用户名: 密码: 验证码:
面向复杂产品概念设计的综合集成研讨厅问题求解过程与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合集成研讨厅(Hall for Workshop of Metasynthetic Engineering, HWME)是我国科学家提出的处理复杂系统的创造性成果,它指导人们在处理复杂问题时,把专家的智慧、计算机的高性能和各种数据、信息有机的结合起来,构成一个统一的、强大的问题求解系统。目前,HWME系统已经在地理和环境、工程、医学、社会经济、军事等诸多领域得到了广泛应用,但是由于HWME系统本身的复杂性和现有支撑技术的限制,构建一个面向复杂产品概念设计的HWME系统仍然是一个具有挑战性的课题。
     系统的功能与其结构紧密相关,HWME作为一个处理复杂性问题的系统平台,如何合理的搭建它的系统体系结构对这一平台的性能有着至关重要的意义。本文以某复杂产品概念设计为背景,从问题求解的角度,对综合集成研讨厅从问题求解过程与求解方法的角度进行了研究,包括复杂产品概念设计的问题求解过程建模,问题的分解和分配、问题的求解及多目标优化技术等理论与方法,旨在为应用于复杂产品概念设计的HWME系统提供技术支撑。
     首先以综合集成理论为指导,探讨并深入研究了在HWME中进行复杂产品概念设计的求解过程和方法;借鉴当前国内外学者采用进化计算求解经济、社会等复杂问题的思路,提出了HWME中问题求解过程的数学形式描述,建立了基于进化计算的HWME问题求解过程模型,利用进化计算在综合集成研讨厅的定性和定量空间中搜索,实现了人机结合、专家群体创新思维激发、多领域专家群体之间协同及其群体论证的综合集成。
     问题分解是任何复杂问题求解的基础,同样在运用综合集成研讨厅来进行复杂产品概念设计过程中,也需要首先对所求解问题(即研讨问题)进行分解。当前许多研究人员对复杂产品概念设计中涉及的问题分解技术进行了研究,但并不存在一种通用的方法。本文在研究综合集成研讨厅中进行复杂系统问题分解的特殊性基础上,提出了基于专家群体研讨问题的分解模型,并提出了一个采用遗传算法与设计结构矩阵相结合来解决复杂问题分解的智能方法,以解决一般意义上的复杂系统问题求解中的问题分解。实践证明,该方法能够避免大规模修改的发生,并加速复杂系统分解过程中问题结构化的寻优效率。
     在复杂产品概念设计过程中,随着待求解问题的规模及复杂度的增加,如何协调各个求解主体,调度求解资源,使整个复杂问题的求解流程更加合理和有序,是综合集成研讨厅系统问题求解过程中需要解决的关键课题。以往的HWME中复杂问题研讨求解的流程是一种经验性质的工作流规范。作为一种人机结合的系统,HWME需要计算机对其提供智能化的支持。本文通过对HWME中复杂问题求解过程与蚁群算法相似性的分析,建立了相应的数学模型,提出了复杂问题求解过程中进行任务动态分配的智能蚁群算法,收到了较好的效果。
     通过概念的生成和选择形成产品的设计方案,是复杂产品概念设计的一个核心任务。在综合集成研讨厅中专家群体经由群体论证,获得复杂产品概念设计方案的过程中面临着如何在合理的时间内获得满意/优化解、提高求解效率的挑战。从复杂决策问题求解的角度,结合当前的人工智能技术,本文提出了一种基于改进的交互式遗传算法模型的群体论证方法。改进的人机交互式遗传算法充分发挥了人机各自的优势,对于求解复杂产品概念设计的问题,对人机合作的“可操作性”问题及实现从定性到定量的有效转换这类HWME中的难点问题,提供了一种有效的方法或途径。此种方式相比于研讨厅中传统的意见共识和思维收敛方法,不仅容易达成群体意见一致、有着更高的求解效率,而且更符合综合集成研讨厅在线研讨的实际,可以方便的进行多次循环论证。
     复杂产品概念设计在形成产品的设计方案的过程中,设计人员需要全面的考虑各种约束条件和设计目标,经常遇到需要使得多个目标在给定的可行区域内尽可能最优的问题。本文提出了一种新的协同进化算法和交互式遗传算法相结合的复杂产品概念设计多目标优化方法。利用协同进化算法的多个种群协同合作,实现复杂产品概念设计中多目标方案的生成,在方案的评价过程中,通过交互式遗传算法根据参与者的评价直接获得隐式性能指标问题的适应度值,将设计人员的偏好、直觉、经验等主观因素和创造性知识融合到方案的生成过程中,实现人机的紧密结合。以手机产品的功能设计为例,证明该方法对同时涉及到多目标、人机交互的复杂产品概念设计问题具有较高的求解效率。
Hall for Workshop of Metasynthetic Engineering (HWME) is a creative achievement made by Chinese scientists to deal with complex system. It guides people to integrate the wisdom of the experts, high-performance of computers and a variety of data, information into a unified and powerful problem solving system. Today, HWME has been widely applied in the fields of geography and environment, engineering, medicine, social economy, military and so on. But it is a challenge to construct a HWME facing to conceptual design of complex products due to its complexity and the limitation of current supporting technologies.
     The function and structure of a system are closely related to each other, so the system platform of dealing with complex problems, how to establish a reasonable structure of HWME is crucial to the capability of this system platform. In this paper, on the basis of the conceptual design of some complex product, we make research on the problem solving process and solving method of HWME from the angle of problem solving. Aiming at providing supporting technologies for HWME system applied for the conceptual design of complex product, this research includes the modeling of problem solving process of complex product, problem decomposition and allocation, problem solving and the theory and methods of multi-objective optimization technique.
     At first, based on meta-synthesis theory, we make a deep research on problem solving process and solving method of conceptual design of complex product. Scholars at home and abroad have adopted evolutionary computation to solve complex decision problems of economy and society. To use their ideas for reference, we propose a mathematical description of problem solving process in HWME and establish a HWME problem solving process modeling based on evolutionary computation.
     Problem decomposition is the basis of any complex problem solving. So in the process of conceptual design of complex product using HWME, the decomposition of this problem should be made firstly. Nowadays, many researchers have made research on techniques of problem decomposition involved in conceptual design of complex product, but they still didn't find a universal method. In this paper, based on the analysis of the particularity of problem decomposition of complex systematic problem in HWME, we propose a method of problem decomposition on the basis of the research of expert group. And based on interactive genetic algorithm and the characteristic of design structure matrix, we propose an intelligent method of complex systematic problem decomposition to solve the decomposition in general. Practice shows that using this method can avoid modification in large scale and improve the searching efficiency in problem-structuring of complex system analysis.
     In the process of conceptual design of complex product, with the increase of scale and complexity of the problem to be solved, a key subject to be solved in the problem solving process of HWME is how to harmonize subjects, how to dispatch the resources to make the complex problem solving procedure more reasonable and ordered. The existing complex problem solving procedure in HWME is a kind of empirical workflow standard. As a human-computer cooperative system, HWME need intelligent support from computer. Based on the analysis on the similarity between complex problem solving process in HWME and ant colony algorithm, we make corresponding mathematical model and propose the dynamic allocation of task in complex problem solving and design the ant colony algorithm suitable for solving the problem which achieves good result.
     The key task of complex product conceptual design is to form a design of the product through generation and choice of concept. In HWME, there is a challenge of how to get the most satisfying and optimum solution to improve solving efficiency during the process of finding conceptual design of complex product after the expert group discussion in HWME. From the angle of complex problem solving and based on current artificial intelligent technology, we propose a group discussion method based on improved interactive genetic algorithm (IGA) model. Improved interactive genetic algorithm gives full play to the advantage of human and computer and provides a effective way to make complex product conceptual design and to solve such difficulties in HWME as the manipulability of man-machine cooperation and the effective conversion from qualitative to quantitative. Compared to the traditional method of opinion consensus and thought convergence in HWME, it is more effective and easier to achieve agreement in expert group. And it confirms the reality of discussion online in HWME and can do repeated circular argument conveniently.
     During the process of forming product design of complex product conceptual design, the designers are supposed to think fully about various constraint conditions and design objective and meet the problem of making multi objectives in given feasible region as best as possible. In this paper, we propose a new multi-objective optimization method for complex product conceptual design based on the combination of co-evolutionary algorithm and interactive genetic algorithm. We can form a multi-objective plan for complex product conceptual design through the cooperation of population of co-evolutionary algorithm. And during the evaluation process of the design, we can integrate designers'subjective preference, intuition and experience and creative knowledge into the formation of design through IGA to combine man and computer tightly. We take the design of functions of mobile phone products as an example to prove the high effectiveness of this method for complex product conceptual design related to multi-objective and human-computer interaction.
引文
[1].李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统,2002.8(9):678-683.
    [2]. Pahl G, Beitz W. Engineering Design. The Design Council [M].1984:1-15.
    [3]. French M J. Conceptual design for engineers [M]. The Design Council,1985:1-12.
    [4].邹慧君,汪利,王石刚,等.机械产品概念设计及其方法综述[J].机械设计与研究,1998,(2):9-12.
    [5].张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向[J].计算机集成制造系统,2003,9(8):613-620.
    [6].田志斌.现代机械运动系统概念设计原理与应用研究[D].上海:上海交通大学,博士,2001.
    [7].许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社,2000.
    [8].成思危.复杂科学与管理[J].中国科学院院刊,1999,(3):175-183.
    [9].戴汝为操龙兵.综合集成研讨厅的研制[J].管理科学学报,2002,5(3):10-16.
    [10]. 胡晓惠.研讨厅系统实现方法及技术的研究[J].系统工程理论与实践,2002,(6):1-10.
    [11]. 钱学森,于景元,戴汝为.一个科学的新领域:开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [12]. 钱学森.再谈开放的复杂巨系统[J].模式识别与人工智能,1991,(1):1-4.
    [13]. 戴汝为.社会智能科学[M].上海:上海交通大学出版社,2007:155.
    [14]. 戴汝为院士谈“综合集成研讨厅”:复杂性科学的原创性重大成果.http://www.cas.cn/html/Dir/2005/04/28/12/86/07.htm
    [15]. 于景元.钱学森的现代科学技术体系与综合集成方法论[J].中国工程科学:2001,3(11):10-18.
    [16]. 高红霞.综合集成研讨厅中知识重建方法研究[D].北京:中国科学院自动化研究所,博士,2003.
    [17]. 戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256.
    [18]. 戴汝为,李耀东.基于综合集成的研讨厅体系与系统复杂性[J].复杂系统与复杂性科学,2004,1(4):1-24.
    [19]. 戴汝为.从基于逻辑的人工智能到社会智能的发展[J].自然杂志,2006,28 (6):311-314
    [20]. 戴汝为.人机结合的智能科学和智能工程[J].中国工程科学2004,6(5):24-28.
    [21]. 路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997:33(1):1-8.
    [22]. 于景元,涂元季.从定性到定量综合集成方法——案例研究[J].系统工程理论与实践,2002,5:1-7.
    [23]. 李明,刘澎等.武器装备发展系统论证方法与应用[M].北京:国防工业出版社,2000.
    [24]. 顾基发,王浣尘,唐锡晋等.综合集成方法体系与系统学研究[M].北京:科学出版社,2007.
    [25]. 王丹力,戴汝为.综合集成研讨厅体系中专家群体行为的规范[J].管理科学学报.2001,4(2):1-6.
    [26]. 王丹力,戴汝为.群体一致性及其在研讨厅中的应用[J].系统工程与电子技术.2001,23(7):33-37.
    [27]. 操龙兵,戴汝为.基于Internet的综合集成研讨厅系统体系结构[J]..计算机科学,2002,29(6):6-66.
    [28]. 李耀东.综合集成研讨厅设计与实现中的若干问题研究[D].北京:中国科学院自动化研究所,博士,2003.
    [29]. 崔霞,戴汝为,李耀东.群体智慧在综合集成研讨厅体系中的涌现[J].系统仿真学报.2003,15(1):146-153.
    [30]. Gu J F, Zhu Z. The W u-li Shi-li Ren-li Approach:an Oriental Systems Methodology. Systems Methodology:Possibilities for Cross-Cultural Learning and Integration (Midgley G L and Wiley Jeds) University of Hull, United Kingdom,1995.
    [31]. 汪寿阳,余乐安,黎建强.TEI@I方法论及其在外汇汇率预测中的应用[J].管理学报.2007,4(1):21-27.
    [32]. 谭俊峰,张朋柱,黄丽宁。综合集成研讨厅中的研讨信息组织模型[J].系统工程理论与实践.2005,25(1):86-92.
    [33]. 董玉成,徐寅峰,张桂清.群体思维收敛性定量验证[J].系统工程理论与实践.2006,26(3):108-111.
    [34]. 唐锡晋,刘怡君.从群体支持系统到创造力支持系统[J].系统工程理论与实践.2006,(5):63-71.
    [35]. 刘怡君,唐锡晋.一种支持协作与知识创造的“场”[J].管理科学学报.2006,9(1):79-85.
    [36]. 李欣苗,张朋柱.基于Web的团队创新支持系统集成框架研究[J].系统工 程,2004,22(5):76-80.
    [37]. 张兴学,张朋柱.群体决策研讨意见分布可视化研究-电子公共大脑视听室(ECBAR)的设计与实现[J].管理科学学报.2005,8(4):15-27.
    [38]. 张家才.综合集成研讨厅支撑环境的设计与实现[D].北京:中国科学院自动化研究所,博士,2004.
    [39]. 韩祥兰.SBA系统的综合集成研讨厅研究与应用[D].南京:南京理工大学,博士,2005.
    [40]. 韩祥兰,吴慧中,陈圣磊等.武器装备论证综合集成研讨厅系统[J].南京理工大学学报.2005,29(4):446-450.
    [41]. 韩祥兰,吴慧中,窦万春等.面向复杂问题求解的综合集成型决策支持系统[J].计算机集成制造系统.2005,11(1):109-115.
    [42]. 操龙兵,戴汝为.基于Internet的综合集成研讨厅系统体系结构研究[J].计算机科学.2002,29(6):63-66.
    [43]. 李耀东,崔霞,戴汝为.综合集成研讨厅的理论框架、设计与实现[J].复杂系统与复杂性科学.2004,1(1):27-32.
    [44]. 张志强,张朋柱.面向复杂决策任务的综合集成决策研讨总体框架设计[J].系统工程理论与实践.2006,26(1):9-17.
    [45]. 王黎明,毛汉英.区域可持续发展综合集成研讨厅体系研究[J].地理研究,1998,17(4):408-414.
    [46]. 王慧斌、徐小群.综合集成研讨厅体系及应用研究[J].信息与控制,2001,30(6):516-521.
    [47]. 胡晓峰,司光亚.战略决策综合集成研讨环境SDE98的体系结构[J].小型微型计算机系统,1999,20(2)88-91.
    [48]. 胡晓峰,司光亚,吴琳等.SDS2000-一个定性定量结合的战略决策综合集成研讨与模拟环境[J].系统仿真学报,2000,12(6):595-599.
    [49]. 司光亚.战略决策综合集成研讨与模拟环境与实现[D].长沙:国防科技大学,2000.
    [50]. 常显奇等.空间军事系统综合集成研讨厅内容体系的研究与建设[J].系统工程理论与实践,2001,6(5):86-90.
    [51]. 张景涛,王丹力,王宏安等.敏捷供应链管理的综合集成研讨厅[J].系统工程学报,2003,18(6):515-520.
    [52]. 吴晓伟,徐福缘,吴伟昶.基于“综合集成研讨厅”的企业竞争情报系统研究[J].情报学报,2004,23(6):746-754.
    [53]. Mizoguchi R, Kitamura Y etc. A Methodology of Collaborative Synthesis by Artificial Intelligence http://www.ei.sanken.osaka-u.ac.jp/pub/miz/miz-skfcw99.pdf.
    [54]. Sandelowski. M, Barroso J. Writing the Proposal for a Qualitative Research Methodology Project. Qualitative Health Research,2003,13:781-820.
    [55]. Sandelowski. M, Barroso J. Reading Qualitative Studies, International Journal of Qualitative Methods,2002,1 (1), Article 5. http://www.ualberta.ca/~ijgm/.
    [56]. Enriching Representations of Work to Support Organisational Learning, http://kmi.open.ac.uk/projects/enrich/,2005-04-10.
    [57]. Mulholland P, Zdrahal Z, Domingue J A, et al. A Methodological Approach to Supporting Organizational Learning. International Journal of Human-Computer Studies,2001,55(3):337-367.
    [58]. Mulholland P, Domingue J, Zdrahal Z, et al. Organisational Learning:An Overview of the Enrich Approach. Journal of Information Services and Use,2000, 20(1):9-23.
    [59]. The ClockWork Project, http://kmi.open.ac.uk/projects/clockwork/,2005-4-10.
    [60]. Mulholland P, Zdrahal Z, Sainter P, et al. Supporting the sharing and reuse of modelling and simulation engineering knowledge. International Conference on Concurrent Enterprising (ICE2003), Espoo, Finland,16-18 June.
    [61]. Zdrahal Z, Mulholland P, Valasek M, Sainter P, Koss, et al. A toolkit and methodology to support the collaborative development and reuse of engineering models. Database and Expert Systems Applications Conference (DEXA 2003), Prague, Czech Republic.
    [62]. I C.PARMEE. Exploring the design potential of evolutionary design, exploration and optimization [C] Evolutionary Design by Computers, San Francisco,USA,1999, pp.119-143.
    [63]. Rosenman M A. An exploration into evolutionary models for non-routine design [J]. Artificial Intelligence in Engineering,1997(11):287-293.
    [64]. John S Gero. Computational models of innovative and creative design processes [J]. Technological Forecasting and Social Change,2000,64:183-196
    [65]. John S Gero, Thomas Mc Neill. An approach to the analysis of design protocols [J]. Design Studies,1998,19:21-61.
    [66]. John S Gero. Vladimir A Kazakov. Evolving design genes in space layout planning problems. Artificial Intelligence in Engineering,1998,12:163-176.
    [67]. Lee K S, Lee K W. Framework of an evolutionary design system incorporating design information and history[J]. Computer in Industry,2001,44:205-227.
    [68]. Kamalian R, Zhang Y, Takagi H, et al. Reduced Human Fatigue Interactive Evolutionary Computation for Micromachine Design [C] Proceedings of the 4th International Conference on Machine Learning and Cybernetics 2005. Guangzhou: IEEE Press,2005:5666-5671.
    [69]. Kim H, Cho S. Application of interact ive genetic algorithm to fashion design [J]. Engineering Applications of Artificial Intelligence,2000,13 (6):6352644.
    [70]. K Kim H, Cho S. Development of an IGA-based fashion design aid system with domain specific knowledge [C]. Tokyo, Japan:Proceedings of IEEE SMC, 1999:663-668.
    [71]. Cho Sung Bae. Towards creative evolutionary systems with interactive genetic algorithm [J]. Applied Intelligence,2002,2(16):129-138.
    [72]. 钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报,2001,24(5):553-559.
    [73]. 霍军周,李广强,滕弘飞等.人机结合蚁群/遗传算法及其在卫星舱布局设计中的应用[J].机械工程学报,2005,41(3):112-116.
    [74]. 滕弘飞,曾威,梁大伟等.演化设计方法及其应用[J].机械工程学报,2004,40(1):1-6.
    [75]. 滕弘飞,王奕首,史彦军.人机结合的关键支持技术[J].机械工程学报,2006,42(11):1-9.
    [76]. 巩敦卫,郝国生,周勇等.交互式遗传算法原理及其应用[M].北京:国防工业出版社,2007.
    [77]. 刘弘,李焱.遗传算法在建筑概念设计中的应用[J].软件学报,2006,17(11):161-168.
    [78]. Guoyan Yu, Zhen He, Chaoan Lai, Bing Lu. The Application of Interactive Evolutionary Algorithm in Product Design[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23,2006, Dalian, China.
    [79]. 俞国燕.人机协同的交互进化产品概念设计方法研究[J].计算机集成制造系统,2007,13(10):1873-1879.
    [80]. 戴汝为.系统科学与思维科学交叉发展的硕果——大成智慧工程.系统工程理论与实践,2002,5:8-11.
    [81]. P HG, NJE Langen, FMT Brazier.Towards Designing Creative Artificial Systems. http://www.iids.org/publications/AIEDAM04_Creativity.pdf.
    [82]. SUN Shouqian, HUANG Qi, PAN Yunhe. Progress of research on computer aided conceptual design [J]. Journal of Computer Aided Design & Computer Graphics,2003,15 (6):643-650.
    [83]. ZHANGJianming, WEI Xiaopeng, WANG Jianwei. Human computer cooperation for creative conceptual design [J]. Journal of Engineering Graphics, 2004,25 (3):127.
    [84]. 关立文,黄洪钟,赵正佳等.机械产品概念设计:综述与展望[J].机械设计,2001,(8):5-10.
    [85]. 胡晓惠.一种人机结合的研讨工作流集成方法[J].计算机研究与发展,2004,41(1):227-232.
    [86]. 刘霞.不确定性问题解决策略研究及存在的问题分析[J].心理科学,1997,20(1):36-39,95.
    [87]. Bransford John D., Stein Barry S. The Ideal Problem Solver:A guide for improving thinking, learning, and creativity[M]. Freeman:New York,1984.
    [88]. Sternberg R.J. Cognitive Psychology[M]. Ted Buchholz Publisher,1996.
    [89]. 王甦,汪安圣.认知心理学[M].北京大学出版社,1992.
    [90]. 吴彤.“复杂性”研究的若干哲学问题[J].自然辩证法研究,2000,16(1),6-10.
    [91]. 黄洪钟,刘伟,李丽等.产品协同设计过程建模研究[J].计算机集成制造系统,2003,9(11):955-959.
    [92]. 孙守迁,唐明,潘云鹤.产品概念设计多模型的协同机制[J].计算机辅助设计与图形学学报,1999,11(3):235-237
    [93]. 崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [94]. W.Banzhaf, P.Nordin, R.E.Keller,F.D.Francone, Genetic Programming-An Introduction, Morgan Kaufmann, San Francisco,CA,1998.
    [95]. 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [96]. Tian-Li Yu, Ali Yassine, David E. Goldberg.A Genetic Algorithm for Developing Modular Product Architectures[R].IlliGAL Report,No.2003024
    [97]. Yassine A, Falkenburg D, Chelst K. Engineering design management:an information structure approach [J]. International Journal of Product ion Research, 1999,37 (13):2957-2975.
    [98]. 汪应洛.系统工程理论、方法与应用[M].北京:高等教育出版社,1998.33-57.
    [99]. 刘建刚,王宁生,叶明.基于遗传算法与DSM的产品结构分解聚类方法[J].南京航空航天大学学报,2006,38(4):454-458.
    [100]. 盛海涛,魏法杰.设计结构矩阵优化算法的研究与比较[J].计算机集成制造系统,2007,13(7):1255-1260.
    [101]. Uwe M.Borghoff J.H.Schlichter. Computer-Supported Cooperative Work Introduction to Distributed Applications [M]. New York:Springer-Verlag,2000.
    [102]. Menon S. Effective reformulations for task allocation in distributed systems with a large number of communicating tasks[J].IEEE Transactions on Knowledge and Data Engineering,2004,16 (12):1497-1508.
    [103]. 张纪会,徐心和.一种新的进化算法——蚁群算法[J].系统工程理论与实践,1999,3:84-87.
    [104]. 吴启迪,汪镭.智能蚁群算法及应用[M].上海:上海科技教育出版社,2004.
    [105]. M.Dorigo,G D.Caro.Antcolony optimization:a new meta-heuristic[C].IEEE Evolutionary Computation,1999,1470-1477.
    [106]. M.Dorigo,E.Bonabeau,G.Theraulaz. Ant algorithms and stigmergy[J].Future Generation Computer Systems,2000,16:851-871.
    [107]. Kohler, W.H. and Steiglitz, K., "Characterization and Theoretical Comparison of Branch-and-Bound Algorithms for Permutation Problems," J. ACM, Vol.21, No.1, pp.140-156, January,1974.
    [108]. M.R.Garey and D.S.Johnson. Computers and Intractability, A Guide to Theory of NP-Completeness [M]. W.H.Freeman and Co.,San Francisco,1979.
    [109]. 许芳诚.智慧型多准则决策支援研究:以交谈式遗传演算法为基础的模型[D].中国台北:国立中央大学资讯管理系,2000
    [110]. 黄永青,梁昌勇,郝国生,杨善林.隐性目标决策问题的IDSS结构模型研究[J].合肥工业大学学报(自然科学版),2007,30(2):217~221
    [111]. 邓家提,韩晓建,曾硝等编著.产品概念设计——理论、方法与技术[M].北京:机械工业出版社,2002.
    [112]. 王丹力,戴汝为.专家群体思维收敛的研究[J].管理科学学报,2002,5(2):1-5
    [113]. Ngwenyama O K, Bryson N. Supporting facilitation in group support systems: techniques for analyzing consensus relevant data [J]. Decision Support Systems,1996, 16:155-168.
    [114]. 王丹力, 戴汝为.群体一致性及其在研讨厅中的应用.系统工程与电子技术,2001,7:33-37.
    [115]. Sung-Bae Cho, Joo-Young Lee. A human-oriented image retrieval system using interactive genetic algorithm[J]. Systems, Man and Cybernetics, IEEE,2002,32(3): 452-458
    [116]. Wang S.F, Xue J, Wang X.F. Evaluation of a Case-based Facial Action Units Recognition Approach[C]. Cybernetics and Intelligent Systems,2006 IEEE Conference on June 2006 Page(s):1-6
    [117]. Miki Mitsunori, Orita Hiroko et. Design of Sign Sounds using an Interactive Genetic Algorithm[J]. Systems, Man and Cybernetics, IEEE,2006.4:3486-3490
    [118]. 刘弘,李焱.遗传算法在建筑概念设计中的应用[J].软件学报,2006,17(11):161~168
    [119]. 钱志勤,滕弘飞,孙治国.人机交互的遗传算法及其在约束布局优化中的应用[J].计算机学报,2001,24(5):553~559
    [120]. TokumaruM, Muranaka N, Imanishi S. Virtual Stylist project Examination of adapting clothing search system to user's subjectivity with interactive genetic algorithms [A]. Proceedings of the 2003 Congress on Evolutionary Computation [C]. Piscataway,NJ, USA:IEEE,2003.1036~1043
    [121]. D. Gong,Y. Zhou,and T.Li. Cooperative Interactive Genetic Algorithm Based on User's Preference [J]. International Journal of Information Technology,2005, 11(10):1-10
    [122]. 刘希玉,王文平,刘弘等.动态小生境微粒群优化技术在概念设计中的应用[J].计算机科学,2006,33(10):163-168,209.
    [123]. T.T.H. Ng, G.S.B. Leng. Application of genetic algorithms to conceptual design of a micro-air vehicle [J]. Engineering Applications of Artificial Intelligence,2002,15:439-445.
    [124]. Jian Sun, John H. Frazer, Tang Mingxi. Shape optimization using evolutionary techniques in product design [J].Computers & Industrial Engineering,2007,53:200-205.
    [125]. 唐飞,滕弘飞.一种改进的遗传算法及其在布局优化中的应用[J].软件学报,1999,10(10):1096-1102.
    [126]. 谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68.
    [127]. Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation [A]. Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C], SanMateo, California, University of Illinois at Urbana Champaign, Morgan Kaufman Publishers,1993. 416~423.
    [128]. Srinivas N, Kalyanmoy D. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation,1994,2(3):221~248.
    [129]. Horn J, Nafpliotis N. Multiobjective optimization using the Riched Pareto genetic algorithm [R]. Technical Report IlliGAL Report 93005, University of Illinois at Urbana Champaign, Urbana, Illinois, USA,1993
    [130]. Lis J, Eiben A E. A multi2sexual genetic algorithm for multi-objective optimization [A]. Fukuda T, Furuhashi T. Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE [C], Nagoya, Japan,1996.59~64.
    [131]. Wienke P B, Lucasius C, Kateman G. Multicriteria target vector optimization of analytical procedures using a genetic algorithm [J]. Analytica Chimica Acta,1992, 265 (2):211~225.
    [132]. Tseng C H, Lu T W. Minimax multiobjective optimization in structural design [J]. International Journal for Numerical Methods in Engineering,1990,30:1213~ 1228.
    [133]. Chipperfield A J, Fleming P J. Gas turbine engine controller design using multiobjective genetic algorithms [A]. Zalzala A M S. Proceedings of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications[C], Halifax Hall, University of Sheffield, U K, September 1995.214~219.
    [134]. Vicini A, Quagliarella D. Inverse and direct airfoil design using a multiobjective genetic algorithm [J]. AIAAJoumal, September 1997,35(9):1499~1505.
    [135]. Jones B R, Crossley W A, Lyrintzis A S. Aerodynamic and aero acoustic optimization of airfoils via a parallel genetic algorithm [A]. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization [C], AIAA,1998.
    [136]. Fujita K, Hirokawa N, Akagi S, et al. Multi2objective optimal design of automotive engine using genetic algorithm [A]. Proceedings of DETC'98 2 ASME Design Engineering Technical Conferences [C],1998.
    [137]. Cohon J L, Marks D H. Review and evaluation of multiobjective programming techniques [J]. Water Resources Research,1975,11(2):208~220
    [138]. Hwang C L, Masud A S M. Multiobjective decision making:methods and applications [M]. Springer Verlag,1979
    [139]. 黄洪钟,赵正佳等.基于遗传算法的方案智能优化设计[J].计算机辅助设计与图形学学报,2002,14(5):437-441.
    [140]. 吴子燕,张智,胡秦.基于多目标遗传算法的高层建筑概念设计优化[J].系统工程理论与实践,2005,10:120-124.
    [141]. Xiyu Liu, Hong Liu, Huichuan Duan. Particle swarm optimization based on dynamic niche technology with applications to conceptual design [J].Advances in Engineering Software,2007,38:668-676.
    [142]. T.T.H. Ng, G.S.B. Leng. Application of genetic algorithms to conceptual design of a micro-air vehicle [J].Engineering Applications of Artificial Intelligence,2002,15:439-445.
    [143]. Jian Sun, John H. Frazer, Tang Mingxi. Shape optimization using evolutionary techniques in product design [J].Computers & Industrial Engineering,2007,53:200-205.
    [144]. 唐飞,滕弘飞.一种改进的遗传算法及其在布局优化中的应用[J].软件学报,1999,10(10):1096-1102.
    [145]. 郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7)187-192.
    [146]. Hillis W. D. Co-evolving parasites improve simulated evolution as an optimization procedure [J]. Physica D,1990,42:228-234.
    [147]. Mitchell A. Potter, Kenneth A. De Jong. A Cooperative Coevolutionary Approach to Function Optimization[C]. Proceeding of the Third Parallel Problem Solving from Nature, Springer-Verlag,1994,249-257.
    [148]. Mitchell A. Potter, Kenneth A. De Jong. Cooperative Coevolution:An Architecture for Evolving Coadapted Subcomponents [J]. Evolutionary Computation, 2000,8(1):1-29.
    [149]. Coello C A C, Sierra M R. A. Revolutionary Multi-Objective Evolutionary Algorithm [A]. Congress on Evolutionary Computation [C]. Canberra:IEEE Press, 2003:482-489.
    [150]. 刘建成,蒋新华,吴今培.广义模糊模型的协同进化方法研究[J].计算机学报,2006,29(3):423-430.
    [151]. 肖人彬,刘勇,梅顺齐等.基于多粒度共进化功能推理的机械运动方案设计新方法[J].机械工程学报,2005,41(12):108-117.
    [152]. Y.Jin, W.Li, S.C-Y.Lu. A Hierarchical Co-Evolutionary Approach to Conceptual Design [J].CIRP Annals-Manufacturing Technology,2005,54(1):155-158.
    [153]. Goldberg, D. E., Korb, B., and Deb, K., Messy genetic algorithms:motivation, analysis, and first results, Complex Systems 3,493-530,1989.
    [154]. 张文志,吕恬生.基于改进的遗传算法和模糊逻辑控制的移动机器人导航[J].机器人,2003,25(1):1-6.
    [155]. David A. Van Veldhuizen, Gary B. Lamont. Multiobjective Optimization with Messy Genetic Algorithms[C]. Proceedings of the 2000 ACM symposium on Applied computing,2000, Como, Italy.
    [156]. Godfrey A. Walters, Driss Halhal etc. Improved design of "Anytown" distribution network using structured messy genetic algorithms [J]. Urban Water,1999,1:23-38.
    [157]. 周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].决策与控制,2007,22(3):352-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700