用户名: 密码: 验证码:
正电子发射断层成像的统计迭代方法及加速方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层成像(Positron Emission Tomography,PET)是当代先进的无创伤且高品质的医学诊断技术,是最高水平核医学诊断的代表。本文讨论了正电子发射断层成像的原理和重建算法,主要研究了PET的统计迭代重建方法及加速方法。论文主要分成三大部分:PET成像原理和PET经典重建算法;基于各向异性扩散的PET重建算法;及基于改进的有序子集加速算法。
     本文首先简单地描述了PET成像原理及其系统结构;接着,详细地论述了经典的PET重建算法,主要分为解析法和迭代法。解析法是研究断层成像的根本出发点,该方法具有算法简单,成像速度快等特点,但重建结果差;迭代算法可分为代数迭代算法和统计迭代算法。代数迭代算法是一类以线性方程组理论为基础的重建算法;而统计迭代算法是以一类以某种估计准则为基础的重建算法,如最小二乘算法、最大似然的期望最大化算法、贝叶斯算法等。由于迭代算法在迭代过程中考虑了系统的物理特性和观测数据的统计模型,重建结果要好于解析法。
     针对P-M模型的缺陷,本文介绍了一种新的扩散模型,该模型在原来的基础上引入局部灰度方差。将该扩散模型与正则化MLEM算法结合起来形成了一种新的重建算法,并应用到PET重建中。在仿真实验中,新算法与其他重建算法进行了比较,结果表明本文的算法在提高重建图像的质量和保护细节上具有一定的优越性。
     由于结合各向异性扩散的中值先验的PET重建算法(PDEMedian)采用了存有缺陷的P-M模型,从而造成重建算法保持边缘不够准确,且重建的图像含有阶梯伪影。本文将结合非局部均值方法和基于模糊理论的各向异性扩散模型应用到PET图像重建中。实验验证了新算法在PET重建中的优越性和可行性。
     最后,研究了基于有序子集的统计迭代加速算法。我们将随着迭代次数增加而子集数逐渐减少的可变有序子集方法应用于统计迭代算法中,同时运用多分辨率(Multi- resolution, MR)概念对观测数据进行重组。实验证明该方法加快了算法的收敛速度,但并不以牺牲重建图像的质量为代价。
Positron emission tomography (PET) is one of advanced noninvasive diagnositic tech-nique of modern medical science, and it acts as one of representative techniques of modern nuclear medical diagnosis. The basic fundamentals and image reconstruction methodology of PET are discussed in the paper. And the later is the main purposes of this dissertation. Gener-ally three reconstruction algorithms are discussed in the paper: PML image reconstructionmodel based on nonlocal means, fuzzy theory and anisotropic diffusion; PML approach base the gray variance of neighborhood pixels and anitropic diffusion; Stactical iteration recon-struction based on modified order subsets.
     The fundamentals and system structure of PET are introduced in the first part of the pa-per. Furthermore, PET image reconstruction approaches, which are classified into analytical and iterative method, are discussed detailly. The study of tomography reconstruction stems from the analytical method which is characteristic of simplicity and fastness. However, its re-constructed images are very noisy. Iterative algorithms can be separated into algebratic itera-tion method and statistical iteration method. The former one is based on linear equation theory, while the latter one is ground on some kinds of evaluation criterias which contains lots of methods such as least square algorithm, maximum likelihood expectation maximization algo-rithm, bayesian algorithm and so on. Due to introducing the physical properties of system and the stactistical model of projection data into the reconstruction, iterative algorithm can get better images than analytical method.
     Against defects of P-M model, the gray variance of neighborhood pixels is brung into the diffusion model. And a new method, which combines the proposed diffusion model with re-gularized MLEM algorithm, is proposed in PET image reconstruction. The results show expe-rimentally that it has some performance of improving quality of reconstructed images and the protecting images edges in comparison with other common methods.
     The method of PET image recontruction combined with anisotropic diffusion filter with median filter (PDEMedian) cannot protect the edges accurately as well as the step artifacts can be found obviously in the image reconstructed by PDEMedian due to the P-M diffusion model s poor properties. Such a novel diffusion model combined nonlocal means with fuzzy theory is introduced into PET image reconstruction. The feasibility and efficiency of the new method are verified experimentally in comparison with other traditional algorithms.
     Finaly, the dissertation discuses the accelerated algorithm for statistical iteration based on modified ordered subset. And the modified ordered subset, whose number of subset de-creases with iteration, is introduced into iterative method. At the same, the projected data are rebuilted by the method of multi-resolution. The simulation results show the proposed method acceralate convergent rate of algorithm, but not at the expense of the reconstructed image squality.
引文
[1]王世真.绝妙的活体生化显像[EB/OL]. http://www.genetide.com/detail.asp?n_id=4406H,2005-1-22.
    [2]颜建华.正电子发射断层图像重建算法研究[D].华中科技大学,武汉.2007.
    [3] P T Kirchner, J Ryan, M Zalutsky. Positron emission tomography for the evaluation ofpancreatic disease [J]. Seminars in Nuclear Medicine, 1980, 10(4): 374-391.
    [4] I C Smith, F J Gilbert. Role of positron emission tomography in the management ofbreast cancer [J]. The Breast, 1999, 8(6): 303-310.
    [5] G T Smith, K F Hubner, T McDonald. Cost analysis of FDG PET for managing patientswith ovarian cancer [J]. Clin Positron Imaging, 1999, 2(2): 63-70.
    [6] D S Tyler, M Onaitis, A Kherani. Positron emission tomography scanning in malignantmelanoma [J]. Cancer, 2000, 89(5): 1019-1025.
    [7] R Bar-Shalom, A Y Valdivia, M D Blaufox. PET imaging in oncology [J]. Seminars.Nuclear. Medical. 2000, 30(3): 150-185.
    [8] Y Marcou, C Lindquist, C Adams. What is the optimal therapy of brain metastases? [J].Clin Oncol(R Coll Radiol).2001, 13(2): 105-111.
    [9] Herman G T. Image reconstruction from projections: implementation and application [M].Berlin: Springer-Verlag, 1979.
    [10] G Tarantola, F Zito, P Gerundini. PET instrumentation and reconstruction algorithms inwhole-body applications [J]. Journal of Nuclear Medicine, 2003, 44 (5):756-769.
    [11] J A Fessler . Penalized Weighted Least-Squares Image Reconstruction for Positron EmissionTomography [J]. IEEE Trans. Medical. Imaging, 1994 13(2): 290-300.
    [12] L A Shepp, Y Vardi. Maximum likelihood restoration for emission tomography [J]. IEEETrans. Medical Imaging, 1982, 1(2): 113-122.
    [13] Emanuel Levitan. A Maximum A Posteriori Probability Expectation Maximization Algorithmfor Image Reconstruction in Emission Tomography [J]. IEEE Trans. Medical ImagingScience, 1987, 6(3):185-192.
    [14] H M Hudson, R SLarkin. Accelerated image reconstruction using ordered subsets of projectiondata [J]. IEEE Trans. Medical Imaging, 1994, 13(4): 601-609.
    [15] C L Byrne. Choosing parameters in block-iterative ordered subset reconstruction algorithm [J]. IEEE Trans. Image Processing, 2005, 14(3): 321-327.
    [16] C L Byrne. Convergent block-iterative algorithms for image reconstruction from inconsistentdata [J]. IEEE Trans. Image Processing, 1997, 6(9): 1296 1304.
    [17] J A Fessler, A O Hero. Space alternating generalized expectation maximization algorithm[J]. IEEE Trans. Signal Processing, 1994, 42 (10): 2664-2677.
    [18]庄天戈. CT原理与算法[M].上海:上海交通大学出版社, 1992.
    [19] V Selivanov, Y Picard, J Cadorette. Detector response models for statistical iterative imagereconstruction in high resolution PET [J]. IEEE Trans. Nuclear Science, 2000, 47(3):1168-1175.
    [20] Y Vardi, L A Shepp, L Kaufman. A statistical model for positron emission tomography [J].Journal of the American Statistical Association, 1985, 80(389): 8-20.
    [21] L Kaufman. Implementing and accelerating the EM algorithm for positron emission tomography[J]. IEEE Trans. Medical Imaging, 1987, 6(1): 37-51.
    [22] E Veklerov, J Llacer. MLE reconstruction of a brain phantom using a Monte Carlo trans itionmatrix and a statistical stopping rule [J]. IEEE Trans.Nuclear Science, 1988, 35(1):603-607.
    [23] G T Herman. Image reconstruction from projections: The fundamentals of computationaltomography [M].New York: Academic Press.1980.
    [24] C L Byrne. Strong under relaxation in the multiplicative algebraic reconstruction technique(MART) for inconsistent systems[C]. In Proceedings of the 1993 IEEE Nuclear.Science. Symposium Medical Imaging Conference (NSSMIC).San Diego:NSSMIC.1993, 1637-1641.
    [25] A H Andersen, A C Kak. Simultaneous algebraic reconstruction technique (SART): A superiorimplementation of the ART algorithm [J].Ultrasonic Imaging, 1984, 6(1): 81-94.
    [26] G T Herman. A relaxation method for reconstructing objects from noisy x-rays [J]. MathematicalProgramming, 1975, 8(1):1-19.
    [27] C. L. Byrne. Block- iterative methods for image reconstruction from projections [J]. IEEETrans. Image Processing, 1996, 5(5): 792-794.
    [28]张嵩.正电子放射成像理论与实现[D].浙江大学,杭州,2000.
    [29] K Lange, R Carson. EM reconstruction algorithms for emission transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 302-316.
    [30] R Fletcher. Practical Methods of Optimization [M].Chichester: Wiley.1987.
    [31] A P Dempster, N M Laird, D B Rubin. Maximum likelihood for incomplete data via thealgorithm [J]. Journal of the Royal Statistical Society B, 1977, 39(1): 1-38.
    [32] J A Fessler, A O Hero. Penalized maximum- likelihood image reconstruction usingspace-alternating generalized EM algorithms [J]. IEEE Trans. Image Processing, 1995,4(10): 1057-1429.
    [33] K Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothness[J]. IEEE Trans. on Medical Imaging, 1990, 9(4):439-446.
    [34] S M Kay. Fundamentals of statistical signal processing: estimation theory [M]. PrenticeHall, Inc.: New York, 1993.
    [35]周建.正电子发射断层的图像重建算法的研究[D].东南大学,南京,2006.7.
    [36]张贤达.现代信号处理[M].清华大学出版社,北京,1995.
    [37] M E Daube, G Muehllehner. An iterative image space reconstruction algorithm suitablefor volume ECT [J]. IEEE Trans. Medical Imaging.1986, 5(2): 61-66.
    [38] D M Titterington. On the iterative image space reconstruction algorithm for ECT [J].IEEE Trans. Medical Imaging.1987, 6(1): 52-56.
    [39] J A Fessler, W L Rogers. Spatial resolution properties of penalized- likelihood image reconstruction:Space- invariant tomography [J].IEEE Trans. Image Processing, 1996,5(9):1346-1358.
    [40] J Anderson, B A Mair, M Rao. Weighted least-squares reconstruction methods for positronemission tomography [J]. IEEE Trans. Medical Imaging 1997, 16(2): 159-165.
    [41] C L Byrne. Iterative image reconstruction algorithms based on cross-entropy minimization[J]. IEEE Trans. Image Processing, 1993, 2(1):96-103.
    [42]张嵩.基于惩罚交叉熵极小的正电子发射成像技术[J].计算机学报, 2000, 23(11):1151-1155.
    [43] A P Sage, J L Melsa. Estimation Theory with Applications to Communications and Co ntrol[M]. McGraw-Hill Book Com, New York, 1971.
    [44] H Q Zhu, H Z Shu, J Zhou. Image Reconstruction for Positron Emission TomographyUsing Fuzzy Nonlinear Anisotropic Diffusion Penalty [J]. Medical Biological Engineeringand Computing, 2006, 44(11): 983-997.
    [45] S Ahn, J A Fessler, D Blat. Convergent incremental optimization transfer algorithms: application to tomography [J]. IEEE Trans. Medical Imaging, 2006, 25(3):283-296.
    [46] Y Wang. Multicriterion cross-entropy minimization approach to positron emission tomographicimaging [J]. Journal of Optical Society America A: Optics, Image Science, andVision. 2001, 18(5): 1027-1032.
    [47] J H Chang, J M Anderson, J R Votaw. Regularized image reconstruction algorithms forpositron emission tomography [J]. IEEE Trans. Medical Imaging, 2004, 23(9):1165-1175
    [48] J Nuyts, J A Fessler. A penalized- likelihood image reconstruction method for emissiontomography, compared to post smoothed maximum- likelihood with matched spatial resolution[J]. IEEE Trans. Medical Imaging, 2003, 22(9): 1042-1052.
    [49] J W Stayman, J A Fessler. Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction [J]. IEEE Trans. Medical Imaging, 2000, 19(6):601-615.
    [50] E T Jaynes. Prior probabilities [J]. IEEE Trans. System Science and Cybernertic 1968,4(3): 227-241.
    [51] S German, D German. Stochastic relaxation, Gibbs distribution, and Bayesian restorationof images [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, 6(6):721-741.
    [52] R Fletcher. Practical Methods of Optimization [M]. Wiley: Chichester, 1987.
    [53] P J Green. Bayesian reconstructions from emission tomography data using a modifiedEM algorithm [J]. IEEE Trans. Medical Imaging.1990, 9(1):84-93.
    [54]何文炎.正电子发射断层成像的贝叶斯重建[D].浙江大学,杭州,2000.
    [55] S Geman, D Geman. Stoshastic relaxation, Gibbs distribution, and the Bayesian Restorationof Images [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984,6:721-741.
    [56] J Besag. Towards Bayesian image analysis [J]. Journal of Applied Statistics, 1989, 3(16):395-407.
    [57] E U Mumcuogluyz, R M Leahy, S R Cherryz. Bayesian reconstruction of PET images:methodology and performance analysis [J]. Physics Medical Biology, 1996, 41(9):1777-1807.
    [58] S J Lee, I T Hsiao, G R Gindi. The Thin Plate as a regularizer in Bayesian SPECT reco nstruction [J]. IEEE Trans. Nuclear Science, 1997, 44(3): 1381-1387.
    [59] J Nuyts, D Bequé, P Dupont, L Mortelmans. A concave prior penalizing relative differencefor maximum-a-posteriori reconstruction in emission tomography [J]. IEEE Trans.Nuclear Science, 2002, 49(1): 56-60.
    [60] P Perona, J Malik. Scale space and edge detection using anisotropic diffusion [J]. IEEETrans. Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [61] C Tony, S Jackie, V Luminita. Variational PDE models in image processing [J]. Noticesof the American mathematics society, 2003, 50(1):14-26.
    [62] N Paragios. Variational methods and partial differential equations in cardiac image analysis[J]. IEEE International Symposium on Biomedical imaging, 2004, 1:17-20.
    [63] G Boccignone, P Napoletano, V Caggiano. A multiresolution diffused expectation-maximization algorithm for medical image segmentation [J]. Computers in BiologyMedicine, 2007, 37(1): 83-96.
    [64] H Yu, C S Chua. GVF-based anisotropic diffusion models [J]. IEEE Trans, Image Process,2006, 15(6):1517-1524.
    [65] V Michailovich. A Tannenbaum. Despeckling of medical ultrasound images [J]. IEEETrans. Ultrasonics Ferroelectrics and Frequency Control, 2006, 53(1): 64-78.
    [66]杨新,李俊,杜啸晓.图像偏微分方程的原理与应用[M].上海交通大学出版社,2003.
    [67] P Charbonnier, L Blanc, G Aubert. Two deterministic half-quadratic regularization algorithmsfor computed imaging [J]. IEEE International Conference on Image process, Austin,TX. 1994, 2: 168-172.
    [68] J Koenderink. The structure of images [J]. Biological Cybernetics, 1984, 50(5): 363-370.
    [69] A P Witkin. Scale space filtering [J]. International Joint Conference Artificial intelligence.Karlsrvhe, West Germany. 1983:1019-1021.
    [70] A Hummel. Representations based on zero-crossing in scale-space [J]. M Fischler, O.Firschein. Readings in Computer Vision: Issues, problems, Principles and Paradigms.Los Angoles, Calif: Morgan Kaufmann, 1986.
    [71]王桥.数字图像处理[M].科学出版社:北京,2009.
    [72] F Torkamani-Azar, K E Tait. Image recovery using the anisotropic diffusion equation [J].IEEE Trans. Image Processing, 1996, 5(11): 1573-1578.
    [73] J Ling. Smoothing low-SNR molecular image via anisotropic median-diffusion [J]. IEEETrans. medical imaging, 2002, 21(4): 377-384
    [74] S M Chao, D M Tsai. An improved anisotropic diffusion model for detail and edge preservingsmoothing [J]. Pattern Recognition Letters, 2010, 31(13): 2012-2023.
    [75] I G Zubal, C R Harrell, E O Smith. Computerized three-dimensional segmented humananatomy [J] Medical Physics, 1994, 21(2): 299-302.
    [76] L A Zadeh. Fuzzy sets [J]. Information and control, 1965, 8(3): 338-353.
    [77] M J Black, G Sapiro, D H Marimont, D Heeger. Robust anisotropic diffusion [J]. IEEETrans. Image Processing, 1998, 7(3): 421-432.
    [78] Rosenfeld. The Fuzzy Geometry of Image Subsets [J].Pattern Recognition Letters, 1984,2(5): 311-317.
    [79] R C Chen, P T Yu. Fuzzy selection filters for image restoration with neural learning.IEEE Trans. Signal Process, 1999, 47:1446-1450.
    [80] C Tomasi, R Manduchi. Bilateral filtering for gray and color images [J]. In: Proc. IEEEInternat. Conf. on Computer Vision (ICCV’98), Bombay, India. 1998: 839–846.
    [81] D Barash. A fundamental relationship between bilateral filter, adaptive smoothing, andthe nonlinear diffusion equation [J]. IEEE Trans. Pattern Analysis and Machine Interll igence,2002, 24(6): 844- 847.
    [82] A Buades, J M Morel, A review of image denoising algorithms with a new one [J]. MultiscaleModel and Simulation, 2005, 4(2), 490–530.
    [83] S Alenius, U Ruotsalainen. Bayesian image reconstruction for emission tomographybased on median root prior [J]. European Journal of Nuclear Medicine and MolecularImaging, 1997, 24(3): 258–265.
    [84] S Alenius, U Ruotsalainen, J Astola. Using local median as the location of the prior distributionin iterative emission tomography image reconstruction [J]. IEEE Trans. NuclearScience, 1998, 45(6): 3097–3107.
    [85] I T Hsicao, A Rangarajan, G Gindi. A new convex edge-preserving median prior with applicationto tomography [J]. IEEE Trans. Medical imaging, 2003, 22(5):580-585.
    [86] W Press, S Teukolsky, W Vetterling. Numerical recipes, the art of scientific computing,2nd ed. Cambridges: Cambridge University Press, 1992.
    [87] J A Fessler, A O Hero. Penalized maximum- likelihood image reconstruction using spacealternating generalized EM algorithms [J]. Biomedical Imaging, 2002. 5th IEEE EMBSInternational Summer School, 2002.
    [88] M Jiang, G Wang. Convergence of the simultaneous algebraic reconstruction technique(SART) [J]. IEEE Trans. Image Processing, 2003.12(8): 957–961.
    [89] C A Bouman, K Saue. Fast numerical methods for emission and transmission tomographicreconstruction [J], in: Proc. 27th Annual Conference on Information Science andSystems, 1993: 611–616.
    [90] H Q Zhu, H Q Zhu, H Z Shu, J Zhou. A novel weighted least squares PET image reconstructionmethod using adaptive variable index sets [J]. Digital Signal Processing, 2006,16(2): 106–119.
    [91] H Q Zhu, H Z Shu, J Zhou. Accelerating SAGE algorithm in PET image reconstructionby rescaled block- iterative method [J]. Journal of Southeast University (English Edition),2005, 21 (2): 207- 210.
    [92] J H Sheng, D R Liu. An improved maximum likelihood approach to image reconstructionusing ordered subsets and data subdivisions [J]. IEEE Trans on Nuclear Science, 2004,51(1): 130-135.
    [93] D J Kadrmas. Statistically regulated and adaptive EM reconstruction for emission co mputedtomography [J]. IEEE Trans. on Nuclear Science, 2001, 48(3): 790-798.
    [94]何佳伟,刘东升,桂志国.可变有序子集PML算法在PET中的应用[J].中北大学学报, 2010, 31(6): 446-450.
    [95] M Takahash, K Ogawa. Selection of projection set and the order of calculation in orderedsubsets expectation maximization method [A]. In IEEE Conference on Nuclear ScienceSymposium and Medical imaging. Toronto, Cananda, 1998: 1408-1412.
    [96] M V Ranganath, A P Dhawan, N Mullani. A multigrid expectation maximization reco nstructionalgorithm for positron emission tomography [J]. IEEE Trans. Medical imaging,1988, 7(4): 273-278.
    [97] A Raheja, T F Doniere, A P Dhawan. Multi-resolution expectation maximization reconstructionalgorithm for positron emission tomography using wavelet processing [J]. IEEETrans. Nuclear Science, 1999, 46(3): 594-602.
    [98] J Browne, R D Pierro. A row-action algenative to the EM algorithm for maximizing likelihoodsin emission tomography [J]. IEEE Trans. Medical Imaging, 1996,15(5): 687-699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700