用户名: 密码: 验证码:
CTEN调节EGF诱导的乳腺癌细胞上皮间质转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     乳腺癌是一种严重危害女性健康的恶性肿瘤。上皮间质转变(Epithelial-mesenchymal transition, EMT)是指上皮细胞向间充质细胞转化的现象,EMT与肿瘤侵袭转移、耐药和肿瘤干细胞密切相关。表皮生长因子(Epidermal Growth Factor, EGF)是诱发EMT的重要细胞因子之一。
     CTEN(COOH-terminus tensin-like molecule)是tensin基因家族中的一员,该家族参与细胞粘附、迁移及信号转导等。CTEN在多种恶性肿瘤中表达增高,并与肿瘤侵袭、转移及患者预后相关。有报道指出,CTEN参与结肠癌细胞EMT。
     目前关于CTEN的研究报道不多,缺乏CTEN在乳腺癌的深入研究。CTEN在乳腺癌的发生、发展过程中发挥怎样的作用?在本研究中,将检测CTEN在乳腺癌组织及细胞系中的表达情况,重点探讨CTEN在外源性EGF诱导的乳腺癌细胞EMT中的调控作用,分析其调控机制。通过本研究,加深对CTEN的认识,揭示新的乳腺癌侵袭及EMT相关的分子基础和作用机制。
     方法:
     1.免疫组织化学法检测侵润性导管癌组织中CTEN和p-ERK1/2蛋白的表达,分析蛋白表达情况与乳腺癌临床病理特征间的关系及两种蛋白之间的关联。
     2.外源性EGF刺激乳腺癌MCF-7细胞,观察细胞形态变化,Western blot法检测CTEN、E-cadherin、vimentin蛋白的变化。设计特异性CTEN-siRNA,采用脂质体法转染MCF-7乳腺癌细胞,采用实时荧光定量PCR法检测CTEN mRNA的表达,筛选并鉴定干扰效率最高的siRNA进入后续实验。
     3.外源性EGF刺激乳腺癌MCF-7细胞后,siRNA转染沉默CTEN表达及使用抑制剂U0126阻断ERK信号通路,观察细胞形态变化,Western blot法检测CTEN、 E-cadherin、vimentin、ERK1/2、p-ERK1/2、Raf-1及Snail蛋白的表达情况;Transwell小室侵袭实验检测各组细胞的侵袭性。
     结果:
     1.在乳腺癌组织标本中,CTEN蛋白表达的阳性率是88.1%,其表达水平与乳腺癌的分化程度、淋巴结转移、临床分期、肿瘤大小、PR、N-cadherin表达有关(P<0.05)。p-ERK1/2蛋白表达的阳性率是83.3%,其表达水平与乳腺癌的分化程度、淋巴结转移、临床分期、N-cadherin表达有关(P<0.05)。CTEN蛋白表达强度与p-ERK1/2蛋白表达强度之间呈正相关(r=0.526,P<0.01)。
     2.外源性EGF刺激乳腺癌MCF-7细胞后,观察细胞形态由上皮样向间质样改变,Western blot法检测CTEN蛋白表达上调,同时E-cadherin蛋白表达下降、vimentin蛋白表达增高。CTEN-siRNA可有效抑制CTEN mRNA表达(抑制率>90%)。
     3.外源性EGF刺激乳腺癌MCF-7细胞后,CTEN-siRNA转染,发现细胞形态由间质样向上皮样转变;且CTEN蛋白、vimentin蛋白、p-ERK1/2蛋白、ERK1/2蛋白、Raf-1蛋白及Snail蛋白表达减少,E-cadherin蛋白增加;使用ERK通路特异性抑制剂U0126后,p-ERK1/2蛋白及Snail蛋白均减少,Raf-1蛋白的表达无变化;转染CTEN-siRNA可抑制EGF诱导的MCF-7细胞的侵袭细胞数增加(P<0.05)。
     结论:
     1.癌基因CTEN的表达与乳腺癌生物学行为密切相关,且CTEN蛋白的表达与p-ERK1/2蛋白表达呈正相关。
     2.EGF可促进乳腺癌MCF-7细胞发生EMT,同时上调CTEN蛋白。
     3.沉默CTEN可部分逆转EGF诱导的EMT,其机制是沉默CTEN可下调Raf-1从而阻滞Ras/Raf/MEK/ERK/Snail信号通路。
     4.沉默CTEN表达可部分逆转EGF诱导的MCF-7细胞侵袭力增强。
Objective
     Breast cancer is a serious malignant tumor which hazards to the health of women. Epithelial-mesenchymal transition(EMT) is a transdifferentiation of epithelial cells to mesenchymal cells. There is a closely relationship between EMT and tumors' invasion, metastasis, drug resistance and cancer stem cells. Epidermal Growth Factor (EGF) is one of the cell factors which can induce EMT.
     CTEN(COOH-terminus tensin-like molecule) gene is a member of the tension genes family, which participates in cell adhesion, migration and signal transmitting. Over-expression of CTEN is associated correlated with invasion and migration of the malignant tumor and the prognosis of the patients. Researches showed that, CTEN participated in the EMT of colorectal cancer.
     There are no deep investigations on CTEN and its influences on breast cancer. How does CTEN influence the generation of breast cancer? In this study, we tested the CTEN expression in breast cancer tissues and cell lines, and discussed the possible mechanism of CTEN on EMT. It will increase the recognition to CTEN and uncover new molecular mechanism of the EMT in breast cancer.
     Methods
     1. The expression of CTEN and p-ERK1/2was detected in invasive breast cancer by immunohistochemistry, then analysising the relationship between protein expression and clinicopathological parameters, and the association of two proteins.
     2. Exogenous EGF was used to stimulate MCF-7cells, then morphological changes of cells were observed, and the expression of CTEN, E-cadherin and vimentin was detected by Western blot. The specific CTEN-small interference RNA (siRNA) was constructed and transfected into MCF-7cells using lipofectamine, the expression of CTEN mRNA was detected by real-time fluorescence quantitative PCR, finally the most efficient siRNA was screened out for the follow-up experiments.
     3. EGF was used to stimulate MCF-7cells, then transfecting CTEN-siRNA and using U0126to blocking the ERK signal pathway, the morphological changes of cells were observed, and the expression of CTEN, E-cadherin, vimentin, ERK1/2, p-ERK1/2, Raf-1and Snail protein was detected by Western blot. The number of invasive cells was determined by Transwell assay.
     Results
     1. The positive rate of CTEN in breast cancer was88.1%, while p-ERK1/2was83.3%. CTEN and p-ERK1/2both associated with the loss of tumor differentiation, clinical stage, lymph node metastasis and N-cadherin expression (P<0.05). There was a significant positive correlation between the expression strength of CTEN and p-ERK1/2(r=0.526, P<0.01).
     2. After EGF was used to stimulate MCF-7cells, epithelial-like to mesenchymal-like changes in cells morphology were observed, and the expression of CTEN and vimentin protein was increased, as well as E-cadherin protein was decreased. CTEN-siRNA can suppress CTEN mRNA expression effectively (inhibition>90%).
     3. EGF was used to stimulate MCF-7cells. After transfection, it was found that mesenchymal-like to epithelial-like changes in cells morphology, and the expression of CTEN, vimentin, ERK1/2, p-ERK1/2, Raf-1and Snail protein was decreased, E-cadherin protein was increased. The expression of p-ERK1/2and Snail protein was decreased, but Raf-1protein expression did not change after using U0126.After transfection, the number of invasive cells did not significantly increase even if using exogenous EGF to stimulate MCF-7cells (P<0.05).
     Conclusion
     1. It suggested that the expression level of CTEN protein was closely related to biological behavior of breast cancer, and there was a significant positive correlation between the expression strength of CTEN and p-ERK1/2.
     2. Exogenous EGF could promote breast cancer MCF-7cells occurring EMT, and the expression of CTEN protein was increased after occurring EMT.
     3. Suppressing CTEN expression could partly inverse EMT by EGF-induced, because CTEN silencing could block activation of Ras/Raf/MEK/ERK/Snail signal pathways due to reducing Raf-1protein expression.
     4. Suppressing CTEN expression could partly inverse invasive ability of MCF-7cells enhancing by EGF-induced.
引文
[1]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012[J]. CA Cancer J Clin, 2012,62(1):10-29.
    [2]Youlden DR, Cramb SM, Dunn NA, et al. The descriptive epidemiology of female breast cancer:an international comparison of screening, incidence, survival and mortality[J]. Cancer Epidemiol,2012,36(3):237-248.
    [3]Siegel R, DeSantis C, Virgo K, et al. Cancer treatment and survivorship statistics, 2012[J]. CA Cancer J Clin,2012,62(4):220-241.
    [4]Enserink M. A push to fight cancer in the developing world[J]. Science,2011, 331(6024):1548-15450.
    [5]Coughlin SS, Ekwueme DU. Breast cancer as a global health concern[J]. Cancer Epidemiol,2009,33(5):315-318.
    [6]Fields RC, Jeffe DB, Trinkaus K, et al. Surgical resection of the primary tumor is associated with increased long-term survival in patients with stage IV breast cancer after controlling for site of metastasis [J]. Ann Surg Oncol,2007,14(12):3345-3351.
    [7]Hanahan D, Weinberg RA. Hallmarks of Cancer:The Next Generation [J]. Cell, 2011,144(5):646-674.
    [8]Gao D, Vahdat LT, Wong S, et al. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer[J]. Cancer Res,2012,72(19):4883-4889.
    [9]Lopez-Novoa JM, Nieto MA. Inflammation and EMT:an alliance towards organ fibrosis and cancer progression[J]. EMBO Mol Med,2009,1(6-7):303-314.
    [10]Wang Z, Li Y, Kong D, et al. Acquisition of Epithelial-Mesenchymal Transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway [J]. Cancer Res,2009,69(6):2400-2407.
    [11]Lo SH, Lo TB. TNS4, a COOH-terminal tensin-like protein with prostate restricted expression, is down-regulated in prostate cancer[J]. Cancer Res,2002, 62(15):4217-4221.
    [12]Lo SH. Tensin[J]. The International Journal of Biochemistry & Cell Biology, 2004,36(1):31-34.
    [13]Albasri A, Aleskandarany M, Benhasouna A, et al. CTEN(C-terminal tensin-like), a novel oncogene overexpressed in invasive breast carcinoma of poor prognosis[J]. Breast cancer research and treatment,2011,126(1):47-54.
    [14]Albasri A, Seth R, Jackson D, et al. C-terminal Tensin-like (CTEN) is an oncogene which alters cell motility possibly through repression of E-cadherin in colorectal cancer[J]. The Journal of Pathology,2009,218(1):57-65.
    [15]Sakashita K, Mimori K, Tanaka F, et al. Prognostic relevance of Tensin4 expression in human gastric cancer[J]. Annals of surgical oncology,2008, 15(9):2606-2613.
    [16]Al-Ghamdi S, Cachat J, Albasri A, et al. C-terminal tensin-like gene functions as an oncogene and promotes cell motility in pancreatic cancer[J]. Pancreas,2013, 42(1):135-140.
    [17]Sasaki H, Moriyama S, Mizuno K, et al. Cten mRNA expression was correlated with tumor progression in lung cancers[J]. Lung Cancer,2003,40(2):151-155. [18] Sasaki H, Yukiue H, Kobayashi Y, et al. Cten mRNA expression is correlated with tumor progression in thymoma[J]. Tumour Biol,2003,24(5):271-274.
    [19]Albasri A, Al-Ghamdi S, Fadhil W, et al. Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer[J]. Oncogene,2011, 30(26):2997-3002.
    [20]许良中,杨文涛.免疫组织化学反应结果的判断标准[J].中国癌症杂志,1996,6(4):229-231.
    [21]DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics,2011[J]. CA Cancer J Clin,2011,61(6):409-418.
    [22]Yu Z Q Jia C X, Geng C Z, et al. Risk factors related to female breast cancer in regions of Northeast China:a 1:3 matched case-control population-based study [J]. Chin Med J (Engl),2012,125(5):733-740.
    [23]Chen H, Lo SH. Regulation of tensin-promoted cell migration by its focal adhesion localization and the SH2 domain[J]. Biochem J,2003,370(Pt3):1039-1045.
    [24]Chiang MK, Liao YC, Kuwabara Y, et al. Inactivation of tensin3 in mice results in growth retardation and postnatal lethality[J]. Dev Biol,2005,279(2):368-377.
    [25]Ishii A, Lo SH. A role of tensin in skeletal-muscle regeneration [J]. Biochem J, 2001,356(Pt 3):737-745.
    [26]Auger KR, Songyang Z, Lo SH, et al. Platelet-derived growth factor-induced formation of tensin and phosphoinositide 3-kinase complexes[J]. J Biol Chem,1996, 271(38):23452-23457.
    [27]Lo SH, Janmey PA, Hartwig JH, et al. Interactions of tensin with actin and identification of its three distinct actin-binding domains[J]. J Cell Biol,1994, 125(5):1067-1075.
    [28]Davis S, Lu ML, Lo SH, et al. Presence of an SH2 domain in the actin-binding protein tensin[J]. Science,1991,252(5006):712-715.
    [29]Calderwood DA, Fujioka Y, de Pereda JM, et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains:a structural prototype for diversity in integrin signaling[J]. Proc Natl Acad Sci U S A,2003,100(5):2272-2277.
    [30]Cui Y, Liao YC, Lo SH. Epidermal growth factor modulates tyrosine phosphorylation of a novel tensin family member, tensin3[J]. Mol Cancer Res,2004, 2(4):225-232.
    [31]Liao YC, Chen NT, Shih YP, et al. Up-regulation of C-terminal tensin-like molecule promotes the tumorigenicity of colon cancer through beta-catenin[J]. Cancer Res,2009,69(11):4563-4566.
    [32]Gao X, Zacharek A, Grignon DJ, et al. Localization of potential tumor suppressor loci to a < 2 Mb region on chromosome 17q in human prostate cancer[J]. Oncogene,1995,11(7):1241-12417.
    [33]Williams BJ, Jones E, Zhu XL, et al. Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer[J]. J Urol,1996,155(2):720-725.
    [34]Barbieri I, Pensa S, Pannellini T, et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten[J]. Cancer Res,2010,70(6):2558-2567.
    [35]Lo SS, Lo SH, Lo SH. Cleavage of cten by caspase-3 during apoptosis[J]. Oncogene,2005,24(26):4311-4.
    [36]Katz M, Amit I, Citri A, et al. A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration[J]. Nat Cell Biol,2007,9(8):961-969.
    [37]Boulton TG Yancopoulos GD, Gregory JS, et al. An insulin-stimulated protein Kinase similar to yrases kinases involved in cell cycle control[J]. Science,1990, 249(4964):64-67.
    [38]Boulton TQ Nye SH, Robb ins DJ, et al. ERKS:a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF[J]. Cell,1991,65 (4):663-675.
    [39]Jeong JH, Jeong YJ, Cho HJ, et al. Ascochlorin inhibits growth factor-induced HIF-la activation and tumor-angiogenesis through the suppression of EGFR/ERK/p70S6K signaling pathway in human cervical carcinoma cells [J]. J Cell Biochem,2012,113(4):1302-1313.
    [40]Ebisuya M, Kondon K, Nishida E. The duration magnitude and compartmentalization of ERK MAPK kinase activity:mechanisms of providing signaling specificity [J]. J Cell Sci,2005,118 (pt 14):2997-3002.
    [41]Fujimori Y, Inokuchi M, Takagi Y, et al. Prognostic value of RKIP and p-ERK in gastric cancer [J]. J Exp Clin Cancer Res,2012,31:30.
    [42]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol,1982, 95(1):333-339.
    [43]De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer,2013,13(2):97-110.
    [44]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell,2009,139(5):871-890.
    [45]Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol,2010,21(2):212-222.
    [46]Lu S, Labhasetwar V. Drug Resistant Breast Cancer Cell Line Displays Cancer Stem Cell Phenotype and Responds Sensitively to Epigenetic Drug SAHA[J]. Drug Deliv Transl Res,2013,3(2):183-194.
    [47]Foroni C, Broggini M, Generali D, et al. Epithelial-mesenchymal transition and breast cancer:role, molecular mechanisms and clinical impact[J]. Cancer Treat Rev, 2012,38(6):689-697.
    [48]Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer[J]. Oncogene,2008,27(55):6958-6969.
    [49]Onder TT, Gupta PB, Mani SA, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways[J]. Cancer Res,2008,68(10): 3645-3654.
    [50]Berx G, Van Roy F. The E-cadherin/catenin complex:an important gatekeeper in breast cancer tumorigenesis and malignant progression[J]. Breast Cancer Res,2001, 3(5):289-293.
    [51]Joo YE, Rew JS, Park CS, et al. Expression of E-cadherin, alphaand beta-catenins in patients with pancreatic adenocarcinoma[J]. Pancreatology,2002, 2(2):129-137.
    [52]Joo YE, Rew JS, Choi SK, et al. Expression of E-cadherin and catenins in early gastric cancer[J]. J Clin Gastroenterol,2002,35(1):35-42.
    [53]Lascombe I, Clairotte A, Fauconnet S, et al. N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors[J]. Clin Cancer Res,2006, 12(9):2780-2787.
    [54]Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumor progression: is it all in a switch?[J]. Cancer Lett,2002,176(2):123-128.
    [55]Wheelock MJ, Shintani Y, Maeda M, et al. Cadherin switching[J]. J Cell Sci, 2008,121(6):727-735.
    [56]Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo[J]. Cells Tissues Organs,2007,185(1-3):191-203.
    [57]Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis [J]. Cell,2004,117(7):927-939. [58] Vora HH, Patel NA, Rajvik KN, et al. Cytokeratin and vimentin expression in breast cancer[J]. Int J Biol Markers,2009,24(1):38-46.
    [59]Lanuti M, Liu G, Goodwin JM, et al. A functional epidermal growth factor (EGF) polymorphism, EGF serum levels, and esophageal adenocarcinoma risk and outcome [J]. Clin Cancer Res,2008,14(10):3216-3222.
    [60]洪伦.生长因子诱导的上皮-间质转化在人结肠癌细胞中的研究[D].湖南:中南大学,2011:
    [61]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391 (6669):806-811.
    [62]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001, 411(6836):494-498.
    [63]Bantounas I, Phylactou LA, Uney JB. RNA interference and the use of small interfering RNA to study gene function in mammalian systems[J]. J Mol Endocrinol, 2004,33(3):545-557.
    [64]Dawe RK. RNA interference on chromosomes[J]. Nat Genet,2004, 36(11):1141-1142.
    [65]Dave B, Mittal V, Tan NM, et al. Epithelial-mesenchymal transition, cancer stem cells and treatment resistance[J]. Breast Cancer Res,2012,14(1):202.
    [66]Whyte J, Bergin O, Bianchi A, et al. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development [J]. Breast Cancer Res,2009, 11(5):209.
    [67]Chen HH, Zhou XL, Shi YL, et al. Roles of p38 MAPK and JNK in TGF-β1-induced Human Alveolar Epithelial to Mesenchymal Transition[J]. Arch Med Res,2013,44(2):93-98.
    [68]Shin SY, Rath O, Zebisch A, et al. Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition[J]. Cancer Res,2010,70(17):6715-6724.
    [69]Giehl K, Skripczynski B, Mansard A, et al. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras:implications for cell proliferation and cell migration[J]. Oncogene,2000,19(25):2930-42.
    [70]Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways[J]. J Biol Chem,2009,284(46):31972-31981.
    [71]Hindley A, Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase(MAPK)-independent functions of Raf kinases[J]. J Cell Sci, 2002,115(Pt 8):1575-1581.
    [72]Ye DZ, Jin S, Zhuo Y, et al. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112[J]. PLoS One, 2011,6(11):e27637.
    [73]Pang W, Lu H, Hu YD, et al. Depletion of intracellular zinc induced apoptosis in cultured hippocampal neurons through Raf/MEK/ERK pathways[J]. Nutr Neurosci, 2012,15(1):18-24.
    [74]Zhang Y, Wang L, Zhang M, et al. Potential mechanism of interleukin-8 production from lung cancer cells:an involvement of EGF-EGFR-PI3K-Akt-Erk pathway[J]. J Cell Physiol,2012,227(1):35-43.
    [75]Neilson LM, Zhu J, Xie J, et al. Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer:recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways[J]. Mol Endocrinol,2007,21(9):2218-2232.
    [76]Wei YY, Chen YJ, Hsiao YC, et al. Osteoblasts-derived TGF-betal enhance motility and integrin upregulation through Akt, ERK, and NF-kappaB-dependent pathway in human breast cancer cells[J]. Mol Carcinog,2008,47(7):526-537.
    [77]Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer,2010,9(2):253.
    [78]Galmiche A, Fueller J. RAF kinases and mitochondria[J]. Biochim Biophys Acta, 2007,1773(8):1256-1262.
    [79]Kang Y, Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis[J]. Cell,2004,118(3) 277-279.
    [80]Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity[J]. Oncogene,2007,26(49):6979-6988.
    [81]Lander R, Nordin K, LaBonne C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1[J]. J Cell Biol,2011,194(1):17-25.
    [82]Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis:interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition [J]. Breast Cancer Res,2011,13(3):211.
    [83]Matsuo N, Shiraha H, Fujikawa T, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma[J]. BMC Cancer,2009,9:240.
    [84]Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival:implications in development and cancer[J]. Development,2005, 132(14):3151-3161.
    [85]Shirakihara T, Saitoh M, Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta[J]. Mol Biol Cell,2007,18(9):3533-3544.
    [86]Nassar A, Sookhan N, Santisteban M, et al. Diagnostic utility of snail in metaplastic breast carcinoma[J]. Diagn Pathol,2010,5:76.
    [87]Devipriya Nagarajan, Tahira Melo, Zhiyong Deng, et al. ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition[J]. Free Radic Biol Med,2012,52(6):983-992.
    [88]Hsu YL, Hou MF, Kuo PL, et al. Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/Snail signaling pathway[EB/OL].:Oncogene advance online publication,2012, October 8:
    [89]Papadimitriou E, Vasilaki E, Vorvis C, et al. Differential regulation of the two RhoA-specific GEF isoforms Netl/NetlA by TGF-β and miR-24:role in epithelial-to-mesenchymal transition[J]. Oncogene,2012,31(23):2862-2875.
    [1]Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of the cancer incidence and mortality in Europe in 2008[J]. Eur J Cancer,2010,46(4):765-781.
    [2]Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development:epithelial-mesenchymal transition in breast cancer development[J]. Breast Cancer Res,2003,5(2):101-106.
    [3]Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J]. J Cell Biol,1982, 95(1):333-339.
    [4]De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer,2013,13(2):97-110.
    [5]Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell,2009,139(5):871-890.
    [6]Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol,2010,21 (2):212-222.
    [7]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest,2009,119(6):1420-1428.
    [8]Jechlinger M, Grunert S, Tamir IH, et al. Expression profiling of epithelial plasticity in tumor progression[J]. Oncogene,2003,22(46):7155-7169.
    [9]Foroni C, Broggini M, Generali D, et al. Epithelial-mesenchymal transition and breast cancer:role, molecular mechanisms and clinical impact[J]. Cancer Treatment Reviews,2012,38(6):689-697.
    [10]Hugo H, Ackland ML, Blick T, et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression[J]. J Cell Physiol,2007, 213(2):374-383.
    [11]Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer[J]. Oncogene,2008,27(55):6958-6969.
    [12]Sarrio D, Palacios J, Hergueta-Redondo M, et al. Functional characterization of E-and P-cadherin in invasive breast cancer cells[J]. BMC Cancer,2009,9:74.
    [13]Onder TT, Gupta PB, Mani SA, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways[J]. Cancer Res,2008,68(10): 3645-3654.
    [14]Yu L, Li H Z, Lu S M, et al. Down-regulation of TWIST decreases migration and invasion of laryngeal carcinoma Hep-2 cells by regulating the E-cadherin,N-cadherin expression[J]. J Cancer Res Clin Oncol,2011,137(10):1487-1493.
    [15]Berx G, Van Roy F. The E-cadherin/catenin complex:an important gatekeeper in breast cancer tumorigenesis and malignant progression[J]. Breast Cancer Res,2001, 3(5):289-293.
    [16]Joo YE, Rew JS, Park CS, et al. Expression of E-cadherin, alphaand beta-catenins in patients with pancreatic adenocarcinoma[J]. Pancreatology,2002, 2(2):129-137.
    [17]Joo YE, Rew JS, Choi SK, et al. Expression of E-cadherin and catenins in early gastric cancer[J]. J Clin Gastroenterol,2002,35(1):35-42.
    [18]De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors[J]. Cell Signal,2005,17(5):535-547.
    [19]Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity[J]. Oncogene,2007,26(49):6979-6988.
    [20]Lascombe I, Clairotte A, Fauconnet S, et al. N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors[J]. Clin Cancer Res,2006, 12(9):2780-2787.
    [21]Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumor progression: is it all in a switch?[J]. Cancer Lett,2002,176(2):123-128.
    [22]Wheelock MJ, Shintani Y, Maeda M, et al. Cadherin switching[J]. J Cell Sci, 2008,121(6):727-735.
    [23]Hulit J,Suyama K, Chung S, et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation[J]. Cancer Res,2007,67(7):3106-3116.
    [24]Li Y, Yang J, Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis[J]. J Clin Invest,2003,112(4):503-516.
    [25]Bates RC, Bellovin DI, Brown C, et al. Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma[J]. J Clin Invest,2005,115(2):339-347.
    [26]Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer-observations in vitro and in vivo[J]. Cells Tissues Organs,2007,185(1-3):191-203.
    [27]Vora HH, Patel NA, Rajvik KN, et al. Cytokeratin and vimentin expression in breast cancer[J]. Int J Biol Markers,2009,24(1):38-46.
    [28]Shirahata A, SakataM, Sakuraba K, et al. Vimentin methylation as a marker for advanced colorectal carcinoma [J]. Anticancer Res,2009,29(1):279-281.
    [29]Bienz M. beta-Catenin:a pivot between cell adhesion and Wnt signalling[J]. Curr Biol,2005,15(2):64-67.
    [30]Colognato H, Yurchenco PD. Form and function:the laminin family of heterotrimers[J]. Dev Dyn,2000,218(2):213-234.
    [31]Carpenter PM, Wang-Rodriguez J, Chan OT, et al. Laminin 5 expression in metaplastic breast carcinomas[J]. Am J Surg Pathol,2008,32(3):345-353.
    [32]Giannelli G, Bergamini C, Fransvea E, et al. Laminin-5 with transforming growth factor-betal induces epithelial to mesenchymal transition in hepatocellular carcinoma[J]. Gastroenterology,2005,129(5):1375-1383.
    [33]Lu Z,Ghosh S,Wang Z,et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin,increased transcriptional activity of β-catenin,and enhanced tumor cell invasion[J]. Cancer Cell,2003,4:499-515.
    [34]Thuault S, Tan EJ, Peinado H, et al. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition[J]. J Biol Chem, 2008,283(48):33437-33446.
    [35]Kong WL, Yang H, He LL, et al. MicroRNA-155 is regulated by the transforming growth factor-β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J]. Mol Cell Biol,2008,28(22):6773-6784.
    [36]Lander R, Nordin K, LaBonne C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1[J]. J Cell Biol,2011,194(1):17-25.
    [37]Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis:interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition[J]. Breast Cancer Res,2011,13(3):211.
    [38]Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival:implications in development and cancer[J]. Development,2005, 132(14):3151-3161.
    [39]Matsuo N, Shiraha H, Fujikawa T, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma[J]. BMC Cancer,2009,9:240.
    [40]Yang Z, Zhang X, Gang H, et al. Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression[J]. Biochem Biophys Res Commun,2007,358(3):925-930.
    [41]Valdes-Mora F, Gomez del Pulgar T, Bandres E, et al. TWIST1 overexpression is associated with nodal invasion and male sex in primary colorectal cancer[J]. Ann Surg Oncol,2009,16(l):78-87.
    [42]Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer[J]. Cancer Res,2008, 68(2):537-544.
    [43]Martin TA, Goyal A, Watkins G, et al. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer[J]. Ann Surg Oncol,2005,12(6):488-496.
    [44]Foroni C, Broggini M, Generali D, et al. Epithelial-mesenchymal transition and breast cancer:role, molecular mechanisms and clinical impact[J]. Cancer Treat Rev, 2012,38(6):689-697.
    [45]Iwai S, Yonekawa A, Harada C, et al. Involvement of the Wnt-(3-catenin pathway in invasion and migration of oral squamous carcinoma cells[J]. Int J Oncol,2010, 37(5):1095-1103.
    [46]Fragiadaki M, Mason RM. Epithelial-mesenchymal transition in renal fibrosis-evidence for and against[J]. Int J Exp Pathol,2011,92(3):143-150.
    [47]Mongroo PS, Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition[J]. Cancer Biol Ther,2010,10(3):219-222.
    [48]Gerard B, Tait L, Nangia-Makker P, et al. Rad6B acts downstream of Wnt signaling to stabilize β-catenin:Implications for a novel Wnt/(3-catenin target[J]. J Mol Signal,2011,6:6.
    [49]Yee DS, Tang Y, Li X, et al. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition[J]. Mol Cancer,2010,9:162.
    [50]Ren D, Minami Y, Nishita M. Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition[J]. Genes Cells,2011,16(3):304-315.
    [51]Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signaling[J]. Nature,2003,425(6958):577-584.
    [52]Vincent T, Neve EP, Johnson JR, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition[J]. Nat Cell Biol,2009, 11(8):943-950.
    [53]Shin JA, Hong OK, Lee HJ, et al. Transforming growth factor-β induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells[J]. J Cell Biochem,2011, 112(1):179-188.
    [54]Grego-Bessa J, Diez J, Timmerman L, et al. Notch and epithelial mesenchyme transition in development and tumor progression:another turn of the screw[J]. Cell Cycle,2004,3 (6):718-721.
    [55]Kabashima-Niibe A, Higuchi H, Takaishi H et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells[J]. Cancer Sci,2013,104(2):157-164.
    [56]Kiefel H, Bondong S, Pfeifer M, et al. EMT-associated up-regulation of LI CAM provides insights into LICAM-mediated integrin signaling and NF-κB activation[J]. Carcinogenesis,2012,33(10):1919-1929.
    [57]Li Q, Liu BC, Lv LL, et al. Monocytes induce proximal tubular epithelialmesenchymal transition through NF-kappa B dependent upregulation of ICAM-1[J]. J Cell Biochem,2011,112(6):1585-1592.
    [58]Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer:role of phosphatidylinositol 3'kinase/AKT pathways[J]. Oncogene,2005, 24(50):7443-7454.
    [59]Wu K, Fan J, Zhang L, et al. PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription[J]. Cell Signal,2012,24(12):2273-82.
    [60]Liu Q, Mao H, Nie J, et al. Transforming growth factor betal induces ep ithelial mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells[J]. Perit Dial Int,2008,28 Suppl 3:S88-95.
    [61]Zhuo W, Wang Y, Zhuo X, et al. Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway[J]. Lung Cancer,2008,62 (1):8-14.
    [62]Choi J, Park SY, Joo CK. Transforming growth factor-β1 represses E-cadherin production via slug expression in lens epithelial cells[J]. Invest Ophthalmol Vis Sci, 2007,48 (6):2708-2718.
    [63]Hudson LG, Choi C, Newkirk KM, et al. Ultraviolet radiation stimulates expression of Snail family transcription factors in keratinocytes[J]. Mol Carcinog, 2007,46 (4):257-268.
    [64]Jung JW, Hwang SY, Hwang JS, et al. Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells[J]. Elsevier Ltd,2007,43 (7):1214-1224.
    [65]Boulton TG Yancopoulos GD, Gregory JS, et al. An insulin- stimulated protein Kinase similar to yrases kinases involved in cell cycle control[J]. Science,1990, 249(4964):64-67.
    [66]Boulton TG, Nye SH, Robb ins DJ, et al. ERKS:a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF[J]. Cell,1991,65 (4):663-675.
    [67]Jeong JH, Jeong YJ, Cho HJ, et al. Ascochlorin inhibits growth factor-induced HIF-1α activation and tumor-angiogenesis through the suppression of EGFR/ERK/p70S6K signaling pathway in human cervical carcinoma cells [J]. J Cell Biochem,2012,113(4):1302-1313.
    [68]Hindley A, Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase(MAPK)-independent functions of Raf kinases [J]. J Cell Sci, 2002,115(Pt8):1575-1581.
    [69]Neilson LM, Zhu J, Xie J, et al.Coactivation of janus tyrosine kinase (Jak)1 positively modulates prolactin-Jak2 signaling in breast cancer:recruitment of ERK and signal transducer and activator of transcription (Stat)3 and enhancement of Akt and Stat5a/b pathways[J]. Mol Endocrinol,2007,21(9):2218-2232.
    [70]Wei YY, Chen YJ, Hsiao YC, et al. Osteoblasts-derived TGF-betal enhance motility and integrin upregulation through Akt, ERK, and NF-kappaB-dependent pathway in human breast cancer cells[J]. Mol Carcinog,2008,47(7):526-537.
    [71]Ebisuya M, Kondon K, Nishida E. The duration magnitude and compartmentalization of ERK MAPK kinase activity:mechanisms of providing signaling specificity [J]. J Cell Sci,2005,118 (pt 14):2997-3002.
    [72]Devipriya Nagarajan, Tahira Melo, Zhiyong Deng, et al. ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition[J]. Free Radic Biol Med,2012,52(6):983-992.
    [73]Hsu YL, Hou MF, Kuo PL, et al. Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/Snail signaling pathway[EB/OL].:Oncogene advance online publication,2012, October 8:
    [74]Adam L, Zhong M, Choi W, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy[J]. Clin Cancer Res,2009,15(16): 5060-5072.
    [75]Gebeshuber CA, Zatloukal K, Martinez J. MiR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis[J]. EMBO Rep,2009, 10(4):400-405.
    [76]Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2[J]. J Biol Chem,2008,283(22): 14910-14914.
    [77]Wendt MK, Taylor MA, Schiemann BJ, et al. Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer[J]. Mol Biol Cell, 2011,22(14):2423-2435.
    [78]Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J]. Science,2013,339(6119): 580-584.
    [79]Laffin B, Wellberg E, Kwak HI, et al. Loss of singleminded-2s in the mouse mammary gland induces an epithelial-mesenchymal transition associated with upregulation of slug and matrix metalloprotease-2[J]. Mol Cell Biol,2008,28(6): 1936-1946.
    [80]Storci G, Sansone P, Trere D, et al. The basal-like breast carcinoma phenotype is regulated by Slug gene expression[J]. Pathol,2008,214(1):25-37.
    [81]Wu Y, Deng J, Rychahou PG, et al. Stabilization of snailby NF-kappaB is required for inflammation-induced cell migration and invasion[J]. Cancer Cell,2009, 15(5):416-428.
    [82]Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics [J]. Cancer Res,2009,69 (10):4116-4124.
    [83]Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells[J]. Cell,2008,133 (4):704-715.
    [84]Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. Plos One,2008,3 (8):e2888.
    [85]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(1): 3983-3988.
    [86]Trimboli AJ, Fukino K, de Bruin A, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer[J]. Cancer Res,2008,68(3): 937-945.
    [87]陈伟娟,王辉,唐勇,等.乳腺癌上皮-间质转化后引发BCRP介导的多药耐药的研究[J].癌症,2010,29(2):151-157.
    [88]Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated adriamycin induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells[J]. Clin Cancer Res,2009,15(8):2657-2665.
    [89]Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress [J]. Mol Cell Biol,2004, 24(17):7559-7566.
    [90]Lu S, Labhasetwar V. Drug Resistant Breast Cancer Cell Line Displays Cancer Stem Cell Phenotype and Responds Sensitively to Epigenetic Drug SAHA[J]. Drug Deliv Transl Res,2013,3(2):183-194.
    [91]Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features[J]. Proc Natl Acad Sci U S A,2009,106(33):13820-13825.
    [92]Singh A, Settleman J. EMT, cancer stem cells and drug resistance:an emerging axis of evil in the war on cancer[J]. Oncogene,2010,29 (34):4741-4751.
    [93]Kim MR, Choi HK, Cho KB, et al. Involvement of Pinl induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells[J]. Cancer Sci,2009,100(10):1834-1841.
    [94]Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen, resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of (3-catenin phosphorylation[J]. Int J Cancer,2006,118(2):290-301.
    [95]Bedard PL, Cardoso F, Piccart-Gebhart MJ. Stemming resistance to HER-2 targeted therapy[J]. J Mammary Gland Biol Neoplasia,2009,14(1):55-66.
    [96]Chia S, Norris B, Speers C, et al. Human epidermal growth factor receptor 2 overexpression as a prognostic factor in a large tissue microarray series of node-negative breast cancers[J]. J Clin Oncol,2008,26(35):5697-5704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700