用户名: 密码: 验证码:
水电站群发电优化调度的并行求解方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过60多年特别是近十几年的水电开发建设,我国逐步形成了众多跨流域、跨区域的大规模水电站群。水电站群的联合优化调度不但可以充分发挥电站之间的水文补偿、库容补偿和电能补偿效益,提高水电站群运行的整体经济效益,而且更是实现防洪安全、电网稳定和节能减排等社会效益的重要保障。因此,水电站群的优化调度问题受到了人们的高度重视。
     水电站群优化调度问题的研究主要集中在模型构建和算法求解两个方面。随着水电站规模的急剧扩大,构建的优化模型越来越精细,然而相应的求解算法要么计算速度慢,要么容易陷于局部优化解。因此,本文以长江上游大规模水电站群的联合优化调度为研究背景,深入分析传统求解方法和智能优化方法的算法结构特点,结合近些年兴起的并行计算技术,提出了针对多种优化方法的并行化策略,并结合标准测试函数和水电站群联合优化调度问题对并行化算法进行检验,主要成果如下:
     (1)针对动态规划的维数灾问题,提出基于状态点相互独立的并行动态规划和基于阶段重构的并行动态规划。通过分析动态规划的递推原理,将动态规划的计算过程分为阶段内计算和阶段间递推两个技术环节。针对阶段内计算环节,利用其状态空间内状态点之间的独立性,提出基于状态空间独立性的并行化方法;针对阶段间递推环节,调整不同阶段间的计算次序,并将其重构成为不同的子阶段进行计算,提出基于阶段重构的并行动态规划法。将上述两种并行动态规划法应用于雅砻江某梯级水电站群的发电优化调度中,通过模拟计算,分析总结了控制参数对并行动态规划性能的影响。模拟计算结果表明,并行模式明显优于串行动态规划方法。
     (2)针对逐步优化法,提出基于多初始解的并行化方法和阶段关系独立性的并行化方法。通过对逐步优化法的算法结构的分析,将逐步优化法的计算过程划分为初始解生成和两阶段递推寻优两个技术环节。针对初始解生成环节,改变以往只使用一个初始解进行迭代寻优的模式,利用多进程并行计算技术,在不同的进程中以不同的初始解进行迭代寻优,提出基于多初始解的并行逐步优化法;针对两阶段递推环节,利用由不同的两阶段组成的子阶段之间的独立性,提出基于阶段关系独立性的逐步优化法。将上述两种并行逐步优化法应用于雅砻江某梯级水电站群的发电优化调度中,通过模拟计算,分析总结了控制参数对并行逐步优化法计算性能的影响。模拟计算结果表明,并行逐步优化方法明显优于串行模式的逐步优化方法。
     (3)针对智能优化算法在求解以水库群联合调度为代表的复杂系统优化问题时,随着问题维度的上升算法求解性能下降的问题,提出基于子群体划分和动态迁移策略的并行差分进化算法。通过对以差分进化算法为代表的智能优化算法的算法结构进行研究,利用其种群天然的并行性,提出基于子群体划分的并行化策略。同时,对子群体之间的信息交流模式进行深入分析,提出自适应动态迁移策略。将差分进化算法应用于测试函数和水库群联合调度问题并率定其控制参数的选取范围,随后在控制参数的选取范围内对并行差分进化算法的计算性能进行测试和分析。模拟结果表明,并行差分进化算法在求解数值计算问题和水库群联合优化调度问题时,其计算性能明显优于串行差分进化算法。
     (4)针对大规模水电站群短期联合优化调度问题,提出基于水电站群分解的并行化求解方法。通过对大规模水电站群短期联合优化调度问题的特性进行研究,基于对电站群分解的思想,分别从水电站空间分布特性、水电站之间水流传播特性以及水库调节性能等3个方面对水电站群进行分解,形成若干基本计算单元。将上述计算单元顺次分配给不同的进程,通过并行计算提高对上述问题的求解速度。将该方法应用于长江上游大规模水电站群短期联合调度问题,模拟计算结果表明,该方法可以解决在较短时间内计算出大规模水电站群的短期调度方案,满足短期调度的时效性要求。
Many large-scale groups of hydropower stations cross basins and provinces have been laid out in China after decades of construction, especially the last decade. Joint optimal regulation of hydropower station group, which is supposed to maximizing the compensation benefits from aspects of hydrology, reservoir storage and power generation, has drawn growing attention as an important approach to achieve more economic benefits as well as secure flood control, power supply, energy saving and emission reduction.
     Research on optimal operation of station group is mainly focused on model establishment and algorithm design. In previous studies, the rapid expansion of hydropower stations'size and the corresponding increasing complexity of models have highlighted the problems of limited calculation speed and being easily stuck in local optimal solutions. This thesis applies parallel computing techniques in the joint optimal operation of large-scale hydropower station group in upper reach of Yangtze River with various parallel strategies involved with multiple traditional algorithms and intelligent algorithms. Results of parallel calculation are validated through the case study in Yangtze River as well as standard testing function. Main contents and conclusions of the study are as follows:
     (1) Parallel dynamic programming algorithms based on the independence of state point and stage reconstruction are proposed against the curse of dimensionality. First, calculation process of dynamic programming is divided into two technical steps including calculation in single stage and recursion among stages by analyzing the principle of dynamic programming recursion. Then parallel dynamic programming based on the independence of state space is suggested in light of the independence among state points in the state space, which is corresponding to the step of calculation in single stage. The second parallel dynamic programming is carried out by adjusting the calculation orders of different stages and reconstructing them into new sub-stages, which is corresponding to the step of recursion among stages. The above two methods are applied to the optimal operation for power generation in a cascade station group in Yalongjiang River, and the effects of parameter control on the performance of parallel dynamic programming are analyzed and summarized. Simulated results reveal the superiority of parallel dynamic programming over serial mode.
     (2) Parallel progressive optimization algorithms based on multiple initial solutions and the independence of stages are proposed against the weakness of traditional progressive optimal algorithm. Through the analysis of the structure of progressive optimization algorithm, the calculation process of progressive optimization algorithm is divided into two technical steps:generation of initial solutions and two-stage recursion optimization. In the first step, we implement iterative optimization in multiple processes with different initial solutions instead of single initial solution in the traditional method, which is suggested as parallel progressive optimization algorithm based on multiple initial solutions. For the second step, parallel progressive optimization algorithm based on the independence of stages is suggested with a concern of the independence between different two-stages. These two methods are then applied to the optimal operation for power generation in a cascade station group in Yalongjiang River, and the effects of parameter control on the performance of parallel progressive optimization are analyzed. Simulated results indicate that parallel algorithms are significantly better than serial algorithm.
     (3) Parallel differential evolution algorithms based on sub-group division and adaptive immigration are respectively presented for the degrading performance of intelligent algorithms along with the increase of dimension in solving complex optimal issues such as joint operation of cascade reservoirs. The algorithm based on sub-group division is proposed according to the natural parallelism of populations in the structure of differential evolution algorithm while the dynamic adaptive immigration principle is suggested through an analysis of information exchange mode among different sub-groups. Performance of the algorithms are then tested and compared through test function and the case of joint operation of cascade reservoirs after calibrating the selection range of control parameters. Results also suggest that parallel differential evolution algorithms can outperform the serial counterpart.
     (4) A parallel optimization algorithm based on decomposition of hydropower stations is proposed for short-term joint optimal scheduling of large-scale hydropower station group. Stations are decomposed to several basic calculation units from three aspects:spatial distribution of stations, propagation characteristics of flow among stations and regulation performance of reservoirs. Then the units are allocated to different parallel processes in order to improve the computing speed. The algorithm is applied in the short-term joint scheduling of large-scale hydropower station group in upper reach of Yangtze River, and results reveal that the suggested algorithm can meet the requirement of timeliness with higher efficiency.
引文
[1]王仲颖,黄禾.中国高技术产业发展年鉴2012[Z].北京:北京理工大学出版社,2012.
    [2]董子敖,李英.大规模水电站群随机优化补偿调节调度模型[J].水力发电学报,1991(4):1-10.
    [3]郭生练,陈炯宏,刘攀,等.水库群联合优化调度研究进展与展望[J].水科学进展,2010,21(4):496-503.
    [4]Ponnambalam K, Vannelli A, Unny T E. An application of Karmarkar's interior-point linear programming algorithm for multi-reservoir operations optimization[J]. Stochastic Hydrology and Hydraulics, 1989,3(1):17-29.
    [5]Czyzyk J, Mehrotra S, Wagner M. An interior-point code for linear programming[J]. Optimization Methods and Software,1999,11(1):397-430.
    [6]Duranyildiz I, Onoz B, Bayazit M. A chance-constrained LP model for short term reservoir operation optimization[J]. Turkish Journal of Engineering,1999,23:181-186.
    [7]Yeh W. Reservoir management and operations models:A state-of-the-art review[J]. Water resources research,1985,21(12):1797-1818.
    [8]Vedula S, Mujumdar P P. Optimal reservoir operation for irrigation of multiple crops[J]. Water Resources Research,1992,28(1):1-9.
    [9]董增川,许静仪.水电站库群优化调度的多次动态线性规划方法[J].河海大学学报,1990(06):63-69.
    [10]都金康,李罕,王腊春,等.防洪水库(群)洪水优化调度的线性规划方法[J].南京大学学报,1995,31(2):301-308.
    [11]张明波.随机约束线性规划在水库综合利用中的应用[J].人民长江,1996(06):24-26.
    [12]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报,1998(01):11-23.
    [13]吴杰康,郭壮志,秦砺寒,等.基于连续线性规划的梯级水电站优化调度[J].电网技术,2009(08):24-29.
    [14]Shim K C, Fontane D G, Labadie J W. Spatial decision support system for integrated river basin flood control[J]. Journal of Water Resources Planning and Management,2002,128(3):190-201.
    [15]Needham J T, Watkins D W, Lund J R. Linear programming for flood control in the Iowa and Des Moines rivers[J]. Journal of Water Resources Planning and Management,2000,126(3):118-127.
    [16]Barros M T L, Tsai F T C, Yang S. Optimization of large-scale hydropower system operations [J]. Journal of Water Resources Planning and Management,2003,129(3):178-188.
    [17]陈克举,段虞荣,王勇.用模糊数学和非线性规划方法求解梯级水电站最优开机组合问题[J].重庆大学学报(自然科学版),1987(02):93-104.
    [18]周培之,陈度,周德常.用多目标非线性规划解跨流域水电站群补偿调节优化设计问题[J].运筹学杂志,1987,6(1):37-41.
    [19]魏祥云.梯级水电站排序的整数非线性规划模型与算法[J].华中理工大学学报,1989(04):23-28.
    [20]伍宏中.水电站水库群径流补偿调节的非线性规划优化[J].水电能源科学,1994(02):84-90.
    [21]唐幼林,曾佑澄.模糊带权非线性规划数学模型在多目标综合利用水库规划中的应用[J].水电能源科学,1991(01):43-49.
    [22]田峰巍,黄强,刘恩锡.非线性规划在水电站厂内经济运行中的应用[J].西安理工大学学报,1987(03):68-73.
    [23]Fredericks J W, Labadie J W, Altenhofen J M. Decision support system for conjunctive stream-aquifer management[J]. Journal of Water Resources Planning and Management,1998,124(2):69-78.
    [24]Hsu N S, Cheng K W. Network flow optimization model for basin-scale water supply planning[J]. Journal of water resources planning and management,2002,128(2):102-112.
    [25]Rosenthal R E. A nonlinear network flow algorithm for maximization of benefits in a hydroelectric power system[J]. Operations research,1981,29(4):763-786.
    [26]梅亚东,冯尚友.网络流规划在水电站水库系统长期优化运行中应用[J].武汉水利电力学院学报,1989(02):6-15.
    [27]Li C, Jap P J, Streiffert D L. Implementation of network flow programming to the hydrothermal coordination in an energy management system[J]. Power Systems,1993,8(3):1045-1053.
    [28]赵子臣,夏清,相年德.水电站群补偿调节计算的非线性网络流法[J].清华大学学报(自然科学版),1994(04):86-94.
    [29]罗强,宋朝红,雷声隆.水库群系统非线性网络流规划法[J].武汉大学学报(工学版)2001,34(3):22-26.
    [30]Becker L, Yeh W W G. Optimization of real time operation of a multiple-reservoir system[J]. Water Resources Research,1974,10(6):1107-1112.
    [31]Yakowitz S. Dynamic programming applications in water resources[J]. Water Resources Research, 1982,18(4):673-696.
    [32]Little. The use of storage water in a hydroelectric system[J]. Operational Research,1955,3(2):187-197.
    [33]Howard. Dynamic Programming and Markov Processes[M]. Cambrige:MIT Press,1960.
    [34]Loucks. A comparison of some dynamic,linear and policy iteration methods for reservoir operation[J]. Water Resour Bull,1997,6(3):384-400.
    [35]Loucks. Some comments on linear decision rules and chance constraints [J]. Water Resources Research, 1997,13(2):247-255.
    [36]Aslew. Optimum Reservoir Operating Policies and the Imposition of a Reliability Constraint[J]. Water Resources Research,1974,10(6):1099-1106.
    [37]Rossman. Reliability-constrained dynamic programming and randomized release rules in reservoir management[J]. Water Resources Research,1977,13(2):247-255.
    [38]Young. Finding reservoir operating rules[J]. Journal Hydraulic Div.Am.Soc.Civ Eng,1967,93(6):297-321.
    [39]Hall. Optimum Operation for planning of a complex water resources system[D]. LosAngeles:Univ. of Calif.Technology,1967.
    [40]谭维炎,黄守信,刘健民.初期运行水电站的最优年运行计划-动态规划方法的应用[J].水利水电技术,1963(2):22-26.
    [41]陈惠源,吴家强.并联水电站联合运行最优化研究(动态规划法)[J].武汉水利电力学院学报,1978(Z1):69-78.
    [42]谭维炎,刘健民,黄守信,等.应用随机动态规划进行水电站水库的最优调度[J].水利学报,1982(07):1-7.
    [43]廖伯书,张勇传.水库优化运行的随机多目标动态规划模型[J].水利学报,1989(12):43-49.
    [44]徐鼎早,戴国瑞,邓纪德,等.用双向惩罚系数随机动态规划进行综合利用水库优化调度[J].水利学报,1993(10):28-32.
    [45]黄强.用模糊动态规划法进行水电站水库优化调度[J].水力发电学报,1993(01):27-36.
    [46]杨侃.大型水电站经济运行的多重动态规划模型[J].河海大学学报,1995(04):85-90.
    [47]梅亚东.梯级水库防洪优化调度的动态规划模型及解法[J].武汉水利电力大学学报,1999(05):10-12.
    [48]梅亚东.梯级水库优化调度的有后效性动态规划模型及应用[J].水科学进展,2000(02):194-198.
    [49]赵铜铁钢,雷晓辉,蒋云钟,等.水库调度决策单调性与动态规划算法改进[J].水利学报,2012(04):414-421.
    [50]Howson H R, Sancho N G F. A new algorithm for the solution of multi-state dynamic[J]. Mathematical Programming,1975,8(1):104-116.
    [51]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报,2007(02):1-4.
    [52]纪昌明,冯尚友.混联式水电站群动能指标和长期调度最优化(运用离散微分动态规划法)[J].武汉水利电力学院学报,1984(03):87-95.
    [53]万俊.大系统分解协调技术及DDDP算法在水库群优化补偿调节中的联合应用[J].水利水电技术,1994(05):2-5.
    [54]徐鼎甲.用离散微分动态规划制订梯级水电站最优日运行方式[J].水利水电技术,1996(2):33-38.
    [55]艾学山,冉本银FS-DDDP方法及其在水库群优化调度中的应用[J].水电自动化与大坝监测,2007(01):13-16.
    [56]梁虹,颜竹丘.逐步优化算法在梯级水电站群补偿调节计算中的应用[J].西安理工大学学报,1987(03):31-38.
    [57]余永青,戴国瑞.基于POA算法的变维线性模型在水电站群优化调度中的应用[J].水电能源科学,1989(01):65-71.
    [58]杨侃,丰景春.水库调度中逐次优化算法(POA)的收敛性研究[J].河海大学学报,1996,24(1):104-107.
    [59]宗航,李承军,周建中,等.POA算法在梯级水电站短期优化调度中的应用[J].水电能源科学,2003(01):46-48.
    [60]田峰巍,颜竹丘,刘恩锡.大系统优化理论在水电站厂内经济运行中的应用[J].水力发电学报,1988(02):10-20.
    [61]杨锐.大系统分解协调法互联电网水库群长期随机优化调度计算[J].电网技术,1990(04):1-6.
    [62]马光文.大系统随机控制理论在水库群优化调度中的应用[J].系统工程学报,1991(02):46-58.
    [63]李爱玲.水电站水库群系统优化调度的大系统分解协调方法研究[J].水电能源科学,1997(04):59-64.
    [64]田峰巍,解建仓.用大系统分析方法解决梯级水电站群调度问题的新途径[J].系统工程理论与实践,1998(5):112-117.
    [65]解建仓,田峰巍,黄强,等.大系统分解协调算法在黄河十流水库联合调度中的应用[J].西安理工大学学报,1998(01):3-7.
    [66]Cheng C T, Wang W C, Xu D M. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos[J]. Water Resources Management,2008,22(7):895-909.
    [67]Chang F J, Chen L. Real-coded genetic algorithm for rule-based flood control reservoir management[J]. Water Resources Management,1998,12(3):185-198.
    [68]Ahmed J A, Sarma A K. Genetic algorithm for optimal operating policy of a multipurpose reservoir[J]. Water Resources Management,2005,19(12):145-161.
    [69]Wardlaw R, Sharif M. Evaluation of genetic algorithms for optimal reservoir system operation[J]. Journal of Water Resources Planning and Management,125(1):25-33.
    [70]马光文,王黎.水电站群优化调度的FP遗传算法[J].水力发电学报,1996(04):21-28.
    [71]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997(03):71-76.
    [72]王黎,马光文.基于遗传算法的水电站厂内经济运行新算法[J].中国电机工程学报,1998(01):65-67.
    [73]伍永刚,王定一.二倍体遗传算法求解梯级水电站日优化调度问题[J].水电能源科学,1999,17(3):31-34.
    [74]畅建霞,黄强,王义民.基于改进遗传算法的水电站水库优化调度[J].水力发电学报,2001(03):85-90.
    [75]王少波,解建仓,孔珂.自适应遗传算法在水库优化调度中的应用[J].水利学报,2006(04):480-485.
    [76]万星,周建中.自适应对称调和遗传算法在水库中长期发电调度中的应用[J].水科学进展,2007(04):598-603.
    [77]陈立华,梅亚东,董雅洁,等.改进遗传算法及其在水库群优化调度中的应用[J].水利学报, 2008(05):550-556.
    [78]王旭,雷晓辉,蒋云钟,等.基于可行空间搜索遗传算法的水库调度图优化[J].水利学报,2013(01):26-34.
    [79]Storn R, Kenneth P. Minimizing the real functions of the ICEC'96 contest by differential evolution: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, Nagoya,1996[C]. IEEE.
    [80]Price K, Storn R. Genetic algorithms:Differential evolution[J]. Dr. Dobb's Journal of Software Tools for Professional Programmer,1997,22(4):18.
    [81]Mandal K K, Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution[J]. Energy Conversion and Management, 2009,50(1):97-104.
    [82]Zhang F, Simpson A R, Zecchin A C. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems[J]. Water Resources Research,47(8):W8531.
    [83]Kisi Q. River suspended sediment concentration modeling using a neural differential evolution approach[J]. Journal of Hydrology,2010,389(1):227-235.
    [84]Yuan X, Zhang Y, Wang L. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling[J]. Computers & Mathematics with Applications,2008,55(11):2458-2468.
    [85]Lakshminarasimman L, Subramanian S. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution[J]. Generation, Transmission and Distribution, IEE Proceedings,2006,153(6):693-700.
    [86]Lakshminarasimman L, Subramanian S. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs[J]. Energy Conversion and Management, 2008,49(10):2513-2521.
    [87]李英海,莫莉,左建.基于混合差分进化算法的梯级水电站调度研究[J].计算机工程与应用,2012(04):228-231.
    [88]黄强,张洪波,原文林,等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008(06):13-17.
    [89]原文林,黄强,万芳,等.梯级水库联合优化调度的差分演化算法研究[J].水力发电学报,2008(05):23-27.
    [90]Hui Q, Jianzhong Z, Youlin L, et al. Multi-objective Cultured Differential Evolution for Generating Optimal Trade-offs in Reservoir Flood Control Operation[J]. Water resources management, 2010,24(11):2611-2632.
    [91]Kennedy J, Eberhart R. Particle swarm optimization[J]. Neural Networks,1995. Proceedings., IEEE International Conference on. IEEE,1995(4):1942-1948.
    [92]Yuan X, Wang L, Yuan Y. Application of enhanced PSO approach to optimal scheduling of hydro system[J]. Energy Conversion and Management,2008,49(11):2966-2972.
    [93]Cheng C, Liao S, Tang Z T. Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch[J]. Energy Conversion and Management,2009,50(12):3007-3014.
    [94]Amjady N, Soleymanpour H R. Daily Hydrothermal Generation Scheduling by a new Modified Adaptive Particle Swarm Optimization technique[J]. Electric Power Systems Research,2010,80(6):723-732.
    [95]Mahor A, Rangnekar S. Short term generation scheduling of cascaded hydro electric system using novel self adaptive inertia weight PSO[J]. International Journal of Electrical Power & Energy Systems, 2012,34(1):1-9.
    [96]Sun C, Lu S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization[J]. Expert Systems with Applications, 2010,37(6):4232-4241.
    [97]武新宇,程春田,廖胜利,等.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术,2006(20):25-28.
    [98]张双虎,黄强,吴洪寿,等.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007(01):1-5.
    [99]程春田,唐子田,李刚,等.动态规划和粒子群算法在水电站厂内经济运行中的应用比较研究[J].水力发电学报,2008(06):27-31.
    [100]张俊,程春田,廖胜利,等.改进粒子群优化算法在水电站群优化调度中的应用研究[J].水利学报,2009(04):435-441.
    [101]周建中,李英海,肖舸,等.基于混合粒子群算法的梯级水电站多目标优化调度[J].水利学报,2010(10):1212-1219.
    [102]Kashiyama, Saitoh, Behr, et al. Parallel finite element methods for large-scale computation of storm surges and tidal flows[J]. International Journal for Numerical Methods In fluids,1997,24:1371-1389.
    [103]江春波,陈立秋,张庆海.浅水流动的并行计算[J].清华大学学报(自然科学版),2002(11):1548-1551.
    [104]余欣,杨明,王敏,等.基于MPI的黄河下游二维水沙数学模型并行计算研究[J].人民黄河,2005(03):49-50.
    [105]徐礼强,顾正华,楼章华,等.基于GIS的并行和分布式处理技术在水信息领域中的应用[J].水利水电技术,2005(10):89-92.
    [106]杨明,余欣,姜恺,等.水动力学数学模型并行计算技术研究及实现[J].泥沙研究,2007(03):1-3.
    [107]左一鸣,崔广柏.二维水动力模型的并行计算研究[J].水科学进展,2008(06):846-850.
    [108]王皓,傅旭东,孙其诚,等.大尺度流域水文并行计算的方法改进[J].应用基础与工程科学学报,2009(S1):1-9,
    [109]王建军,张明进.河道二维水沙数学模型并行计算技术研究[J].水道港口,2009(03):222-225.
    [110]秦中,张琪.水资源量的概念分析与并行计算——以贵阳市城区为例[J].山地农业生物学报,2009(02):115-118.
    [111]崔寅,吴家鸣,龚国围,等.利用并行算法分析平底结构砰击作用下具有自由表而水域的水动力特性[J].科学技术与工程,2009(19):5705-5711.
    [112]李褆来,徐学军,陈黎明,等.OpenMP在水动力数学模型并行计算中的应用[J].海洋工程,2010(03):112-116.
    [113]王敏,王明,杨明.小浪底水库三维数学模型并行计算研究[J].人民黄河,2012(05):25-27.
    [114]Escudero, Fuente, Garcia. Hydropower generation management under uncertainty via scenario analysis and parallel computation[J]. Power Systems,1996,11(2):683-689.
    [115]解建仓,赵季中,田峰巍,等.基于粗粒度的并行神经网络方法在水电系统负荷分配中的应用[J].水利学报,1998(S1):112-116.
    [116]毛睿,黄刘生,徐大杰,等.淮河中上游群库联合优化调度算法及并行实现[J].小型微型计算机系统,2000(06):603-607.
    [117]陈立华,梅亚东,麻荣永.并行遗传算法在雅砻江梯级水库群优化调度中的应用[J].水力发电学报,2010(06):66-70.
    [118]Chen L, Mei Y, Yang N. Parallel Particle Swarm Optimization Algorithm and Its Application in the Optimal Operation of Cascade Reservoirs in Yalong River:ICICTA 09 Second International Conference on Intelligent Computation Technology and Automation, Changsha,2009[C].
    [119]程春田,郜晓亚,武新宇,等.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011(10):26-32.
    [120]万新宇,王光谦.基于并行动态规划的水库发电优化[J].水力发电学报,2011(06):166-170.
    [121]李想,魏加华,傅旭东.粗粒度并行遗传算法在水库调度问题中的应用[J].水力发电学报,2012(04):28-33.
    [122]王鹏,吕爽,聂治,等.并行计算应用及实战[M].北京:机械工业出版社,2009.
    [123]莫则尧,袁国兴.消息传递并行编程环境MPI[M].北京:科学出版社,2001.
    [124]陈国良,孙广中,徐云,等.并行计算的一体化研究现状与发展趋势[J].科学通报,2009(08):1043-1049.
    [125]陆鑫达.并行程序设计[M].北京:机械工业出版社,2005.
    [126]运筹学教材编写组.运筹学[M].北京:清华大学出版社,2004.
    [127]Quinn M.J.MPI与OpenMP并行程序设计[M].北京:清华大学出版社,2004.
    [128]汪定伟,王俊伟,王洪峰.智能优化方法[M].北京:高等教育出版社,2007.
    [129]Matsumura T. A parallel and distributed genetic algorithm on loosely-coupled multiprocessor system[J]. IEICE Trans Fundam Electron Commun Comput Sci,1998,81(4):540-546.
    [130]Susumu A, Hidefumi S. Effects of migration methods in parallel distributed parameter-free genetic algorithm[J]. Electronics and Communications In Japan,2002,85(11):71-80.
    [131]Salhi A, Glaser H, De Roure D. Parallel implementation of a genetic-programming based tool for symbolic regression[J]. Information Processing Letters,1998,66(6):299-307.
    [132]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007(07):721-729.
    [133周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007(03):1-6.
    [134]Storn R, Price K. Differential evoluation-a simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization,1997(11):341-359.
    [135]袁俊刚,孙治国,曲广吉.差异演化算法的数值模拟研究[J].系统仿真学报,2007(20):4646-4648.
    [136]王文川,徐冬梅,邱林,等.差分进化算法在水电站优化调度中的应用[J].水电能源科学,2009(03):162-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700