Brygoo H,et al. Alterations of auxin perception in ROLB-transformed tobacco protoplasts[J]. Plant Physiol,1994,105:1209-1215.
    [110]Chen J,Wu D R,Witham F H,et al. Molecular cloning and characterization of auxin-regulated genes from mung bean hypocotyls during adventitious root formation[J]. J. Am. Hortic Sci.,1996,121(3):393-398.
    [111]El Euch C,Jay Allemand C,Pastuglia M,et al. Expression of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings:Effect on flavonoid contentand rooting ability[J]. Plant Molecular Biology,1998,38(3):467-479.
    [112]Butler E D,Gallagher T F. Isolation and characterization of a cDNA encoding a novel 2-oxoacid-dependent dioxygenase which is up-regulated during adventitious root formation in apple(Malus domestica ‘Jork 9’) stem discs[J]. Journal of Experimental Botany,1999,50(333):551-552.
    [113]中国林木志编委会编. 中国主要树木造林技术[M]. 北京:中国林业出版社,1983.
    [114]田忠景. 采用茎尖嫁接法获得柑桔体细胞融合体的研究[D]. 雅安:四川农业大学,2003.
    [115]W 鲁瑟,L D 巴切勒,H J 韦伯. 柑桔业(第二卷)柑桔生产[M]. 北京:农业出版社,1985.
    [116]Cameron J W,Soost R K,Olson E O,et al. Chimeral basis for color in pink and red grapefruit[J]. J. Heredity,1964,55:23-28.
    [117]Lindgren D L,Sinclair W B. The ridging of Citrus fruits as influenced by fumigation of Citrus trees with HCN[J]. J. Econ.,1941,34(3):477.
    [118]沈德绪,王元裕. 柑桔遗传育种学[M]. 北京:科学出版社,1998.
    [119]吕柳新. 改良橙变异性形状的遗传动态及其嵌合体结构的研究[J]. 福建农学院学报,1982, 3:43-52.
    [120]叶春海. 红江橙的嵌合体现象及其在生产上的利用[J]. 中国柑桔,1990,4:26-27.
    [121]Yamashita K. Chimerism of Kobayashi mikan with special reference to its epidermal system observed by scanning electron microscope[J]. Japan Soc. Hort. Sci., 1979,48:169-178.
    [122]叶春海,吕庆芳. 红江橙嵌合特点的扫描电镜观察[J]. 福建农业大学学报,1997,2:46-49.
    [123]崔俊茹. 深州杨(暂定名)特性的研究[D]. 保定:河北农业大学,2002.
    [124]张军. 深州杨嵌合特性的初步研究[D]. 保定:河北农业大学,2006.
    [125]张金凤,张志毅,朱之悌,等. 黑白杨派间杂种苗的形态学和同工酶研究[J]. 北京林业大学学报,1999,21(3):20-25.
    [126]刘永军,郭守华,杨晓玲,等. 植物生理生化实验指导[M]. 北京:农业科技出版社,1999.
    [127]翟婉萱,佟立伟. 农业试验统计 BASIC 程序[M]. 沈阳:辽宁科学技术出版社,1987.
    [128]张志良. 植物生理学实验指导[M]. 北京:高等教育出版社,1990.
    [129]刘福岭,戴行钧. 食品物理与化学分析方法[M]. 北京:轻工业出版社,1987.
    [130]沙世炎. 中草药有效成分分析法(下册)[M]. 北京:人民卫生出版社,1982.
    [131]胡乃成,宋金耀,董存田. 苹果无性系品种的过氧化物酶同工酶酶谱分析[J]. 河北农业技术师范学院学报,1988,2(4):42-45.
    [132]Pacheco P,et al. Flavonoids as regulators and markers of root formation by shoots of Eucalyptus globulus raised in vitro[J]. Plant Perox Newslett,1995,5:9 -12
    [133]Gaspar T,et al. Peroxidases 1970-1980. A Survey of Their Biochemical and Physiological Roles in Higher Plants[M]. Geneva:University of Geneva,1982.
    [134]方允中. 自由基与酶[M]. 北京:科学出版社,1989.
    [135]敖红,王昆,陈一凌,等. 长白落叶松插穗内的营养物质及其对扦插生根的影响[J]. 植物研究, 2002,22(3):301-304.
    [136]刘桂丰,庄振东,由香铃,等. 杂种落叶松扦插生根过程中可溶性蛋白的比较分析[J]. 植物研究,2003,23(2):195-197.
    [137]Smith D R,Thorpe T A. Root initiation in cuttings of Pinus radiatia seedlings: effects of aromatic amino acids and simple phenylpropanoids[J]. Bot. Gaz.,1977,138:434-437.
    [138]Donobo C W,et al. Enzymatic destruction of C14-labelled indoleacetic acid and naphthalene-acetic acid by developing apple and peach seeds[J]. Proc. Amer. Soc. Hort. Sci.,1962,80:43-49.
    [139]Surholt E,Hoesel W. Screening for flavonol 3-glycoside specific β-glycosidase in plants using a spectrometric enzymatic assay[J]. Phytochemistry,1978,17:873-877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700