用户名: 密码: 验证码:
无线MIMO-OFDM系统的传输技术及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代无线移动通信的高速发展,为了满足高速和可靠的通信需求,在有限频谱资源的限制下,寻求新的通信技术来进一步提高无线通信系统的传输速率和连接可靠性已经显得日益紧迫。而近些年出现的MIMO技术和OFDM技术正好满足了无线通信界的这一需求,特别是这两种技术有机结合所产生的MIMO-OFDM技术,更能满足未来无线通信中的多应用服务、高速可靠的通信需求,因而也成为下一代(4G)无线移动通信的热点研究领域。
     无线MIMO-OFDM系统的传输技术及传输性能还有很多问题尚待解决,基于上述考虑,本文对无线MIMO-OFDM系统下的空时分集编码、信号检测及自适应传输等方面进行研究,具体研究内容及成果如下所述:
     1.传统的MIMO及MIMO-OFDM信道模型经历准静态(传输符号在一帧的间隔内所经历的信道衰落不变)独立瑞利衰落的这一假设过于理想,考虑到实际传输环境中收发端天线阵列的阵元间隔不够充分、移动终端快速移动以及收发端之间的散射体不够丰富等,无线信道将包含空时相关性、快衰落以及莱斯衰落等各种具体信道特性,采用矩阵和向量的表现形式,我们分别为MIMO和MIMO-OFDM系统建立起一个全面考虑以上各种信道衰落特性的综合信道模型,并分析了综合信道模型的协方差矩阵同空间、时间相关性矩阵的关系,为后面空时相关快衰落对MIMO及MIMO-OFDM系统的性能分析打下基础。
     2.基于前面所建立的综合考虑各种信道特性的MIMO及MIMO-OFDM信道模型,我们分别推导出空时相关瑞利和莱斯快衰落下空时分集编码的成对误差概率(PEP),并深入研究采用空时分集编码的两种系统在莱斯衰落、空时相关下的性能,给出空时相关瑞利和莱斯快衰落下码设计的距离准则和内积准则,并定量的给出了系统可以获得的最大分集增益、编码增益以及编码增益在相关快衰落下的变化。考虑到在无法或者难以得到信道状态信息情况下差分酉空时调制的有效传输特性,我们推导出莱斯快衰落下差分酉空时调制存在着SNR极限和误差极限。借助于高斯-马尔可夫模型和SNR极限,推导出差分酉空时调制下系统的成对误差概率的近似结果,并通过仿真证明该结果的正确性。
     3.从系统误比特率最低角度出发,考虑到实际传输环境中存在着空间相关性和直射分量等,给出了相关莱斯衰落下V-BLAST最大似然检测及其神经网络实现。考虑到传统的V-BLAST框架检测判决方法ZF-DFE存在着误差传播和性能受限于检测顺序的特点,我们提出有着最低误比特率的逐符号最大似然(SSML)检测判决,并给出其BPSK调制下的检测判决表达式。考虑到实际传输环境中存在着散射体不丰富和天线阵列的阵元间距不足等问题,我们通过仿真研究了相关莱斯衰落下采用不同检测判决方法的V-BLAST系统性能,发现确实如同我们理论分析那样,采用SSML检测判决的系统性能要好于采用传统ZF-DFE检测判决的系统性能,尤其在空间相关莱斯衰落情况下,SSML检测判决的优越性更是得到进一步的验证。同时,考虑到SSML检测判决的计算复杂度较高以及径向基(Radius Basic Function,RBF)神经网络在判决以及计算方面的优势,我们给出了基于RBF神经网络的SSML检测判决及其计算复杂度的评估。
     4.考虑到贪婪(greedy)算法在比特分配方面的最优性以及OFDM技术中不同子载波可以自适应的调整比特、功率和速率等方面的优势,我们给出了基于贪婪算法的MIMO-OFDM系统自适应比特和功率分配策略,并定性和定量的分析了系统的频谱效率以及不同系统参数对系统性能的影响,通过仿真研究发现无论在误比特率还是在频谱效率上贪婪算法都要优于传统chow算法,更是远优于比特和功率平均分配的average算法;相同算法下,多自适应度下的系统性能要优于少自适应度下的系统性能。考虑到MIMO技术中空间复用增益和分集编码增益间的权衡,将其纳入自适应调制的范围内,并通过仿真研究发现综合考虑了空间复用和分集编码间权衡的系统性能确实要优于不考虑两者间权衡的系统性能。
For the demand of reliable and high speed communication, it is urgent to find some new communication technologies to further improve transmission rate and link reliability in the limitation of limited spectrum resource. In recent years, MIMO and OFDM technology emerge, which just can satisfy with the demand of wireless communication. Especially, the combination of these two technologies, that is MIMO-OFDM, can further satisfy the demand of multi-application server and high speed reliable communication, which is also to be the focus research field in the future wireless mobile communication.
     There are many problems to be resolved in transmission technology and transmission performance of wireless MIMO-OFDM system. Space-time diversity, signal detection and adaptive transmission of wireless MIMO-OFDM system are discussed in this dissertation based on the above consideration. The main achievements are listed as follows:
     1. The assumption that traditional MIMO and MIMO-OFDM channels suffer from quasi-static independent Rayleigh fading is ideal. In fact, considering not enough distance among transceiver antenna arrays, fast movement of mobile terminal and not enough rich scatters between transceivers, wireless channels include all kind of channel properties such as space-time correlation, fast fading, Rician fading, etc. Therefore, the integrated channel models considering all kinds of channel fading properties for MIMO and MIMO-OFDM system are represented using matrix and vector. The relationship among the covariance matrix of integrated channel model, spatial correlation matrix and temporal matrix is analyzed, which is the base for the later performance analyses of MIMO and MIMO-OFDM system over spatial-temporal correlated fast fading.
     2. Based on the above channel models of MIMO and MIMO-OFDM considering all kinds of channel properties, the pairwise error probabilities of space-time diversity coding are obtained under spatial-temporal correlated Rayleigh and Rician fast fading. The performance of MIMO and MIMO-OFDM system using space-time diversity coding under spatial-temporal correlation and Rician fading is discussed. The distance criterion and inner product criterion of code design under spatial-temporal correlated Rayleigh and Rician fast fading are suggested. The maximum diversity advantage, coding advantage and the change of coding advantage under correlated fast fading of system are quantitatively discussed. The SNR limitation and error limitation of differential unitary space-time modulation under Ricain fast fading are derived. Based on Gauss-Innovations model and SNR limit, we obtain the pairwise error probability of system adopting differential unitary space-time modulation which is validated through our simulation results.
     3. Considering there is spatial correlation and specular transmission in real transmission environment, the maximum likelihood detection of V-BLAST and its neural network realization under correlated Rician fading are proposed. Because there are some limitations such as error transmission and performance limited by detection order of ZF-DFE, which is the traditional detection technology of V-BLAST, symbol to symbol maximum likelihood (SSML) detection decision with minimum BER and its detection decision expression using BPSK modulation are presented. Based on the consideration that there are not enough scatters in transmission environment and not enough distance among elements of antenna arrays, the performance of V-BLAST system adopting different detection decision technologies under correlated Rician fading is discussed through simulation results. It is shown that the performance of system using SSML detection is superior to that of system using traditional ZF-DFE detection, which validates our above theory analyses. Especially, the superiority of SSML detection is further validated under spatial correlated Rician fading. Based on the computation complexity of SSML detection and the computation superiority of radius basic function (RBF) neural network, we use RBF neural network to realize SSML detection and give the evaluation of its computation complexity.
     4. Considering the superiority of OFDM technology in adaptive modulation for different subcarriers and greedy algorithm in bit loading, the adaptive bit and power allocation strategy of MIMO-OFDM system based on greedy algorithm is proposed. The spectrum efficiency of system and the effect of different parameters over system performance are discussed. Through our simulation results, it is shown that the greedy algorithm is superior to chow algorithm from the viewpoint of spectrum efficiency and BER, which is far superior to average algorithm. And it is shown that the performance with more adaptive degrees is better than that with less adaptive degrees. From the view of tradeoff between spatial multiplexing and space-time coding, we combine it with adaptive modulation and show that the adaptive MIMO-OFDM system performance considering the tradeoff is better than that without considering it through our simulation results.
引文
[1] J. E. Pagett, C. G. Gunther, THattori, Overview of Wireless Personal Communications, IEEE Communications Magazine, 1995, vol.33, pp. 28-41
    [2] M. M. Martone, Multiantenna Digital Radio Transmission, Boston: Artech House, 2001.
    [3] Q.Bi, G.I.Zysman, and H.Menkes, Wireless mobile communication at the start of 21st century, IEEE Commun. Mag., Jan.2001, pp.16-110.
    [4] G.L Stuber, J.R. Barry, S.W McLaughlin, Ye Li, M.A Ingram, T.G, Pratt, Broadband MIMO-OFDM wireless communications, Proceedings of the IEEE, Vol. 92, no.2, Feb 2004, pp. 271-294
    [5] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Standard 802.11a-1999.
    [6] Local and Metropolitan Area Networks—Part 16, Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a.
    [7] J.C. Guey, M. P. Fitz, M. R. Bell, and W.Y. Kuo, Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels, in Proc. IEEE Vehicular Technology Conf. (VTC)’96, Atlanta, GA, pp. 136–140.
    [8] Branka Vucetic, Jinhong Yuan, Space-time coding, New York: Wiley, 2003, pp. 248-255
    [9] Tarokh V, Naguib A, Seshadri N, Calderbank AR, space–time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths, IEEE Transactions on Communications, 1999,vol.47, no.2, pp.199–207.
    [10] S. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
    [11] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space–time block codes from orthogonal designs, IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.
    [12] B. M. Hochwald and T. L. Marzetta, Unitary space–time modulation for multiple-antenna communication in Rayleigh flat fading, IEEE Trans.Inf. Theory, vol. 46, no. 2, pp. 543–564, Mar. 2000.
    [13] B. M. Hochwald, T. L. Marzetta, T. J. Richardson, W. Swelden, and R. Urbanke, Systematic design of unitary space–time constellations, IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 1962–1973, Sep. 2000.
    [14] M. O. Damen, K. Abed-Meraim, and J. C. Belfiore, Diagonal algebraic space–time block codes, IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 628–636, Mar. 2002.
    [15] Y. Xin, Z. Wang, and G. B. Giannakis, Space–time diversity systems based on linear constellation precoding, IEEE Trans. Wireless Commun., vol. 2, no. 2, pp. 294–309, Mar. 2003.
    [16] V. Tarokh, H. Jafarkhani, A.R., Calderbank, Space-time block coding for wireless communications: Performance results, IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, March 1999, pp. 251-460
    [17] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space–time block codes from orthogonal designs, IEEE Trans. Inform. Theory, vol. 45, pp. 1456–1467, July 1999.
    [18] V. Tarokh, N. Seshadri, and A. R. Calderbank, Space–time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar. 1998.
    [19] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, V-Blast: An architecture for realizing very high data rates over the rich-scattering channel, in Proc. Int. Symp. Signals, Systems and Electronics (ISSE 1998), pp. 295–300.
    [20] J. Ha, A. N. Mody, J. H. Sung, J. Barry, S. Mclaughlin, and G. L. Stuber, LDPC coded OFDM with Alamouti/SVD diversity technique, J. Wireless Pers. Commun., vol. 23, no. 1, pp. 183–194, Oct. 2002.
    [21] Proakis J. G, Digital communications, third edition, New York: McGraw Hill, 1995, pp. 254-257
    [22] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri, Space–time coded OFDM for high data-rate wireless communication over wideband channels, in Proc. IEEE Vehicular Technology Conf. (VTC)’98, Ottawa,Canada, May 1998, pp. 2232–2236.
    [23] R. Blum, Y. Li, J. Winters, and Q. Yan, Improved space–time coding for MIMO-OFDM wireless communications, IEEE Trans. Commun., vol. 49, no. 11, pp. 1873–1878, Nov. 2001.
    [24] Y. Gong and K. B. Letaief, An efficient space–frequency coded wideband OFDM system for wireless communications, in Proc. IEEE Int.Conf. Communications (ICC)’02, New York, vol. 1, pp. 475–479.
    [25] Z. Hong and B. Hughes, Robust space–time codes for broadband OFDM systems, in Proc. IEEE Wireless Communications and Networking Conf.(WCNC), Orlando, FL, Mar. 2002, vol.1, pp. 105–108.
    [26] B. Lu and X. Wang, Space–time code design in OFDM systems, in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), San Francisco, CA, 2000, pp. 1000–1004.
    [27] H. B?lcskei and A. J. Paulraj, Space–frequency coded broadband OFDM systems, in Proc. IEEE Wireless Communications and Networking Conf.(WCNC), Chicago, IL, 2000, pp. 1–6.
    [28] ——, Space–frequency codes for broadband fading channels, in Proc.Int. Symp. Information Theory (ISIT) 2001, Washington, DC, p. 219.
    [29] W. Su, Z. Safar, M. Olfat, and K. J. R. Liu, Obtaining full-diversity space–frequency codes from space–time codes via mapping, IEEE Trans. Signal Process. (Special Issue on MIMO Wireless Communications), vol. 51, no. 11, pp. 2905–2916, Nov. 2003.
    [30] Y. Gong and K. B. Letaief, Space–frequency–time coded OFDM for broadband wireless communications, in Proc. IEEE Global Telecommunications Conf. (GLOBECOM), San Antonio, TX, 2001, pp. 519–523.
    [31] B. Lu, X. Wang, and K. R. Narayanan, LDPC-based space–time coded OFDM systems over correlated fading channels: Performance analysis and receiver design, IEEE Trans. Commun., vol. 50, no. 1, pp. 74–88, Jan. 2002.
    [32] A. F. Molisch, M. Z. Win, and J. H. Winters, Space–time–frequency (STF) coding for MIMO-OFDM systems, IEEE Commun. Lett., vol. 6, no. 9, pp. 370–372, Sep. 2002.
    [33] Z. Liu, Y. Xin, and G. Giannakis, Space–time–frequency coded OFDM over frequency selective fading channels, IEEE Trans. Signal Proc., vol. 50, no. 10, pp. 2465–2476, Oct. 2002.
    [34] M. Fozunbal, S.W. McLaughlin, R.W. Schafer, On space-time-frequency coding over MIMO-OFDM systems , IEEE Transactions on Wireless Communications, Vol. 4, no 1, pp. 320 – 331, Jan. 2005
    [35] H. B?lcskei and A. J. Paulraj, Space-frequency coded MIMO-OFDM with variable multiplexing-diversity tradeoff. IEEE Trans. Signal Proc., vol. 3. no.1, pp.2837-2841 Jan. 2003
    [36] H. B?lcskei, M. Borgmann, and A. J. Paulraj, Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM, IEEE J. Select. Areas Com., vol. 21, no. 3, pp. 427-439, Apr. 2003
    [37] B Lu, X Wang, Space-time code design in OFDM systems. IEEE GLOBECOM, vol. 2, San Francisco, CA, pp. 1000-1004. Nov. 2000
    [38] S. M. Alamouti, A simple transmit diversity technique for wireless communications, IEEE J. Select. Areas Com., vol. 16, no. 8, pp. 1451-1458, Oct. 1998
    [39] G. J. Foschini, M. J. Gans, On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, vol.6, no.3, pp. 311–335.
    [40] E. Telatar, Capacity of multi-antenna Gaussian channels, Technical Memorandum, AT&T Bell Laboratories, Mar. 1998.
    [41] T. L. Marzetta, B. M. Hochwald, Capacity of a mobile multipleantenna communication link in Rayleigh flat fading, IEEE Transactions on Information Theory 1999, vol.45, no.1, pp.139–157.
    [42] G. G. Raleigh, J. M. Cioffi, Spatio-temporal coding for wireless communication, IEEE Transactions on Communications 1998, vol.46, no.3, pp.357–366.
    [43] P. F. Driessen, G. J. Foschini, On the capacity formula for multiple inputs–multiple output wireless channels: a geometric interpretation, IEEE Transactions on Communications 1999; vol. 47, no. 2, pp. 173–176.
    [44] G. Wetzker, Definition of spatial multiplexing gain. Electronics Letters, Vol. 41, no.11, 26 May, 2005, pp.656 - 657
    [45] G. J. Foschini, N. J. Gans, On limits of wireless communications in a fading environment when using multiple antennas, Wireless Personal Communications, vol. 6, 1998, pp. 311-335,
    [46] G. J. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas, Bell Labs Tech. J., pp. 41-59, Autumn 1996.
    [47] P. W. Wolniansky, et al., V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. URSI International Symposium on Signals, Systems, and Electronics, ISSSE 98, New York, 1998, pp. 295-300.
    [48] G. D. Golden, et al., Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture, Electronics Letters 1999, vol.35, no.1, pp. 14-15.
    [49] A. J. Paulraj, C. B. Papadias, Space–time processing for wireless communications, IEEE Signal Processing Magazine, 1997, vol. 46, no. 6, pp.49–83.
    [50] Wallace M, Walton R. CDMA radio network planning. Proc.of IEEE ICUPC, San Diego, CA, 27 Sep.–1 Oct.1994, pp. 62–67.
    [51] A. Jalali, P. Mermelstein, Effects of diversity, power control, and the bandwidth on the capacity of microcellular CDMA systems, IEEE Journal on Selected Areas in Communications, vol.12, no.5, 1994, pp. 952–961.
    [52] A. F. Naguib, N. Seshadri, Calderbank R, Space–time coding and signal processing for high data rate wireless communications, IEEE Signal Processing Magazine, 2000, vol.17, no.3, pp. 76–92.
    [53] N. Seshadri, J. H. Winters, Two signaling schemes for improving the error performanceof frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity, Proc. of Vehicular Technology Conf., Secaucus, NJ, 18–20 May, 1993, pp.508–511.
    [54] H. Olofsson, M. Almgren. M. Hook., Transmitter diversity with antenna hopping for wireless communication systems, Proc. of Vehicular Technology Conf., Phoenix, AZ, 4–7 May, 1997, pp. 1743–1747.
    [55] A. Hiroike, F. Adachi, N. Nakajima, Combined effects of phase sweeping transmitter diversity and channel coding. IEEE Trans. on Vehicular Tech. 1992, vol. 41, no.2, pp. 170–176.
    [56] J. H. Winters, Switched diversity with feedback for DPSK mobile radio systems, IEEE Trans. on Vehicular Tech. 1983, vol. 32, no.1, pp. 134–150.
    [57] A. Hottinen, R. Wichman, Transmit diversity by antenna selection in CDMA downlink. Proc, IEEE 5th International Symposium on Spread Spectrum Techniques and Applications, Sun City, South Africa, 2–4 September, 1998, pp. 767–770.
    [58] R. W. Heath Jr, A. Paulraj, A simple scheme for transmit diversity using partial channel feedback, Proc. of Asilomar Conf. on Signals, Systems, and Computers, Pacific Grore, CA, 1–4 November, 1998, pp. 1073–1078.
    [59] E. Biglieri, J. Proakis, and S. Shamai, Fading channels: information-theoretic and communication aspects, IEEE Trans. Inform. Theory, vol.44, pp.2619-2692, Oct. 1998
    [60] I. E. Telatar, Capacity of multi-antenna gaussian channels, European Trans. Tel., vol. 10, no. 5, pp. 585-595, Nov./Dec. 1999
    [61] W. C. Jakes, Microwave mobile communications. Piscataway, NJ: IEEE Press, 1993.
    [62] N. Seshadri and J. H. Winters, Two signaling schemes for improving the error performance of frequency –division-duplex (FDD) transmission systems using transmitter antenna diversity, Int. J. Wire. Inform. Net., vol.1, no.1, pp.49-59, 1994.
    [63] B. M. Hochwald and W. Sweldens, Differential unitary space-time modulation, IEEE Transactions on Communications, vol. 48, no. 12, Dec. 2000, pp. 2041-2052.
    [64] B. L. Huges, Differential space-time modulation, IEEE Transactions on Information Theory, vol. 46, no.7, Nov. 2000: pp. 2567-2578
    [65] A. J. Paulraj and T. Kailath, Increasing capacity in wireless broadcast systems using distributed transmission/directional reception, U. S. Patent, no. 5,345,599, 1994.
    [66] B. Hassibi and B. M. Hochwald, High-rate codes that are linear in space and time, IEEE Trans. Inf. Theory, vol.48, no.7, pp. 1804-1824, Jul. 2002
    [67] S. Sandhu and A. Paulraj, Space-time block coding: A capacity perspective, IEEE Com. Lett., vol.4, no.12, pp.384-386, Dec. 2000
    [68] R. W. Heath Jr. and A. Paulraj, Linear dispersion codes for MIMO system based on frame theory, IEEE Trans. Signal Process., vol.50, no.10, pp. 2429-2441, Oct. 2002.
    [69] R. U. Nabar, H. Bolcskei, V. Erceg, D. Gesbert and A. J. Paulraj, Performance of multiantenna signaling techniques in the presence of polarization diversity, IEEE Trans. Signal Process., vol.50, no.10, pp. 2553-2562, Oct. 2002
    [70] L. Zheng and D. Tse, Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels, IEEE Trans. Inf. Theory, vol.49, no.5, pp.1073-1096, May. 2003.
    [71] B. Varadarajan and J. R. Barry, the rate-diversity tradeoff for linear space-time codes, in Proc. IEEEE Vehicular Technology Conf., vol.1, 2002, pp. 67-71
    [72] M. Godavarti and A. O. Hero, Diversity and degrees of freedom in wireless communication, in Proc. ICASSP, vol.3, May 2002, pp. 2854-2861
    [73] R. W. Heath, Jr. and A. J. Paulraj, Switching between diversity and multiplexing in MIMO systems, IEEE Trans. Comm. vol.53, no.6, June 2005, pp. 962-968.
    [74] H. El Gamal and M.O. Damen, An algebraic number theoretic framework for space-time coding, in Proc. Int. Symp. Information Theory, 2002, pp. 132
    [75] S. T. Chung and A. J. Goldsmith, Degrees of freedom in adaptive modulation: A unified view, IEEE Trans. on Com., vol.49, pp. 1561-1571, 2001
    [76] T. J. Winlink and P. H. Wittke, Optimization and performance evaluation of multicarrier transmission, IEEE Transactions on Information Theory, vol. 43, no. 2, March 1997, pp. 426-440.
    [77] D. Hughes-Hartogs, Ensemble modem structure for imperfect transmission media, US patent 4679227, 1987
    [78] P.S.Chow, J.M.Cioffi, and J. A. Bingham A practical discrete multitone transceiver loading Algotithm for data transmission over spectrally shaped channels, IEEE Trans on Commu, Vol. 43,1995,773-775.
    [79] Robert F.H.Fishcer, Johannes B. Huber, A new loading algorithm for Discrete Multitone Transmission, Proc, Globecomm’96, 724-728.
    [80] A. Czylwik, Adaptive OFDM for wideband radio channels, Proc, GolbeCom'96, pp. 713-718
    [81] Rainer Grunheid, Edgar Bolinth, Hermann Rohling, Kurt Aretz, Adaptive modulation HIPERLAN2 air interface. http://www.dit.edu/~ist~brain/publications/fg00_final.pdf.
    [82] V. Erceg, S. Ghassemzadeh, M. Taylor, D. Li, and D. L. Schilling, Urban/suburban out-of-sight propagation modeling, IEEE Comm. Mag, June 1992, vol. 30, no. 6, pp. 56-61.
    [83] J. P. Kermoal, L. Schumacher, P. E. Mogensen, and K. I. Pedersen, Experimentalinvestigation of correlation properties of MIMO radio channels for indoor picocell scenarios, Pro. IEEE VTC, Boston, MA, Sept. 2000, vol.1, pp. 14-21.
    [84] C. B. Peel, A. L. Swindlehurst, Performance of unitary space-time modulation in rayleigh fading, Pro. IEEE ICC, Jun. 2001, vol. 9, pp. 2805-2809
    [85] Inhyoung Kim, Hae Leem Lee, Beomsup Kim, Y. H. Lee, On the use of linear programming for dynamic subchannel and bit allocation in multiuser OFDM, IEEE GLOBECOM '01, 25-29 Nov. vol.6, 2001 pp. 3648 – 3652
    [86] 尹长川,罗涛,乐光新,多载波宽带无线通信技术,北京邮电大学出版社,北京,2004.7
    [87] S. T. Chung and A. J. Goldsimth, Degrees of freedom in adaptive modulation: A unified view, IEEE Trans. on Com., vol. 49, 2001, pp. 1561-1571
    [88] H. B?lcskei D. Gesbert, and A. J. Paulraj, On the capacity of OFDM-based spatial multiplexing systems, IEEE Trans. Commun., vol. 50, no.2, pp. 225-234, Feb. 2002
    [89] G. Stuber, Principles of mobile communication, Kluwer, Norwell, MA, 1996
    [90] HORN R A, JOHNSON C R., Matrix analysis, New York: Cambridge Press, 1985
    [91] R. J. Muirhead, Aspects of multivariate statistical theory, John Willey and Sons Ltd., 1982
    [92] C. N. CHUAN, D. TSE etc., Capacity scaling in MIMO wireless systems under correlated fading, IEEE Trans. Inf. Theory, vol. 48, no. 3, 2002, pp. 637-650
    [93] H. B?lcskei and A. J. Paulraj, Performance of space-time codes in the presence of spatial fading correlation, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, vol.1, Oct., 2000, pp. 687-693
    [94] A. Wittneben, A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation, ICC 93, vol.3, 1993, pp. 1630 -1634
    [95] A. Wittneben, Base-station modulation diversity for digital SIMULCAST, Proc. IEEE VTC, St. Louis, MO, May 1991, pp.848-853.
    [96] N. Seshadri and J. H. Winters, Two signaling schemes for improving the error performance of frequency-divesion-duplex (FDD) transmission systems using transmitter antenna diversity, in Proc. 1993 IEEE Vehicular Technology Conf., May 1993, pp. 508-511
    [97] J. H. Winters, The diversity gains of transmit diversity in wireless systems with Rayleigh fading, in Proc. 1994 IEEE International Conf. Communications (ICC94), vol. 2, New Orleans, LA, May 1994, pp. 1121-1125
    [98] J. H. Winters, The diversity gain of transmit diversity in wireless systems with Rayleigh fading, IEEE Trans. Vehicular Technology, vol.47, 1998, pp.119-123
    [99] A. Hiroike, F. Adachi and N. Nakajima, Combined effects of phase sweeping transmitter diversity and channel coding, IEEE Trans. Vehicular Technology, vol. 42, 1992, pp. 170-176
    [100] A. Hiroike and K. Hirade, Multi-transmitter simulcast digital signal transmission by using frequency offset strategy in land mobile radio telephone, IEEE Trans. Vehicular Technology,vol.27, pp. 231-238
    [101] C. B. Peel and A. Lee Swindlehurst. Effective SNR for space–time modulation over a time-varying Rician channel, IEEE Trans.Com., vol. 52, no.1, Jan., 2004 pp.17-23
    [102] R. L. Cupo, G. D. Golden, C. C. Martin, K. L. Sherman, N. R. Sollenberger, J. H. Winters, P. W. Wolniansky, A four-element adaptive antenna array for IS-136 PCS base station, vol.3, May 1997, IEEE 47th Vehicular Technology Conference . pp. 1577-1581
    [103] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1983
    [104] Y. A. Hirai, 1,000-Neuron System with one million 7-bit physical interconnections, In Jordan, M I, Cambridge, Massachusetts, Kearns, M J and Solla SA eds. Advances in Neural Information Processing Systems 10, A Bradford Book, The MIT Press, 1998, pp. 705-711
    [105] Alspector J, etc., Adaptive equalizer using self learning neural network. U. S. Patent #: 5,504780 issued: April 2, 1996
    [106] A. Edelman. Eiganvalue and condition numbers random matrics, PhD thesis, MIT, May 1989
    [107] H. Skjevling, D. Gesbert and N. Christonphersen, Combing space time block codes and multiplexing in correlated MIMO channels: An antenna assignment strategy, Proc. of Nordic Signal Processing Conference (NORSIG) 2003, Oct. 2003
    [108] U. Grenander and G. Szego, Toeplitz Forms and Their Applications, New York: Chelsea Pbulishing Company, 1984
    [109] E. Bliglieri, J. Proakis, and S. Shanmi, Fading channels: Information-theoretic and communications aspects, IEEE Trans. Inform. Theory, vol. 44, no. 6, Oct. 1998, pp. 2619-2692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700